Exercise 8A
Page No 130:
Question 1:
Write the following using literals, numbers and signs of basic operations:
(i) x increased by 12
(ii) y decreased by 7
(iii) The difference of a and b, when a > b
(iv) The product of x and y added to their sum
(v) One-third of x multiplied by the sum of a and b
(vi) 5 times x added to 7 times y
(vii) Sum of x and the quotient of y by 5
(viii) x taken away from 4
(ix) 2 less than the quotient of x by y
(x) x multiplied by itself
(xi) Twice x increased by y
(xii) Thrice x added to y squared
(xiii) x minus twice y
(xiv) x cubed less than y cubed
(xv) The quotient of x by 8 is multiplied by y
ANSWER:
(i) x increased by 12 is (x + 12).
(ii) y decreased by 7 is (y – 7).
(iii) The difference of a and b, when a>b is (a – b).
(iv) The product of x and y is xy.
The sum of x and y is (x + y).
So, product of x and y added to their sum is xy + (x + y).
(v) One third of x is x3x3.
The sum of a and b is (a + b).
∴∴ One-third of x multiplied by the sum of a and b = x3×(a+b)=x(a+b)3 x3×(a+b)=x(a+b)3
(vi) 5 times x added to 7 times y = (5×x)+(7×y), which is equal to 5x+7y.(5×x)+(7×y), which is equal to 5x+7y.
(vii) Sum of x and the quotient of y by 5 is x+y5x+y5.
(viii) x taken away from 4 is (4-x).
(ix) 2 less than the quotient of x by y is xy−2xy-2.
(x) x multiplied by itself is x×x=x2x×x=x2.
(xi) Twice x increased by y is (2×x)+y = 2x+y(2×x)+y = 2x+y.
(xii) Thrice x added to y squared is (3×x)+(y×y)=3x+y2(3×x)+(y×y)=3x+y2.
(xiii) x minus twice y is x−(2×y)=x−2yx-(2×y)=x-2y.
(xiv) x cubed less than y cubed is (y×y×y)−(x×x×x)=y3−x3.(y×y×y)-(x×x×x)=y3-x3.
(xv) The quotient of x by 8 is multiplied by y is x8×y=xy8x8×y=xy8.
Page No 130:
Question 2:
Ranjit scores 80 marks in English and x marks in Hindi. What is his total score in the two subjects?
ANSWER:
Ranjit’s score in English = 80 marks
Ranjit’s score in Hindi = x marks
Total score in the two subjects = (Ranjit’s score in English + Ranjit’s score in Hindi)
∴ Total score in the two subjects = (80 + x) marks
Page No 130:
Question 3:
Write the following in the exponential form:
(i) b × b × b × … 15 times
(ii) y × y × y × … 20 times
(iii) 14 × a × a × a × a × b × b × b
(iv) 6 × x × x × y × y
(v) 3 × z × z × z × y × y × x
ANSWER:
(i) b × b × b × … 15 times = b15b15
(ii) y × y × y × … 20 times = y20y20
(iii) 14 × a × a × a × a × b × b × b = 14×(a×a×a×a)×(b×b×b) =14a4b314×(a×a×a×a)×(b×b×b) =14a4b3
(iv) 6 × x × x × y × y = 6×(x×x)×(y×y)=6x2y26×(x×x)×(y×y)=6x2y2
(v) 3 × z × z × z × y × y × x = 3×(z×z×z)×(y×y)×x=3z3y2x3×(z×z×z)×(y×y)×x=3z3y2x
Page No 130:
Question 4:
Write down the following in the product form:
(i) x2y4
(ii) 6y5
(iii) 9xy2z
(iv) 10a3b3c3
ANSWER:
(i) x2y4=(x×x)×(y×y×y×y)=x×x×y×y×y×yx2y4=(x×x)×(y×y×y×y)=x×x×y×y×y×y
(ii) 6y5=6×(y×y×y×y×y)=6×y×y×y×y×y6y5=6×(y×y×y×y×y)=6×y×y×y×y×y
(iii) 9xy2z=9×x×(y×y)×z=9×x×y×y×z9xy2z=9×x×(y×y)×z=9×x×y×y×z
(iv) 10a3b3c3=10×(a×a×a)×(b×b×b)×(c×c×c)=10×a×a×a×b×b×b×c×c×c10a3b3c3=10×(a×a×a)×(b×b×b)×(c×c×c)=10×a×a×a×b×b×b×c×c×c
Page No 132:
Question 1:
If a = 2 and b = 3, find the value of
(i) a + b
(ii) a2 + ab
(ii) ab − a2
(iv) 2a − 3b
(v) 5a2 − 2ab
(vi) a3 − b3
ANSWER:
(i) a+b
Substituting a = 2 and b = 3 in the given expression:
2+3 = 5
(ii) a2+aba2+ab
Substituting a = 2 and b = 3 in the given expression:
(2)2+(2×3)=4+6=10(2)2+(2×3)=4+6=10
(iii) ab−a2ab-a2
Substituting a = 2 and b = 3 in the given expression:
(2×3)−(2)2=6−4=2(2×3)-(2)2=6-4=2
(iv) 2a-3b
Substituting a = 2 and b = 3 in the given expression:
(2×2)−(3×3)=4−9=−5(2×2)-(3×3)=4-9=-5
(v) 5a2−2ab5a2-2ab
Substituting a=2 and b=3 in the given expression:
5×(2)2−2×2×3=5×4−12=20−12=85×(2)2-2×2×3=5×4-12=20-12=8
(vi) a3−b3a3-b3
Substituting a=2 and b=3 in the given expression:
23−33=2×2×2−3×3×3=8−27=−1923-33=2×2×2-3×3×3=8-27=-19
Page No 132:
Question 2:
If x = 1, y = 2 and z = 5, find the value of
(i) 3x − 2y + 4z
(ii) x2 + y2 + z2
(iii) 2x2 − 3y2 + z2
(iv) xy + yz − zx
(v) 2x2 y − 5yz + xy2
(vi) x3 − y3 − z3
ANSWER:
(i) 3x-2y+4z
Substituting x = 1, y = 2 and z = 5 in the given expression:
3×(1)−2×(2)+4×(5)=3−4+20=193×(1)-2×(2)+4×(5)=3-4+20=19
(ii) x2+y2+z2 x2+y2+z2
Substituting x = 1, y = 2 and z = 5 in the given expression:
12+22+52=(1×1)+(2×2)+(5×5)=1+4+25=3012+22+52=(1×1)+(2×2)+(5×5)=1+4+25=30
(iii) 2×2−3y2+z22x2-3y2+z2
Substituting x = 1, y = 2 and z = 5 in the given expression:
2×(1)2−3×(2)2+52=2×(1×1)−3×(2×2)+(5×5)=2−12+25=152×(1)2-3×(2)2+52=2×(1×1)-3×(2×2)+(5×5)=2-12+25=15
(iv) xy+yz−zxxy+yz-zx
Substituting x = 1, y = 2 and z = 5 in the given expression:
(1×2)+(2×5)−(5×1)=2+10−5=7(1×2)+(2×5)-(5×1)=2+10-5=7
(v) 2x2y−5yz+xy22x2y-5yz+xy2
Substituting x = 1, y = 2 and z = 5 in the given expression:
2×(1)2×2−5×2×5+1×(2)2=4−50+4=−422×(1)2×2-5×2×5+1×(2)2=4-50+4=-42
(vi) x3−y3−z3x3-y3-z3
Substituting x = 1, y = 2 and z = 5 in the given expression:
13−23−53=(1×1×1)−(2×2×2)−(5×5×5)=1−8−125=−13213-23-53=(1×1×1)-(2×2×2)-(5×5×5)=1-8-125=-132
Page No 132:
Question 3:
If p = −2, q = −1 and r = 3, find the value of
(i) p2 + q2 − r2
(ii) 2p2 − q2 + 3r2
(iii) p − q − r
(iv) p3 + q3 + r3 + 3pqr
(v) 3p2q + 5pq2 + 2pqr
(vi) p4 + q4 − r4
ANSWER:
(i) p2+q2−r2p2+q2-r2
Substituting p = -2, q = -1 and r = 3 in the given expression:
(−2)2+(−1)2−(3)2=(−2×−2)+(−1×−1)−(3×3)⇒4+1−9=−4(-2)2+(-1)2-(3)2=(-2×-2)+(-1×-1)-(3×3)⇒4+1-9=-4
(ii) 2p2−q2+3r22p2-q2+3r2
Substituting p = -2, q = -1 and r = 3 in the given expression:
2×(−2)2−(−1)2+3×(3)2=2×(−2×−2)−(−1×−1)+3×(3×3)⇒8−1+27=342×(-2)2-(-1)2+3×(3)2=2×(-2×-2)-(-1×-1)+3×(3×3)⇒8-1+27=34
(iii) p−q−rp-q-r
Substituting p = -2, q = -1 and r = 3 in the given expression:
(−2)−(−1)−(3)=−2+1−3=−4(-2)-(-1)-(3)=-2+1-3=-4
(iv) p3+q3+r3+3pqrp3+q3+r3+3pqr
Substituting p = -2, q = -1 and r = 3 in the given expression:
(−2)3+(−1)3+(3)3+3×(−2×−1×3)=(−2×−2×−2)+(−1×−1×−1)+(3×3×3)+3×(6)=(−8)+(−1)+(27)+18=36(-2)3+(-1)3+(3)3+3×(-2×-1×3)=(-2×-2×-2)+(-1×-1×-1)+(3×3×3)+3×(6)=(-8)+(-1)+(27)+18=36
(v) 3p2q+5pq2+2pqr3p2q+5pq2+2pqr
Substituting p = -2, q = -1 and r = 3 in the given expression:
3×(−2)2×(−1)+5×(−2)×(−1)2+2×(−2×−1×3)=3×(−2×−2)×(−1)+5×(−2)×(−1×−1)+2×(−2×−1×3)=−12−10+12=−103×(-2)2×(-1)+5×(-2)×(-1)2+2×(-2×-1×3)=3×(-2×-2)×(-1)+5×(-2)×(-1×-1)+2×(-2×-1×3)=-12-10+12=-10
(vi) p4+q4−r4p4+q4-r4
Substituting p = -2, q = -1 and r = 3 in the given expression:
(−2)4+(−1)4−(3)4=(−2×−2×−2×−2)+(−1×−1×−1×−1)−(3×3×3×3)=16+1−81=−64(-2)4+(-1)4-(3)4=(-2×-2×-2×-2)+(-1×-1×-1×-1)-(3×3×3×3)=16+1-81=-64
Page No 132:
Question 4:
Write the coefficient of
(i) x in 13x
(ii) y in −5y
(iii) a in 6ab
(iv) z in −7xz
(v) p in −2pqr
(vi) y2 in 8xy2z
(vii) x3 in x3
(viii) x2 in −x2
ANSWER:
(i) Coefficient of x in 13x is 13.
(ii) Coefficient of y in -5y is -5.
(iii) Coefficient of a in 6ab is 6b.
(iv) Coefficient of z in -7xz is -7x.
(v) Coefficient of p in -2pqr is -2qr.
(vi) Coefficient of y2 in 8xy2z is 8xz.
(vii) Coefficient of x3 in x3 is 1.
(viii) Coefficient of x2 in -x2 is -1.
Page No 132:
Question 5:
Write the numerical coefficient of
(i) ab
(ii) −6bc
(iii) 7xyz
(iv) −2x3y2z
ANSWER:
(i) Numerical coefficient of ab is 1.
(ii) Numerical coefficient of -6bc is -6.
(iii) Numerical coefficient of 7xyz is 7.
(iv) Numerical coefficient of −2x3y2z is -2.
Page No 132:
Question 6:
Write the constant term of
(i) 3x2 + 5x + 8
(ii) 2x2 − 9
(iii) 4y2−5y+354y2-5y+35
(iv) z3−2z2+z−83z3-2z2+z-83
ANSWER:
A term of expression having no literal factors is called a constant term.
(i) In the expression 3x2 + 5x + 8, the constant term is 8.
(ii) In the expression 2x2 − 9, the constant term is -9.
(iii) In the expression 4y2−5y+354y2−5y+35, the constant term is 3535.
(iv) In the expression z3−2z2+z−83z3−2z2+z−83 , the constant term is −83-83.
Page No 132:
Question 7:
Identify the monomials, binomials and trinomials in the following:
(i) −2xyz
(ii) 5 + 7x3y3z3
(iii) −5x3
(iv) a + b − 2c
(v) xy + yz − zx
(vi) x5
(vii) ax3 + bx2 + cx + d
(viii) −14
(ix) 2x + 1
ANSWER:
The expressions given in (i), (iii), (vi) and (viii) contain only one term. So, each one of them is monomial.
The expressions given in (ii) and (ix) contain two terms. So, both of them are binomial.
The expressions given in (iv) and (v) contain three terms. So, both of them are trinomial.
The expression given in (vii) contains four terms. So, it does not represents any of the given types.
Page No 133:
Question 8:
Write all the terms of the algebraic expressions:
(i) 4x5 − 6y4 + 7x2y − 9
(ii) 9x3 − 5z4 + 7z3 y − xyz
ANSWER:
(i) Expression 4x5 − 6y4 + 7x2y − 9 has four terms, namely 4x5 ,-6y4 , 7x2y and -9.
(ii) Expression 9x3 − 5z4 + 7z3 y − xyz has four terms, namely 9x3 , -5z4 , 7z3 y and -xyz.
Page No 133:
Question 9:
Identify the like terms in the following:
(i) a2 , b2, −2a2, c2, 4a
(ii) 3x, 4xy, −yz,12zy3x, 4xy, -yz,12zy
(iii) −2xy2, x2y, 5y2x, x2z
(iv) abc, ab2c, acb2, c2ab, b2ac, a2bc, cab2
ANSWER:
The terms that have same literals are called like terms.
(i) a2 and 2a2 are like terms.
(ii) −yz and 12zy-yz and 12zy are like terms.
(iii) −2xy2 and 5y2x are like terms.
(iv) ab2c , acb2 , b2ac and cab2 are like terms.
Page No 134:
Exercise 8B
Question 1:
Add:
(i) 3x, 7x
(ii) 7y, −9y
(iii) 2xy, 5xy, −xy
(iv) 3x, 2y
(v) 2x2, − 3x2, 7x2
(vi) 7xyz, − 5xyz, 9xyz, −8xyz
(vii) 6a3, − 4a3, 10a3, −8a3
(viii) x2 − a2, −5x2 + 2a2, −4x2 + 4a2
ANSWER:
(i) Required sum = 3x + 7x
= (3+7)x = 10x
(ii) Required sum = 7y +(−9y)
= (7-9)y = -2y
(iii) Required sum = 2xy +5xy + (−xy)
= (2+5-1)xy = 6xy
(iv) Required sum = 3x+2y
(v) Required sum = 2x2 + (− 3x2) + 7x2
=(2-3+7)x2 = 6x2
(vi)Required sum = 7xyz + (− 5xyz) + 9xyz + (−8xyz)
= (7-5+9-8)xyz = 3xyz
(vii) Required sum = 6a3 +(− 4a3) + 10a3 +( −8a3)
=(6-4+10-8)a3 = 4a3
(viii) Required sum = x2 − a2 + (−5x2 + 2a2) +( −4x2 + 4a2 )
Rearranging and collecting the like terms = x2 -5x2 -4x2 -a2 + 2a2 +4a2
= (1-5-4)x2 +(-1+2+4)a2
= -8x2 + 5a2
Page No 134:
Question 2:
Add the following:
(i) x − 3y − 2z 5x + 7y − z− 7x − 2y + 4z x – 3y – 2z 5x + 7y – z- 7x – 2y + 4z
(ii) m2 − 4m + 5− 2m2 + 6m − 6 − m2 − 2m − 7 m2 – 4m + 5- 2m2 + 6m – 6 – m2 – 2m – 7
(iii) 2×2 − 3xy + y2− 7×2 − 5xy − 2y2 4×2 + xy − 6y2 2×2 – 3xy + y2- 7×2 – 5xy – 2y2 4×2 + xy – 6y2
(iv) 4xy − 5yz − 7zx− 5xy + 2yz + zx− 2xy − 3yz + 3zx 4xy – 5yz – 7zx- 5xy + 2yz + zx- 2xy – 3yz + 3zx
ANSWER:
(i)
x − 3y −2z 5 x + 7y − z−7x − 2y + 4z−x +2y + z x – 3y -2z 5 x + 7y – z-7x – 2y + 4z-x +2y + z
(ii)
m2 − 4m + 5 − 2m2 + 6m − 6 − m2 − 2m − 7 −2m2 +0×m−8= −2m2 + 0 −8 = −2m2−8 m2 – 4m + 5 – 2m2 + 6m – 6 – m2 – 2m – 7 -2m2 +0×m-8= -2m2 + 0 -8 = -2m2-8
(iii)
2×2 − 3xy + y2− 7×2 − 5xy − 2y2 4×2 + xy − 6y2 −x2−7xy −7y2 2×2 – 3xy + y2- 7×2 – 5xy – 2y2 4×2 + xy – 6y2 -x2-7xy -7y2
(iv)
4xy − 5yz − 7zx− 5xy + 2yz + zx− 2xy − 3yz + 3zx−3xy −6yz −3zx 4xy – 5yz – 7zx- 5xy + 2yz + zx- 2xy – 3yz + 3zx-3xy -6yz -3zx
Page No 134:
Question 3:
Add:
(i) 3a − 2b + 5c, 2a + 5b − 7c, − a − b + c
(ii) 8a − 6ab + 5b, −6a − ab − 8b, −4a + 2ab + 3b
(iii) 2x3 − 3x2 + 7x − 8, −5x3 + 2x2 − 4x + 1, 3 − 6x + 5x2 − x3
(iv) 2x2 − 8xy + 7y2 − 8xy2, 2xy2 + 6xy − y2 + 3x2, 4y2 − xy − x2 + xy2
(v) x3 + y3 − z3 + 3xyz, − x3 + y3 + z3 − 6xyz, x3 − y3 − z3 − 8xyz
(vi) 2 + x − x2 + 6x3, −6 −2x + 4x2 −3x3, 2 + x2, 3 − x3 + 4x − 2x2
ANSWER:
(i) Sum of the given expressions
= (3a − 2b + 5c)+(2a + 5b − 7c)+ (− a − b + c)
Rearranging and collecting the like terms
= 3a+2a-a-2b+5b-b+5c-7c+c
= (3+2-1)a + (-2+5-1)b + (5-7+1)c
= 4a+2b-c
(ii) Sum of the given expressions
= (8a − 6ab + 5b) + (−6a − ab − 8b) + (−4a + 2ab + 3b)
Rearranging and collecting the like terms
=(8−6−4)a + (- 6 −1+2)ab + (5− 8+ 3)b
= -2a-5ab+0 = -2a – 5ab
(iii) Sum of the given expressions
= (2x3 − 3x2 + 7x − 8) + (−5x3 + 2x2 − 4x + 1) + ( 3 − 6x + 5x2 − x3 )
Rearranging and collecting the like terms
=2x3−5x3 − x3 − 3x2 + 2x2 + 5x2 +7x-4x-6x-8+1+3
= (2-5-1)x3 +(-3+2+5)x2+(7-4-6)x-4
= -4x3 +4x2-3x-4
(iv) Sum of the given expressions
= (2x2 − 8xy + 7y2 − 8xy2)+( 2xy2 + 6xy − y2 + 3x2)+( 4y2 − xy − x2 + xy2 )
Rearranging and collecting the like terms
= 2x2 +3x2 − x2 + 7y2 − y2 +4y2 − 8xy + 6xy − xy− 8xy2 +2xy2 + xy2
= (2 +3− 1)x2 + (7 − 1 +4)y2 + (-8 + 6 −1)xy + (− 8 +2 +1)xy2
= 4x2 + 10y2 − 3xy -5xy2
(v) Sum of the given expressions
= (x3 + y3 − z3 + 3xyz)+(− x3 + y3 + z3 − 6xyz)+(x3 − y3 − z3 − 8xyz)
Rearranging and collecting the like terms
= x3 -x3 + x3 + y3 + y3 − y3 -z3 + z3 − z3 + 3xyz-6xyz-8xyz
= (1-1+1)x3 + (1+1-1)y3 + (-1+1-1)z3 +(3-6-8)xyz
= x3 + y3 − z3 -11xyz
(vi) Sum of the given expressions
= (2 + x − x2 + 6x3)+(−6 −2x + 4x2 −3x3)+( 2 + x2)+( 3 − x3 + 4x − 2x2 )
Rearranging and collecting the like terms
= 6x3 −3x3− x3− x2 +4x2+ x2− 2x2+ x −2x+ 4x+2-6+2+3
= (6-3-1)x3+(-1+4+1-2)x2+(1-2+4)x+1
= 2x3+2x2+3x+1
Page No 135:
Question 4:
Subtract:
(i) 5x from 2x
(ii) −xy from 6xy
(iii) 3a from 5b
(iv) −7x from 9y
(v) 10x2 from −7x2
(vi) a2 − b2 from b2 − a2
ANSWER:
Change the sign of each term of the expression that is to be subtracted and then add.
(i) Term to be subtracted = 5x
Changing the sign of each term of the expression gives -5x.
On adding:
2x+(-5x) = 2x-5x
= (2-5)x
= -3x
(ii) Term to be subtracted = -xy
Changing the sign of each term of the expression gives xy.
On adding:
6xy+xy
= (6+1)xy
= 7xy
(iii) Term to be subtracted = 3a
Changing the sign of each term of the expression gives -3a.
On adding:
5b+(-3a)
= 5b-3a
(iv) Term to be subtracted = -7x
Changing the sign of each term of the expression gives 7x.
On adding:
9y+7x
(v) Term to be subtracted = 10x2
Changing the sign of each term of the expression gives -10x2.
On adding:
−7x2 + (-10x2) = −7x2 −10x2
= (−7−10)x2
= −17x2
(vi) Term to be subtracted = a2 − b2
Changing the sign of each term of the expression gives -a2 + b2.
On adding:
b2 − a2 + (-a2 + b2) = b2 − a2 -a2 + b2
= (1+1)b2 +(−1-1) a2
= 2b2 − 2a2
Page No 135:
Question 5:
Subtract:
(i) 5a + 7b − 2c from 3a − 7b + 4c
(ii) a − 2b − 3c from −2a + 5b − 4c
(iii) 5x2 − 3xy + y2 from 7x2 − 2xy − 4y2
(iv) 6x3 − 7x2 + 5x − 3 from 4 − 5x + 6x2 − 8x3
(v) x3 + 2x2y + 6xy2 − y3 from y3 − 3xy2 − 4x2y
(vi) −11x2y2 + 7xy −6 from 9x2y2 −6xy + 9
(vii) −2a + b + 6d from 5a − 2b − 3c
ANSWER:
Change the sign of each term of the expression that is to be subtracted and then add.
(i) Term to be subtracted = 5a + 7b − 2c
Changing the sign of each term of the expression gives -5a -7b + 2c.
On adding:
(3a − 7b + 4c)+(-5a -7b + 2c ) = 3a − 7b + 4c-5a -7b + 2c
= (3-5)a+( − 7-7)b + (4+2)c
= -2a − 14b + 6c
(ii) Term to be subtracted = a − 2b − 3c
Changing the sign of each term of the expression gives -a +2b + 3c.
On adding:
(−2a + 5b − 4c)+(-a +2b + 3c ) = −2a + 5b − 4c-a +2b + 3c
= (−2-1)a + (5+2)b +(−4+3)c
= −3a + 7b − c
(iii) Term to be subtracted = 5x2 − 3xy + y2
Changing the sign of each term of the expression gives -5x2 + 3xy – y2.
On adding:
(7x2 − 2xy − 4y2)+(-5x2 + 3xy – y2) = 7x2 − 2xy − 4y2-5x2 + 3xy – y2
= (7-5)x2 +(−2+3)xy +(−4-1)y2
= 2x2 +xy − 5y2
(iv) Term to be subtracted = 6x3 − 7x2 + 5x − 3
Changing the sign of each term of the expression gives -6x3 + 7x2 – 5x + 3.
On adding:
(4 − 5x + 6x2 − 8x3)+(-6x3 + 7x2 – 5x + 3) = 4 − 5x + 6x2 − 8x3-6x3 + 7x2 – 5x + 3
= (-8-6)x3 +(6+7)x2 +(-5- 5)x + 7
= -14x3 + 13x2 – 10x + 7
(v) Term to be subtracted = x3 + 2x2y + 6xy2 − y3
Changing the sign of each term of the expression gives -x3 – 2x2y – 6xy2 + y3.
On adding:
(y3 − 3xy2 − 4x2y)+(-x3 – 2x2y – 6xy2 + y3) = y3 − 3xy2 − 4x2y-x3 – 2x2y – 6xy2 + y3
= -x3 +(- 2-4)x2y +(-6-3)xy2 + (1+1)y3
= -x3 – 6x2y – 9xy2 + 2y3
(vi) Term to be subtracted = −11x2y2 + 7xy −6
Changing the sign of each term of the expression gives 11x2y2 -7xy +6.
On adding:
(9x2y2 −6xy + 9)+(11x2y2 -7xy +6) = 9x2y2 −6xy + 9+11x2y2 -7xy +6
= (9+11)x2y2 (-7−6)xy + 15
= 20x2y2 −13xy +15
(vii) Term to be subtracted = −2a + b + 6d
Changing the sign of each term of the expression gives 2a-b-6d.
On adding:
(5a − 2b -3c)+(2a-b-6d ) = 5a − 2b -3c +2a-b-6d
= (5+2)a+(− 2-1)b -3c -6d
= 7a − 3b-3c -6d
Page No 135:
Question 6:
Simplify:
(i) 2p3 − 3p2 + 4p − 5 − 6p3 + 2p2 − 8p − 2 + 6p + 8
(ii) 2x2 − xy + 6x − 4y + 5xy − 4x + 6x2 + 3y
(iii) x4 − 6x3 + 2x − 7 + 7x3 − x + 5x2 + 2 − x4
ANSWER:
(i) 2p3 − 3p2 + 4p − 5 − 6p3 + 2p2 − 8p − 2 + 6p + 8
Rearranging and collecting the like terms
= (2-6)p3 +(−3+2)p2 + (4-8+6)p − 5-2+8
= -4p3 −p2 +2p +1
(ii) 2x2 − xy + 6x − 4y + 5xy − 4x + 6x2 + 3y
Rearranging and collecting the like terms
= (2+6)x2 +(−1+5) xy + (6-4)x +(− 4+3)y
= 8x2 + 4xy + 2x − y
(iii) x4 − 6x3 + 2x − 7 + 7x3 − x + 5x2 + 2 − x4
Rearranging and collectingthe like terms
= (1-1)x4 +(− 6+7)x3 + 5x2 +(2-1)x-7+ 2
= 0 + x3 + 5x2 +x-5
= x3 + 5x2 +x-5
Page No 135:
Question 7:
From the sum of 3x2 − 5x + 2 and −5x2 − 8x + 6, subtract 4x2 − 9x + 7.
ANSWER:
Adding:
(3x2 − 5x + 2) + (−5x2 − 8x + 6)
Rearranging and collecting the like terms:
(3-5)x2 +(− 5-8)x + 2 +6
= -2x2 − 13x + 8
Subtract 4x2 − 9x + 7 from -2x2 − 13x + 8.
Change the sign of each term of the expression that is to be subtracted and then add.
Term to be subtracted = 4x2 − 9x + 7
Changing the sign of each term of the expression gives -4x2 + 9x – 7.
On adding:
( -2x2 − 13x + 8 )+(-4x2 + 9x – 7 ) = -2x2 − 13x + 8 -4x2 + 9x – 7
= ( -2-4)x2 +(−13+9)x + 8 -7
= -6x2 − 4x + 1
Page No 135:
Question 8:
If A = 7x2 + 5xy − 9y2, B = −4x2 + xy + 5y2 and C = 4y2 − 3x2 − 6xy then show that A + B + C = 0.
ANSWER:
A = 7x2 + 5xy − 9y2
B = −4x2 + xy + 5y2
C = 4y2 − 3x2 − 6xy
Substituting the values of A, B and C in A+B+C:
= (7x2 + 5xy − 9y2)+(−4x2 + xy + 5y2)+(4y2 − 3x2 − 6xy)
= 7x2 + 5xy − 9y2−4x2 + xy + 5y2+4y2 − 3x2 − 6xy
Rearranging and collecting the like terms:
(7-4-3)x2 + (5+1-6)xy +(−9+5+4)y2
= (0)x2 + (0)xy + (0)y2
= 0
⇒A+B+C=0⇒A+B+C=0
Page No 135:
Question 9:
What must be added to 5x3 − 2x2 + 6x + 7 to make the sum x3 + 3x2 − x + 1?
ANSWER:
Let the expression to be added be X.
(5x3 − 2x2 + 6x + 7)+X = (x3 + 3x2 − x + 1)
X = (x3 + 3x2 − x + 1) – (5x3 − 2x2 + 6x + 7)
Changing the sign of each term of the expression that is to be subtracted and then adding:
X = (x3 + 3x2 − x + 1) + (-5x3 + 2x2 – 6x – 7)
X = x3 + 3x2 − x + 1-5x3 + 2x2 – 6x – 7
Rearranging and collecting the like terms:
X = (1-5)x3 + (3+2)x2 +(−1-6) x + 1-7
X = -4x3 + 5x2 − 7x -6
So, -4x3 + 5x2 − 7x -6 must be added to 5x3 − 2x2 + 6x + 7 to get the sum as x3 + 3x2 − x + 1.
Page No 135:
Question 10:
Let P = a2 − b2 + 2ab, Q = a2 + 4b2 − 6ab, R = b2 + 6, S = a2 − 4ab and T = −2a2 + b2 − ab + a. Find P + Q + R + S − T.
ANSWER:
P = a2 − b2 + 2ab
Q = a2 + 4b2 − 6ab
R = b2 + 6
S = a2 − 4ab
T = −2a2 + b2 − ab + a
Adding P, Q, R and S:
P+Q+R+S
= (a2 − b2 + 2ab)+(a2 + 4b2 − 6ab)+(b2 + 6)+(a2 − 4ab )
= a2 − b2 + 2ab+a2 + 4b2 − 6ab+b2 + 6+a2 − 4ab
Rearranging and collecting the like terms:
= (1+1+1)a2 +(−1+4+1) b2 + (2-6-4)ab+6
P+Q+R+S = 3a2 +4b2 – 8ab+6
To find P + Q + R + S − T, subtract T = (−2a2 + b2 − ab + a) from P+Q+R+S = (3a2 +4b2 – 8ab+6).
On changing the sign of each term of the expression that is to be subtracted and then adding:
Term to be subtracted = −2a2 + b2 − ab + a
Changing the sign of each term of the expression gives 2a2 – b2 + ab – a.
Now add:
(3a2 +4b2 – 8ab+6)+(2a2 – b2 + ab – a) = 3a2 +4b2 – 8ab+6+2a2 – b2 + ab – a
= (3+2)a2 +(4-1) b2 +(-8+1) ab – a+6
P + Q + R + S − T = 5a2 +3b2 -7 ab – a+6
Page No 135:
Question 11:
What must be subtracted from a3 − 4a2 + 5a − 6 to obtain a2 − 2a + 1?
ANSWER:
Let the expression to be subtracted be X.
(a3 − 4a2 + 5a − 6)-X = (a2 − 2a + 1)
X = (a3 − 4a2 + 5a − 6)- (a2 − 2a + 1)
Since ‘-‘ sign precedes the parenthesis, we remove it and change the sign of each term within the parenthesis.
X = a3 − 4a2 + 5a − 6- a2 + 2a – 1
Rearranging and collecting the like terms:
X = a3 +(− 4-1)a2 + (5+2)a − 6 – 1
X = a3 −5a2 + 7a − 7
So, a3 −5a2 + 7a − 7 must be subtracted from a3 − 4a2 + 5a − 6 to obtain a2 − 2a + 1.
Page No 135:
Question 12:
How much is a + 2a − 3c greater than 2a − 3b + c?
ANSWER:
To calculate how much is a + 2b − 3c greater than 2a − 3b + c, we have to subtract 2a − 3b + c from a + 2b − 3c.
Change the sign of each term of the expression that is to be subtracted and then add.
Term to be subtracted = 2a − 3b + c
Changing the sign of each term of the expression gives -2a + 3b – c.
On adding:
(a + 2b − 3c )+(-2a + 3b – c )
= a + 2b − 3c -2a + 3b – c
= (1-2)a + (2+3)b +(− 3-1)c
= -a + 5b − 4c
Page No 135:
Question 13:
How much less than x − 2y + 3z is 2x − 4y − z?
ANSWER:
To calculate how much less than x − 2y + 3z is 2x − 4y − z, we have to subtract 2x − 4y − z from x − 2y + 3z.
Change the sign of each term of the expression that is to be subtracted and then add.
Term to be subtracted = 2x − 4y − z
Changing the sign of each term of the expression gives -2x + 4y + z.
On adding:
(x − 2y + 3z)+(-2x + 4y + z )
= x − 2y + 3z-2x + 4y + z
= (1-2)x +(−2+4)y + (3+1)z
= -x + 2y + 4z
Page No 135:
Question 14:
By how much does 3x2 − 5x + 6 exceed x3 − x2 + 4x − 1?
ANSWER:
To calculate how much does 3x2 − 5x + 6 exceed x3 − x2 + 4x − 1, we have to subtract x3 − x2 + 4x − 1 from 3x2 − 5x + 6.
Change the sign of each term of the expression that is to be subtracted and then add.
Term to be subtracted = x3 − x2 + 4x − 1
Changing the sign of each term of the expression gives -x3 + x2 – 4x + 1.
On adding:
(3x2 − 5x + 6)+(-x3 + x2 – 4x + 1 )
= 3x2 − 5x + 6-x3 + x2 – 4x + 1
= -x3 + (3+1)x2 +(-5-4)x+6 + 1
= -x3 +4 x2 – 9x + 7
Page No 135:
Question 15:
Subtract the sum of 5x − 4y + 6z and −8x + y − 2z from the sum of 12x − y + 3z and −3x + 5y − 8z.
ANSWER:
Add 5x − 4y + 6z and −8x + y − 2z.
(5x − 4y + 6z )+(−8x + y − 2z)
= 5x − 4y + 6z −8x + y − 2z
= (5-8)x +(−4+1)y + (6-2)z
= -3x − 3y + 4z
Adding 12x − y + 3z and −3x + 5y − 8z:
(12x − y + 3z )+(−3x + 5y − 8z)
= 12x − y + 3z −3x + 5y − 8z
= (12-3)x +(−1+5)y + (3-8)z
= 9x +4y -5z
Subtract -3x − 3y + 4z from 9x +4y -5z.
Change the sign of each term of the expression that is to be subtracted and then add.
Term to be subtracted = -3x − 3y + 4z
Changing the sign of each term of the expression gives 3x + 3y – 4z.
On adding:
(9x +4y -5z)+(3x + 3y – 4z )
= 9x +4y -5z+3x + 3y – 4z
= (9+3)x +(4+3)y + (-5-4)z
= 12x +7y -9z
Page No 135:
Question 16:
By how much is 2x − 3y + 4z greater than 2x + 5y − 6z + 2?
ANSWER:
To calculate how much is 2x − 3y + 4z greater than 2x + 5y − 6z + 2, we have to subtract 2x + 5y − 6z + 2 from 2x − 3y + 4z.
Change the sign of each term of the expression that is to be subtracted and then add.
Term to be subtracted = 2x + 5y − 6z + 2
Changing the sign of each term of the expression gives -2x – 5y + 6z – 2.
On adding:
(2x − 3y + 4z )+(-2x – 5y + 6z – 2 )
= 2x − 3y + 4z-2x – 5y + 6z – 2
= (2-2)x + (-3-5)y +(4+6)z-2
= 0-8y+10z-2
= -8y+10z-2
Page No 135:
Question 17:
By how much does 1 exceed 2x − 3y − 4?
ANSWER:
To calculate how much does 1 exceed 2x-3y-4, we have to subtract 2x-3y-4 from 1.
Change the sign of each term of the expression to be subtracted and then add.
Term to be subtracted = 2x-3y-4
Changing the sign of each term of the expression gives -2x+3y+4.
On adding:
(1)+(-2x+3y+4 )
= 1-2x+3y+4
= 5-2x+3y
Page No 136:
Exercise 8C
Question 1:
Simplify:
a − (b − 2a)
ANSWER:
a – (b – 2a)
Here, ‘-‘ sign precedes the parenthesis. So, we will remove it and change the sign of each term within the parenthesis.
=a – b + 2a
=3a – b
Page No 136:
Question 2:
Simplify:
4x − (3y − x + 2z)
ANSWER:
4x − (3y − x + 2z)
Here, ‘−’ sign precedes the parenthesis. So, we will remove it and change the sign of each term within the parenthesis.
= 4x − 3y + x − 2z
= 5x − 3y − 2z
Page No 136:
Question 3:
Simplify:
(a2 + b2 + 2ab) − (a2 + b2 −2ab)
ANSWER:
(a2 + b2 + 2ab) − (a2 + b2 − 2ab)
Here, ‘−’ sign precedes the second parenthesis. So, we will remove it and change the sign of each term within the parenthesis.
a2 + b2 + 2ab − a2 − b2 +2ab
Rearranging and collecting the like terms:
a2 − a2 +b2 − b2 + 2ab + 2ab
=(1 − 1)a2 + (1− 1)b2 + (2 + 2)ab
=0 + 0 + 4ab
= 4ab
Page No 136:
Question 4:
Simplify:
−3(a + b) + 4(2a − 3b) − (2a − b)
ANSWER:
−3(a + b) + 4(2a − 3b) − (2a − b)
Here, ‘−’ sign precedes the first and the third parenthesis. So, we will remove them and change the sign of each term within the two parenthesis.
= −3a − 3b + (4××2a )−(4××3b) − 2a + b
= − 3a − 3b + 8a − 12b − 2a + b
Rearranging and collecting the like terms:
−3a + 8a − 2a − 3b − 12b + b
= (−3 + 8 − 2)a + (−3 − 12 + 1)b
= 3a −14b
Page No 136:
Question 5:
Simplify:
−4x2 + {(2x2 − 3) − (4 − 3x2)}
ANSWER:
−4x2 + {(2x2 − 3) − (4 − 3x2)}
We will first remove the innermost grouping symbol ( ) and then { }.
∴ −4x2 + {(2x2 − 3) − (4 − 3x2)}
= −4x2 + {2x2 − 3 − 4 + 3x2}
= −4x2 + {5x2 − 7}
= −4x2 + 5x2 − 7
= x2 − 7
Page No 136:
Question 6:
Simplify:
−2(x2 − y2 + xy) −3(x2 + y2 − xy)
ANSWER:
−2(x2 − y2 + xy) −3(x2 + y2 − xy)
Here a ‘−’ sign precedes both the parenthesis. So, we will remove them and change the sign of each term within the two parenthesis.
= −2x2 +2y2 − 2xy −3x2 − 3y2 + 3xy
= (−2 − 3)x2 +(2 − 3)y2 + (− 2 + 3)xy
= −5x2 − y2 + xy
Page No 136:
Question 7:
Simplify:
a − [2b − {3a − (2b − 3c)}]
ANSWER:
a − [2b − {3a − (2b − 3c)}]
We will first remove the innermost grouping symbol ( ), followed by { } and then [ ].
∴ a − [2b − {3a − (2b − 3c)}]
= a − [2b − {3a − 2b + 3c}]
= a − [2b − 3a + 2b − 3c]
= a − [4b − 3a − 3c]
= a − 4b + 3a + 3c
= 4a − 4b + 3c
Page No 136:
Question 8:
Simplify:
−x + [5y − {x − (5y − 2x)}]
ANSWER:
−x + [5y − {x − (5y − 2x)}]
We will first remove the innermost grouping symbol ( ), followed by { } and then [ ].
∴ −x + [5y − {x − (5y − 2x)}]
= −x + [5y − {x − 5y + 2x}]
= −x + [5y − {3x − 5y}]
= −x + [5y − 3x + 5y]
= −x + [10y − 3x]
= −x + 10y − 3x
= − 4x + 10y
Page No 137:
Question 9:
Simplify:
86 − [15x − 7(6x − 9) −2{10x − 5(2 − 3x)}]
ANSWER:
86 − [15x − 7(6x − 9) −2{10x − 5(2 − 3x)}]
We will first remove the innermost grouping symbol ( ), followed by { } and then [ ].
∴ 86 − [15x − 7(6x − 9) −2{10x − 5(2 − 3x)}]
= 86 − [15x − 42x + 63 −2{10x − 10 + 15x}]
= 86 − [15x − 42x + 63 −2{25x − 10}]
= 86 − [15x − 42x + 63 −50x + 20]
= 86 − [− 77x + 83 ]
= 86 + 77x − 83
= 77x + 3
Page No 137:
Question 10:
Simplify:
12x − [3x3 + 5x2 − {7x2 − (4 − 3x − x3) + 6x3} − 3x]
ANSWER:
12x − [3x3 + 5x2 − {7x2 − (4 − 3x − x3) + 6x3} − 3x]
We will first remove the innermost grouping symbol ( ), followed by { } and then [ ].
∴ 12x − [3x3 + 5x2 − {7x2 − (4 − 3x − x3) + 6x3} − 3x]
= 12x − [3x3 + 5x2 − {7x2 − 4 + 3x + x3+ 6x3} − 3x]
= 12x − [3x3 + 5x2 − {7x2 − 4 + 3x + 7x3} − 3x]
= 12x − [3x3 + 5x2 − 7x2 + 4 − 3x − 7x3 − 3x]
= 12x − [ − 2x2 + 4 − 4x3 − 6x]
= 12x + 2x2 − 4 + 4x3 + 6x
= 4x3 + 2x2 +18x-4
Page No 137:
Question 11:
Simplify:
5a − [a2 − {2a(1 − a + 4a2) − 3a(a2 − 5a − 3)}] −8a
ANSWER:
5a − [a2 − {2a(1 − a + 4a2) − 3a(a2 − 5a − 3)}] −8a
We will first remove the innermost grouping symbol ( ), followed by { } and then [ ].
∴ 5a − [a2 − {2a(1 − a + 4a2) − 3a(a2 − 5a − 3)}] −8a
= 5a − [a2 − {2a − 2a2 + 8a3 − 3a3 + 15a2 + 9a}] −8a
= 5a − [a2 − {5a3 + 13a2 + 11a}] − 8a
= 5a − [a2 − 5a3 − 13a2 −11a] − 8a
= 5a − [ − 5a3 − 12a2 − 11a] − 8a
= 5a + 5a3 + 12a2 + 11a − 8a
= 5a3 + 12a2 + 8a
Page No 137:
Question 12:
Simplify:
3 − [x − {2y − (5x + y − 3) + 2x2} − (x2 − 3y)]
ANSWER:
3 − [x − {2y − (5x + y − 3) + 2x2} − (x2 − 3y)]
We will first remove the innermost grouping symbol ( ), followed by { } and then [ ].
∴ 3 − [x − {2y − (5x + y − 3) + 2x2} − (x2 − 3y)]
= 3 − [x − {2y − 5x – y + 3 + 2x2} − x2 + 3y]
= 3 − [x − {y − 5x + 3 + 2x2} − x2 + 3y]
= 3 − [x − y + 5x − 3 − 2x2 − x2 + 3y]
= 3 − [ 6x − 3 − 3x2 + 2y]
= 3 − 6x + 3 + 3x2 − 2y
= 3x2 − 2y − 6x+6
Page No 137:
Question 13:
Simplify:
xy − [yz − zx − {yx − (3y − xz) − (xy − zy)}]
ANSWER:
xy − [yz − zx − {yx − (3y − xz) − (xy − zy)}]
We will first remove the innermost grouping symbol ( ), followed by { } and then [ ].
∴ xy − [yz − zx − {yx − (3y − xz) − (xy − zy)}]
= xy − [yz − zx − {yx − 3y + xz − xy + zy}]
= xy − [yz − zx − {− 3y + xz + zy}] (∵xy=yx)(∵xy=yx)
= xy − [yz − zx + 3y – xz – zy]
= xy − [− 2zx + 3y ] (∵ yz=zy, zx=xz)(∵ yz=zy, zx=xz)
= xy + 2zx − 3y
Page No 137:
Question 14:
Simplify:
2a − 3b − [3a − 2b − {a − c − (a − 2b)}]
ANSWER:
2a − 3b − [3a − 2b − {a − c − (a − 2b)}]
We will first remove the innermost grouping symbol ( ), followed by { } and then [ ].
∴ 2a − 3b − [3a − 2b − {a − c − (a − 2b)}]
= 2a − 3b − [3a − 2b − {a − c − a + 2b}]
= 2a − 3b − [3a − 2b − {− c + 2b}]
= 2a − 3b − [3a − 2b + c − 2b]
= 2a − 3b − [3a − 4b + c ]
= 2a − 3b − 3a + 4b − c
= − a + b − c
Page No 137:
Question 15:
Simplify:
−a − [a + {a + b − 2a − (a − 2b)} − b]
ANSWER:
-a − [a + {a + b − 2a − (a − 2b)} − b]
We will first remove the innermost grouping symbol ( ), followed by { } and then [ ].
∴ −a − [a + {a + b − 2a − (a − 2b)} − b]
= −a − [a + {a + b − 2a − a + 2b} − b]
= −a − [a + {3b − 2a } − b]
= −a − [a + 3b − 2a − b]
= −a − [2b − a ]
= −a − 2b + a
= −2b
Page No 137:
Question 16:
Simplify:
2a − [4b − {4a − (3b − 2a + 2b)}]2a – [4b – {4a – (3b – 2a + 2b)}]
ANSWER:
2a-[4b-{4a-(3b-2a+2b¯¯¯¯¯¯¯¯¯)}]2a-[4b-{4a-(3b-2a+2b¯)}]
We will first remove the innermost grouping symbol bar bracket. Next, we will remove ( ), followed by { } and then [ ].
∴ 2a-[4b-{4a-(3b-2a+2b¯¯¯¯¯¯¯¯¯)}]2a-[4b-{4a-(3b-2a+2b¯)}]
= 2a-[4b-{4a-(3b-2a-2b)}]
= 2a-[4b-{4a-(b-2a)}]
= 2a-[4b-{4a-b+2a}]
=2a-[4b-{6a-b}]
= 2a-[4b-6a+b]
= 2a-[5b-6a]
= 2a-5b+6a
= 8a-5b
Page No 137:
Question 17:
Simplify:
5x − [4y − {7x − (3z − 2y) + 4z − 3(x + 3y − 2z)}]
ANSWER:
5x − [4y − {7x − (3z − 2y) + 4z − 3(x + 3y − 2z)}]
We will first remove the innermost grouping symbol ( ), followed by { } and then [ ].
∴ 5x − [4y − {7x − (3z − 2y) + 4z − 3(x + 3y − 2z)}]
= 5x − [4y − {7x − 3z + 2y + 4z − 3x − 9y + 6z}]
= 5x − [4y − {4x + 7z − 7y}]
= 5x − [4y − 4x − 7z + 7y]
= 5x − [11y − 4x − 7z ]
= 5x − 11y + 4x + 7z
= 9x − 11y + 7z
Discover more from EduGrown School
Subscribe to get the latest posts sent to your email.