Table of Contents
MCQ Questions for Class 8 Maths: Ch 14 Factorisation
MCQ Questions for Class 8 Maths: Ch 14 Factorisation
1. The common factor of a2 m4 and a4m2 is
(a) a4m4
(b) a2m2
(c) a2m4
(d) a4m2
► (b) a2m2
2. Divide as directed: 26xy (x + 5) (y – 4) ÷ 13x (y – 4)
(a) 2y (x + 5)
(b) (x + 5)
(c) 2y
(d) None of these
► (a) 2y (x + 5)
3. Divide as directed: 5 (2x + 1) (3x + 5) ÷ (2x + 1)
(a) 5 (3x + 5)
(b) (3x + 5)
(c) 5
(d) none of these
► (a) 5 (3x + 5)
4. Solve: –20(x)4 ÷ 10(x)2
(a) 1/2x
(b) x
(c) 1/2
(d) -2x2
► (d) -2x2
5. Find the common factors of 2y, 22xy.
(a) 2y
(b) 2
(c) 22
(d) y
► (a) 2y
6. Choose the factors of 15x2−26x+8 from the following.
(a) (3x−4),(5x+2)
(b) (3x−4),(5x−2)
(c) (3x+4),(5x−2)
(d) (3x+4),(5x+2)
► (b) (3x−4),(5x−2)
7. Find and correct the errors in the following mathematical statements. x (3x + 2) = 3x2 + 2
(a) x (3x + 2) = 3x2 + 2x
(b) x (3x + 2) = 3x2
(c) x(3x + 2) = 5x2+ 2x
(d) none of these
► (a) x (3x + 2) = 3x2 + 2x
8. Divide as directed: 52pqr (p + q) (q + r) (r + p) ÷104pq (q + r) (r + p)
(a) r(p+q)
(b) 1/2 r(p+q)
(c) 1/2
(d) none of these
► (b) 1/2 r(p+q)
9. Factorise: x2+xy+ 8x+ 8y
(a) (x + 8) (x + y)
(b) (x + y)
(c) (x + 8)
(d) (x + 9) (x – y)
► (a) (x + 8) (x + y)
10. What are the factors of x2+xy−2xz−2yz?
(a) (x−y) and (x+2z)
(b) (x+y) and (x−2z)
(c) (x−y)and (x−2z)
(d) (x+y) and (x+2z)
► (b) (x+y) and (x−2z)
11. Factorize x2 + 8x + 12
(a) (x + 2)(x + 6)
(b) (x + 3)(x + 4)
(c) 3x + 12
(d) 3x – 12
► (a) (x + 2)(x + 6)
12. How many factors does (x9−x) have?
(a) 5
(b) 4
(c) 2
(d) 9
► (a) 5
13. Which of the following is quotient obtained on dividing –18 xyz2 by –3 xz?
(a) 6 yz
(b) –6 yz
(c) 6 xy2
(d) 6 xy
► (a) 6 yz
14. Divide the given polynomial by the given monomial: (5x2− 6x) ÷ 3x
(a) (5x – 6)
(b) 1/3
(c) 1/3(5x – 6)
(d) none of these
► (c) 1/3(5x – 6)
15. Factorise 6xy – 4y + 6 – 9x.
(a) (3x – 2) (2y – 3)
(b) (3x – 2)
(c) (2y – 3)
(d) (2x – 3) (3y – 2)
► (a) (3x – 2) (2y – 3)
16. When we factorise an expression, we write it as a ________ of factors.
(a) product
(b) difference
(c) sum
(d) none of these
► (a) product
17. Factorise: 4y2 −12y + 9
(a) (7y− 5)2
(b) (5y− 3)2
(c) (2y− 5)2
(d) (2y− 3)2
► (d) (2y− 3)2
18. Amrit and Pankaj expanded (x−5)2. Amrit’s answer is x2−25 and Pankaj’s answer is x2−10x+25. Which of the following statements is correct?
(a) Amrit’s answer is correct.
(b) Pankaj’s answer is wrong.
(c) Both got correct answer.
(d) Pankaj’s answer is correct.
► (d) Pankaj’s answer is correct.
Factorisation Class 8 Extra Questions Very Short Answer Type
Question 1.
Find the common factors of the following terms.
(a) 25x2y, 30xy2
(b) 63m3n, 54mn4
Solution:
(a) 25x2y, 30xy2
25x2y = 5 × 5 × x × x × y
30xy2 = 2 × 3 × 5 × x × y × y
Common factors are 5× x × y = 5 xy
(b) 63m3n, 54mn4
63m3n = 3 × 3 × 7 × m × m × m × n
54mn4 = 2 × 3 × 3 × 3 × m × n × n × n × n
Common factors are 3 × 3 × m × n = 9mn
Question 2.
Factorise the following expressions.
(a) 54m3n + 81m4n2
(b) 15x2y3z + 25x3y2z + 35x2y2z2
Solution:
(a) 54m3n + 81m4n2
= 2 × 3 × 3 × 3 × m × m × m × n + 3 × 3 × 3 × 3 × m × m × m × m × n × n
= 3 × 3 × 3 × m × m × m × n × (2 + 3 mn)
= 27m3n (2 + 3mn)
(b) 15x2y3z + 25 x3y2z + 35x2y2z2 = 5x2y2z ( 3y + 5x + 7)
Question 3.
Factorise the following polynomials.
(a) 6p(p – 3) + 1 (p – 3)
(b) 14(3y – 5z)3 + 7(3y – 5z)2
Solution:
(a) 6p(p – 3) + 1 (p – 3) = (p – 3) (6p + 1)
(b) 14(3y – 5z)3 + 7(3y – 5z)2
= 7(3y – 5z)2 [2(3y – 5z) +1]
= 7(3y – 5z)2 (6y – 10z + 1)
Question 4.
Factorise the following:
(a) p2q – pr2 – pq + r2
(b) x2 + yz + xy + xz
Solution:
(a) p2q – pr2 – pq + r2
= (p2q – pq) + (-pr2 + r2)
= pq(p – 1) – r2(p – 1)
= (p – 1) (pq – r2)
(b) x2 + yz + xy + xz
= x2 + xy +xz + yz
= x(x + y) + z(x + y)
= (x + y) (x + z)
Question 5.
Factorise the following polynomials.
(a) xy(z2 + 1) + z(x2 + y2)
(b) 2axy2 + 10x + 3ay2 + 15
Solution:
(a) xy(z2 + 1) + z(x2 + y2)
= xyz2 + xy + 2x2 + zy2
= (xyz2 + zx2) + (xy + zy2)
= zx(yz + x) + y(x + yz)
= zx(x + yz) + y(x + yz)
= (x + yz) (zx + y)
(b) 2axy2 + 10x + 3ay2 + 15
= (2axy2 + 3ay2) + (10x + 15)
= ay2(2x + 3) +5(2x + 3)
= (2x + 3) (ay2 + 5)
Question 6.
Factorise the following expressions.
(а) x2 + 4x + 8y + 4xy + 4y2
(b) 4p2 + 2q2 + p2q2 + 8
Solution:
(a) x2 + 4x + 8y + 4xy + 4y2
= (x2 + 4xy + 4y2) + (4x + 8y)
= (x + 2y)2 + 4(x + 2y)
= (x + 2y)(x + 2y + 4)
(b) 4p2 + 2q2 + p2q2 + 8
= (4p2 + 8) + (p2q2 + 2q2)
= 4(p2 + 2) + q2(p2 + 2)
= (p2 + 2)(4 + q2)
Question 7.
Factorise:
(a) a2 + 14a + 48
(b) m2 – 10m – 56
Solution:
(a) a2 + 14a + 48
= a2 + 6a + 8a + 48
[6 + 8 = 14 ; 6 × 8 = 48]
= a(a + 6) + 8(a + 6)
= (a + 6) (a + 8)
(b) m2 – 10m – 56
= m2 – 14m + 4m – 56
[14 – 4 = 10; 4 × 4 = 56]
= m(m – 14) + 6(m – 14)
= (m – 14) (m + 6)
Question 8.
Factorise:
(a) x4 – (x – y)4
(b) 4x2 + 9 – 12x – a2 – b2 + 2ab
Solution:
(a) x4 – (x – y)4
= (x2)2 – [(x – y)2]2
= [x2 – (x – y)2] [x2 + (x – y)2]
= [x + (x – y] [x – (x – y)] [x2 + x2 – 2xy + y2]
= (x + x – y) (x – x + y)[2x2 – 2xy + y2]
= (2x – y) y(2x2 – 2xy + y2)
= y(2x – y) (2x2 – 2xy + y2)
(b) 4x2 + 9 – 12x – a2 – b2 + 2ab
= (4x2 – 12x + 9) – (a2 + b2 – 2ab)
= (2x – 3)2 – (a – b)2
= [(2x – 3) + (a – b)] [(2x – 3) – (a – b)]
= (2x – 3 + a – b)(2x – 3 – a + b)
Factorisation Class 8 Extra Questions Short Answer Type
Question 9.
Factorise the following polynomials.
(a) 16x4 – 81
(b) (a – b)2 + 4ab
Solution:
(a) 16x4 – 81
= (4x2)2 – (9)2
= (4x2 + 9)(4x2 – 9)
= (4x2 + 9)[(2x)2 – (3)2]
= (4x2 + 9)(2x + 3) (2x – 3)
(b) (a – b)2 + 4ab
= a2 – 2ab + b2 + 4ab
= a2 + 2ab + b2
= (a + b)2
Question 10.
Factorise:
(а) 14m5n4p2 – 42m7n3p7 – 70m6n4p3
(b) 2a2(b2 – c2) + b2(2c2 – 2a2) + 2c2(a2 – b2)
Solution:
(a) 14m5n4p2 – 42m7n3p7 – 70m6n4p3
= 14m5n3p2(n – 3m2p5 – 5mnp)
(b) 2a2(b2 – c2) + b2(2c2 – 2a2) + 2c2(a2 – b2)
= 2a2(b2 – c2) + 2b2(c2 – a2) + 2c2(a2 – b2)
= 2[a2(b2 – c2) + b2(c2 – a2) + c2(a2 – b2)]
= 2 × 0
= 0
Question 11.
Factorise:
(a) (x + y)2 – 4xy – 9z2
(b) 25x2 – 4y2 + 28yz – 49z2
Solution:
(a) (x + y)2 – 4xy – 9z2
= x2 + 2xy + y2 – 4xy – 9z2
= (x2 – 2xy + y2) – 9z2
= (x – y)2 – (3z)2
= (x – y + 3z) (x – y – 3z)
(b) 25x2 – 4y2 + 28yz – 49z2
= 25x2 – (4y2 – 28yz + 49z2)
= (5x)2 – (2y – 7)2
= (5x + 2y – 7) [5x – (2y – 7)]
= (5x + 2y – 7) (5x – 2y + 7)
Question 12.
Evaluate the following divisions:
(a) (3b – 6a) ÷ (30a – 15b)
(b) (4x2 – 100) ÷ 6(x + 5)
Solution:
Question 13.
Simplify the following expressions:
Solution:
Question 14.
Factorise the given expressions and divide that as indicated.
(a) 39n3(50n2 – 98 ) ÷ 26n2(5n – 7)
(b) 44(p4 – 5p3 – 24p2) ÷ 11p(p – 8)
Solution:
Question 15.
If one of the factors of (5x2 + 70x – 160) is (x – 2). Find the other factor.
Solution:
Let the other factor be m.
(x – 2) × m = 5x2 + 70x – 160
Discover more from EduGrown School
Subscribe to get the latest posts sent to your email.