Table of Contents
Exercise 14.1
Question 1.
Find the compound interest when principal = Rs 3,000, rate = 5% per annum and time = 2 years.
Solution:
Principal (P) = Rs 3,000
Rate (R) = 5% p.a.
Period (T) = 2 years
Amount after one year = Rs 3,000 + Rs 150 = 3,150
and principal for the second year = Rs 3,150
and interest for the second year
Compound interest for two years = Rs 150 + Rs 157.50 = Rs 307.50
Question 2.
What will be the compound interest on Rs 4,000 in two years when rate of interest is 5% per annum ?
Solution:
Principal (P) = Rs 4,000
Rate (R) = 5% p.a.
Period (T) = 2 years
Amount after one year = Rs 4,000 + Rs 200 = Rs 4,200
Principal for the second year = Rs 4,200
Interest for the second year
Compound interest for 2 years = Rs 200 + Rs 210 = Rs 410
Question 3.
Rohit deposited Rs 8,000 with a finance company for 3 years at an interest of 15% per annum. What is the compound interest that Rohit gets after 3 years ?
Solution:
Principal (P) = Rs 8,000
Rate (R) = 15% p.a.
Period (T) = 3 years
Amount after first year = Rs 8,000 + RS 1,200 = Rs 9,200
or Principal for the second year = Rs 9,200
Interest for the second year
Amount after 2 years = Rs 9,200 + Rs 1,380 = Rs 10,580
or Principal for the third year = Rs 10,580
Interest for the third year
Compound for the 3 years = Rs 1,200 + Rs 1,380 + Rs 1,587 = Rs 4,167
Question 4.
Find the compound interest on Rs 1,000 at the rate of 8% per annum for 112 years when interest is compounded half-yearly ?
Solution:
Principal (P) = Rs 1,000
Rate (R) = 8% p.a.
Period (T) = 112 years = 3 half-years
Amount after one half-year = Rs 1,000 + Rs 40 = 1,040
Or principal for the second half-year = Rs 1,040
Interest for the second half-year
Amount after second half-year = Rs 1,040 + 41.60 = Rs 1,081.60
Or principal for the third half-year = Rs 1081.60
Interest for the third half-year
Compound interest for the third half-years or 112 years
= Rs 40 + Rs 41.60 + Rs 43.264 = Rs 124.864
Question 5.
Find the compound interest on Rs 1,60,000 for one year at the rate of 20% per annum, if the interest is compounded quarterly.
Solution:
Principal (P) = Rs 1,60,000
Rate (R) = 20% p.a. or 5% quarterly
Period (T) = 1 year or 4 quarters
Amount after first quarter = Rs 1,60,000 + 8,000 = 1,68,000
Or principal for the second quarter = Rs 1,68,000
Interest for the second quarter
Amount after the second quarter = Rs 1,68,000 + Rs 8,400 = 1,76,400
Or principal for the third quarter = Rs 1,76,400
Interest for the third quarter
Amount after third quarter = Rs 1,76,400 + 8,820 = Rs 1,85,220
or Principal for the fourth quarter = Rs. 1,85,220
Interest for the fourth quarter
Total compound interest for the 4 quarters = Rs 8,000 + Rs 8,400 + Rs 8,820 + 9,261 = Rs 34,481
Question 6.
Swati took a loan of Rs 16,000 against her insurance policy at the rate of 1212 % per annum. Calculate the total compound interest payable by Swati after 3 years.
Solution:
Amount of loan or principal (P) = Rs 16,000
Amount after first year = Rs 16,000 + Rs 2,000 = Rs 18,000
Principal for the second year = Rs 18,000
Interest for the second year
Amount after second year = Rs 18,000 + 2,250 = Rs 20,250
Principal for the third year = Rs 20,250
Compound for 3 years = Rs 2,000 + Rs 2,250 + 2531.25 = Rs 6,781.25
Question 7.
Roma borrowed Rs 64,000 from a bank for 112 years at the rate of 10% per annum. Compute the total compound interest payable by Roma after 112 years, if the interest is compounded half-yearly.
Solution:
Principal (sum borrowed) (P) = Rs 64,000
Rate (R) = 10% p.a. or 5% half-yearly
Period (T) = 112 years or 3 half-years
Amount after first half-year = Rs 64,000 + Rs 3,200 = Rs 67,200
Or principal for the second half-year = Rs 67,200
Interest for the second half-year
Amount after second half-year = Rs 6,7200 + 3,360 = Rs 70,560
Or principal for the third half-year = Rs 70,560
Interest for the third half-year
Total compound interest for 3 half-years
or 112 years = Rs 3,200 + Rs 3,360 + Rs 3,528 = Rs 10,088
Question 8.
Mewa Lai borrowed Rs 20,000 from his friend RoopLal at 18% per annum simple interest. He lent it to Rampal at the same rate but compounded annually. Find his gain after 2 years.
Solution:
Principal (P) = Rs 20,000
Rate (R) = 18% p.a.
Period (T) = 2 years
In second case
Interest for the first year
Amount after one year = Rs 20,000 + Rs 3,600 = Rs 23,600
Or principal for the second year = Rs 23,600
Interest for the second year
Interest for two years = Rs 3,600 + 4,248 = Rs 7,848
Gain = Rs 7,848 – Rs 7,200 = Rs 648
Question 9.
Find the compound interest on Rs 8,000 for 9 months at 20% per annum compounded quarterly.
Solution:
Principal (P) = Rs 8,000
Rate (R) = 20% p.a. or 5% p.a. quarterly
Period (T) = 9 months or 3 quarters
Interest for the first quarterly
Amount after first quarter = Rs 8,000 + Rs 400 = Rs 8,400
Or principal for second quarter = Rs 8,400
Interest for the second quarter
Amount after second quarter = Rs 8,400 + Rs 420 = Rs 8,820
Or principal for the third quarter = Rs 8,820
Interest for the third quarter
Compound interest for 9 months or 3 quarters = Rs 400 + Rs 420 + Rs 441 = Rs 1,261
Question 10.
Find the compound interest at the rate of 10% per annum for two years on that principal which in two years at the rate of 10% per annum gives Rs. 200 as simple interest.
Solution:
Simple interest = Rs 200
Rate (R) = 10% p.a.
Period (T) = 2 years.
Now in second case,
Principal CP) = Rs 1,000
Rate (R) = 10% p.a.
Period (T) = 2 years.
Amount after one year = Rs 1,000+ Rs 100 = Rs 1,100
Or principal for the second year = Rs 1,100
Total interest for two years = Rs 100 + Rs 110 = Rs 210
Question 11.
Find the compound interest on Rs 64,000 for 1 year at the rate of 10% per annum compounded quarterly.
Solution:
Principal (P) = Rs 64,000
Rate (R) = 10% p.a. or 52 % quarterly
Period (T) = 1 year = 4 quarters
Amount after first quarter = Rs 64,000 + Rs 1,600 = Rs 65,600
Or principal for the second quarter = Rs 65,600
Interest for the second quarter
Amount after second quarter = Rs 65,600 + Rs 1,640 = Rs 67,240
Or principal for the third year = Rs 67,240
= Rs 1,681
Amount after third quarter = Rs 67,240 + Rs 1,681 = Rs 68,921
Or principal for the fourth quarter
Total compound interest for 4 quarters or one year
= Rs 1,600 + Rs 1,640 + Rs 1,681 + Rs 1723.025 = Rs 6644.025
Question 12.
Ramesh deposited Rs 7,500 in a bank which pays him 12% interest per annum compounded quarterly. What is the amount which he receives after 9 months ?
Solution:
Principal (P) = Rs 7,500
Rate (R) = 12% p.a. or 3% quarterly
Time (T) = 9 months or 3 quarters
Amount after one quarter = Rs 7,500 + Rs 225 = Rs 7,725
Or Principal for second quarter = Rs 7,725
Interest for the second quarter
Amount after second quarter = Rs 7,725 + Rs 231.75 = Rs 7956.75
Or principal for the third quarter
Total amount he received after 9 months = Rs 7956.75 + Rs 238.70 = Rs 8195.45
Question 13.
Anil borrowed a sum of Rs 9,600 to install a hand pump in his dairy. If the rate of interest is 512 % .per annum compounded annually, determine the compound interest which Anil will have to pay after 3 years.
Solution:
Principal (P) = Rs 9,600
Rate of interest (R) = 512 % = 112 % p.a.
Period (T) = 3 years.
Amount after one year = Rs 9,600 + Rs 528 = Rs 10,128
Or principal for second year = Rs 10,128
Interest for the second year
Amount after second year = Rs 10,128 + Rs 557.04 = Rs 10685.04
or Principal for the third year = Rs 10685.04
Interest for the third year
Total compound interest = Rs 528 + Rs 557.04 + Rs 587.68 = Rs 1672.72
Question 14.
Surabhi borrowed a sum of Rs 12,000 from a finance company to purchase a refrigerator. If the rate of interest is 5% per annum compounded annually, calculate the compound interest that Surabhi has to pay to the company after 3 years.
Solution:
Sum of money borrowed (P) = Rs 12,000
Rate (R) = 5% p.a.
Period (T) = 3 years
Amount after one year = Rs 12,000 + Rs 600 = Rs 12,600
Or principal for the second year = Rs 12,600
Interest for the second year
Amount after second year = Rs 12,600 + Rs 630 = Rs 13,230
Or Principal for the third year = Rs 13,230
Interest for the third year
Total compound interest for 3 years = Rs 600 + Rs 630 + Rs 661.50 = Rs 1891.50
Question 15.
Daljit received a sum of Rs 40,000 as a loan from a finance company. If the rate of interest is 7% per annum compounded annually, calculate the compound interest that Daljit pays after 2 years.
Solution:
Amount of loan (P) = Rs 40,000
Rate (R) = 7% p.a.
Period = 2 years
Amount after one year = Rs 40,000 + Rs 2,800 = Rs 42,800
Or principal for the second year = Rs 42,800
Interest for the second year
Total interest paid after two years = Rs 2,800 + 2,996 = Rs 5,796
Exercise 14.2
Question 1.
Compute the amount and the compound interest in each of the following by using the formula when :
(i) Principal = Rs 3,000, Rate = 5%, Time = 2 years
(ii) Principal = Rs 3,000 Rate = 18%, Time = 2 years
(iii) Principal = Rs 5,000 Rate = 10 paise per rupee per annum, Time = 2 years
(iv) Principal = Rs 2,000, Rate = 4 paise per rupee per annum, Time = 3 years.
(v) Principal = Rs 12,800, Rate = 712 %, Time = 3 years
(vi) Principal = Rs 10,000, Rate = 20% per annum compounded half-yearly, time = 2 years
(vii) Principal = Rs 1,60,000, Rate = 10 paise per rupee per annum compounded half- yearly, Time = 2 years.
Solution:
(i) Principal (P) = Rs 3,000
Rate (R) = 5% p.a.
Time (n) = 2 years
and compound interest (C.I) = A – P = Rs 3307.50 – Rs 3,000 = Rs 307.50
(ii) Principal (P) = Rs 3,000
Rate (R) = 18% p.a.
Time (n) = 2 years
and compound interest (C.I.) = A – P = Rs 4177.20 – Rs 3,000 = Rs 1177.20
(iii) Principal (P) = Rs 5,000
Rate (R) =10 paise per rupee or 10% p.a.
Time (n) = 2 years.
C.I. = A – P = Rs 6,050 – Rs 5,000 = Rs 1,050
(iv) Principal (P) = Rs 2,000
Rate (R) = 4 paise per rupee or 4% p.a.
Time (n) = 3 years
C.I. = A – P = Rs 2249.73 – Rs 2,000 = Rs 249.73
(v) Principal (P) = Rs 12,800
C.I. = A – P = Rs 15901.40 – Rs 12,800 = Rs 3101.40
(vi) Principal (P) = Rs 10,000
Rate (R) = 20% p.a. or 10% half-yearly
Time = 2 years or 4 half-years
C.I. = A – P = Rs 14,641 – Rs 10,000 = Rs 4,641
(vii) Principal (P) = Rs 1,60,000
Rate (R) = 10 paise per rupee or 10% p.a. or 5% half-yearly
Time (n) = 2 years or 4 half-years.
C.I. = A – P = Rs 1,94,481 – Rs 1,60,000 = Rs 34,481
Question 2.
Find the amount of Rs 2,400 after 3 years, when the interest is compounded annually at the rate of 20% per annum.
Solution:
Principal (P) = Rs 2,400
Rate (R) = 20%
Time (n) = 3 years
Question 3.
Rahman lent Rs 16,000 to Rasheed at the rate of 1212 % per annum compound interest. Find the amount payable by Rasheed to Rahman after 3 years.
Solution:
Principal (P) = Rs 16,000
Question 4.
Meera borrowed a sum of Rs 1,000 from Sita for two years. If the rate of interest is 10% compounded annually find the amount that Meera has to pay back.
Solution:
Amount of loan (P) = Rs 1,000
Rate (R) = 10% p.a.
Period (n) = 2 years
Question 5.
Find the difference between the compound interest and simple interest. On a sum of Rs 50,000 at 10% per annum for 2 years.
Solution:
Principal (P) = Rs 50,000
Rate (R) = 10% p.a.
Period (n) = 2 years.
Difference between C.I. and S.I. = Rs 10,500 – Rs 10,000 = Rs 500
Question 6.
Amit borrowed Rs 16,000 at 1712 % per annum simple interest on the same day, he lent it to Ashu at the same rate but compounded annually. What does he gain at the end of 2 years ?
Solution:
Amount of loan (P) = Rs 16,000
C.I. = A – P = Rs 22,090 – Rs 16,000 = Rs 6,090
Now gain = C.I. – S.I = Rs 6,090 – 5,600 = Rs 490
Question 7.
Find the amount of Rs 4,096 for 18 months at 1212 % per annum, interest being compounded semi-annually ?
Solution:
Principal (P) = Rs 4,096
Question 8.
Find the amount and the compound interest on Rs 8,000 for 112 years at 10% per annum, compounded half-yearly.
Solution:
Principal (P) = Rs 8,000
Rate (R) = 10% p.a. or 5% half yearly
and C.I. = A – P = Rs 9,261 – Rs 8,000 = Rs 1,261
Question 9.
Kamal borrowed Rs 57,600 from LIC against her policy at 1212 % per annum to build a house. Find the amount that she pays LIC after 112 years if the interest is calculated half-yearly.
Solution:
Amount of loan (P) = Rs 57,600
Question 10.
Abha purchased a house from Avas Parishad on credit. If the cost of the house is Rs 64,000 and the rate of interest is 5% per annum compounded half-yearly, find the interest paid by Abha after one year and a half.
Solution:
Price of house (P) = Rs 64,000
Compound interest (C.I.) = A – P = Rs 68,921 – Rs 64,000 = Rs 4,921
Question 11.
Rakesh lent out Rs 10,000 for 2 years at 20% per annum compounded annually. How much more he could earn if the interest be compounded half-yearly ?
Solution:
Principal (P) = Rs 10,000
Rate (R) = 20% p.a. or 10% half-yearly
Period (n) = 2 years or 4 half-years
C.I. = Rs 14,400 – Rs 10,000 = Rs 4,400
Now difference in C.I. = Rs 4,641 – Rs 4,400 = Rs 241
Question 12.
Romesh borrowed a sum of Rs 2,45,760 at 12.5% per annum compounded annually. On the same day, he lent out his money to Ramu at the same rate of interest but compounded semi-annually. Find his gain after 2 years.
Solution:
In first case,
Principal (P) = Rs 2,45,760
C.I. = A – P = Rs 313203.75 – Rs 2,45,760 = Rs 67443.75
Gain = 67443.75 – Rs 65,280 = Rs2163.75
Question 13.
Find the amount that David would receive if he invests Rs 8,192 for 18 months at 1212 % per annum, the interest being compounded half-yearly.
Solution:
Principal (P) = Rs 8,192
Question 14.
Find the compound interest on Rs 15,625 for 9 months at 16% per annum, compounded quarterly.
Solution:
Principal (P) = Rs 15,625
Rate (R) = 16% p.a. or 4% quarterly
Period (n) = 9 months or 3 quarters
Compound interest = A – P = Rs 17,576 – Rs 15,625 = Rs 1,951
Question 15.
Rekha deposited Rs 16,000 in a foreign bank which pays interest at the rate of 20% per annum compounded quarterly, find the interest received by Rekha after one year.
Solution:
Principal (P) = Rs 16,000
Rate (R) = 20% p.a. or 5% quarterly
Period (n) = one year or 4 quarters
C.I. = A – P = Rs 19448.10 – Rs 16,000 = Rs 3448.10
Question 16.
Find the amount of Rs 12,500 for 2 years compounded annually, the rate of interest being 15% for the first year and 16% for the second year.
Solution:
Principal (P) = Rs 12,500
Rate (R1) = 15% p.a. for first year
R2 = 16% p.a. for second year
Period = 2 years
Question 17.
Ramu borrowed Rs 15,625 from a finance company to buy a scooter. If the rate of interest be 16% per annum compounded annually, what payment he will have to make after 214 years ?
Solution:
Principal (P) = Rs 15,625
Rate (R) = 16%
Question 18.
What will Rs 1,25,000 amount to at the rate of 6% if interest is calculated after every 4 months for one year ?
Solution:
Principal (P) = Rs 1,25,000
Question 19.
Find the compound interest at the rate of 5% for 3 years on that principal which in 3 years at the rate of 5% per annum gives Rs 12,000 as simple interest.
Solution:
In first case,
S.I. = Rs 12,000
Rate (R) = 5% p.a.
Period (T) = 3 years
= Rs 80,000
In second case,
Principal (P) = Rs 80,000
Rate (R) = 5% p.a.
Period (n) = 3 years
C.I. = A – P = Rs 92,610 – 80,000 = Rs 12,610
Question 20.
A sum of money was lent for 2 years at 20% compounded annually. If the interest is payable half-yearly instead of yearly, then the interest is Rs 482 more. Find the sum.
Solution:
Let Sum (P) = Rs x
Rate (R) = 20% p.a. or 10% half-yearly
Period (n) = 2 years or 4 half years
In first case,
Interests = A – P = Rs 146.41 – Rs 100 = Rs 46.41
Now difference in interests = Rs 46.41 – Rs 44.00 = Rs 2.41
If difference is 2.41 then sum is 100 If difference is Rs 482, then sum
Question 21.
Simple interest on a sum of money for 2 years at 612 % per annum is Rs 5,200. What will be the compound interest on the sum at the same rate for the same period ?
Solution:
In first case,
S.I. = Rs 5,200
Compound interest = A – P = Rs 45,369 – Rs 40,000 = Rs 5,369
Question 22.
Find the compound interest at the rate of 5% per annum for 3 years on that principal which in 3 years at the rate of 5% per annum gives Rs 1,200 as simple interest.
Solution:
In first case,
S.I. = Rs 1,200
Rate (R) = 5% p.a.
Period (T) = 3 years
In second case,
Principal (P) = Rs 8,000
Rate (R) = 5% p.a.
Period (n) = 3 years
= Rs 9,261
C.I. = A – P = Rs 9,261 – Rs 8000 = Rs 1,261
Exercise 14.3
Question 1.
On what sum will the compound interest at 5% p.a. annum for 2 years compounded annually be Rs 164 ?
Solution:
Let Principal (P) = Rs 100
Rate (R) = 5% p.a.
Period (n) = 2 years
Question 2.
Find the principal of the interest compounded annually at the rate of 10% for two years is Rs 210.
Solution:
Let principal (P) = Rs 100
Rate (R) = 10% p.a.
Period (n) = 2 years
Question 3.
A sum amounts to Rs 756.25 at 10% per annum in 2 years, compounded annually. Find the sum.
Solution:
Amount (A) = Rs 756.25
Rate (R) = 10% p.a.
Period (n) = 2 years
Question 4.
What sum will amount to Rs 4913 in 18 months, if the rate of interest is 1212 % per annum, compounded half-yearly.
Solution:
Amount (A) = Rs 4,913
Question 5.
The difference between the compound interest and simple interest on a certain sum at 15% per annum for 3 years is Rs 283.50. Find the sum.
Solution:
Let sum (P) = Rs 100
Rate (R) = 15% p.a.
Period (n) = 3 years
Question 6.
Rachna borrowed a certain sum at the rate of 15% per annum. If she paid at the end of two years Rs 1,290 as interest compounded annually, find the sum she borrowed.
Solution:
C.I. = Rs 1,290
Rate (R) = 15% p.a.
Period (n) = 2 years
Let sum (P) = Rs 100
Question 7.
The interest on a sum of Rs 2,000 is being compounded annually at the rate of 4% per annum. Find the period for which the compound interest is Rs 163.20.
Solution:
Sum (P) = Rs 2,000
C.I. = Rs 163.20
Amount (A) = P + C.I. = Rs 2000 + Rs 163.20 = Rs 2163.20
Rate (R) = 4%
Let period = n years
Question 8.
In how much time would Rs 5,000 amount to Rs 6,655 at 10% per annum compound interest ?
Solution:
Principal (P) = Rs 5,000
Amount (A) = Rs 6,655
Rate (R) = 10%
Let period = n years.
Question 9.
In what time will Rs 4,400 becomes Rs 4,576 at 8% per annum interest compounded half-yearly ?
Solution:
Principal (P) = Rs 4,400
Amount (A) = Rs 4,576
Rate (R) = 8% or 4% half-yearly
Let period = n half-years
n = 1
Period = 1 half year
Question 10.
The difference between the S.I. and C.I. on a certain sum of money for 2 years at 4% per annum is Rs 20. Find the sum.
Solution:
Difference between C.I. and S.I. = Rs 20
Rate (R) = 4% p.a.
Period (n) = 2 years
Let principal (P) = Rs 100
Question 11.
In what time will Rs 1,000 amount to Rs 1,331 at 10% per annum compound interest.
Solution:
Principal (P) = Rs 1,000
Amount (A) = Rs 1,331
Rate (R) = 10% p.a.
Let period = n year
Question 12.
At what rate percent compound interest per annum will Rs 640 amount to Rs 774.40 in 2 years ?
Solution:
Principal (P) = Rs 640
Amount (A) = Rs 774.40
Period (n) = 2 years.
Let R be the rate of interest p.a.
Question 13.
Find the rate percent per annum if Rs 2000 amount to Rs 2,662 in 112 years, interest being compounded half-yearly ?
Solution:
Principal (P) = Rs 2,000
Amount (A) = Rs 2,662
Question 14.
Kamala borrowed from Ratan a certain rate for two years simple interest. She lent this sum at the same rate to Hari for two years compound interest. At the end of two years, she received Rs 210 as compound interest, but paid Rs 200 only as simple interest. Find the sum and the rate of interest.
Solution:
Simple interest = Rs 200
and compound interest = Rs 210.
Period = 2 years
Question 15.
Find the rate percent per annum, if Rs 2,000 amount to Rs 2,315.25, in an year and a half, interest being compounded six monthly.
Solution:
Principal (P) = Rs 2,000
Amount (A) = Rs 2315.25
Question 16.
Find the rate at which a sum of money will double itself in 3 years, if the interest is compounded annually.
Solution:
Let Principal (P) = Rs 100
then Amount (A) = Rs 200
Period (n) = 3 years
Let R be the rate % p.a.
Question 17.
Find the rate at which a sum of money will become four times the original amount in 2 years, if the interest is compounded half- yearly.
Solution:
Let Principal (P) = Rs 100
Then Amount (A) = Rs 400
Period (n) = 2 years or 4 half years
Let R be the rate % half-yearly, then
Rate % = 41.42% half yearly and 82.84% p.a.
Question 18.
A certain sum amounts to Rs 5,832 in 2 years at 8% compounded interest. Find the sum.
Solution:
Amount (A) = Rs 5,832
Let P be the sum
Rate (R) = 8% p.a.
Period (n) = 2 years
Question 19.
The difference between the compound interest and simple interest on a certain sum for 2 years at 7.5% per annum is Rs 360. Find the sum.
Solution:
Let sum (P) = Rs 100
Question 20.
The difference in simple interest and compound interest on a certain sum of money at 623 % per annum for 3 years is Rs 46. Determine the sum.
Solution:
Let sum (P) = Rs 100
Question 21.
Ishita invested a sum of Rs 12,000 at 5% per annum compound interest. She received an amount of Rs 13,230 after n years, Find the value of n.
Solution:
Principal (P) = Rs 12,000
Amount (A) = Rs 13,230
Rate (R) = 5% p.a.
Period = n years
Question 22.
At what rate percent per annum will a sum of Rs 4,000 yield compound interest of Rs 410 in 2 years ?
Solution:
Principal (P) = Rs 4,060
C.I. = Rs 410
Amount (A) = Rs 4,000 + 410 = Rs 4,410
Let rate = R % p.a.
Period (n) = 2 years
Question 23.
A sum of money deposited at 2% per annum compounded annually becomes Rs 10404 at the end of 2 years. Find the sum deposited.
Solution:
Amount (A) = Rs 10,404
Rate (R) = 2% p.a.
Period (n) = 2 years.
Question 24.
In how much time will a sum of Rs 1,600 amount to Rs 1852.20 at 5% per annum compound interest ?
Solution:
Principal (P) = Rs 1,600
Amount (A) = Rs 1852.20
Rate (R) = 5% p.a.
Let n be the time
Question 25.
At what rate percent will a sum of Rs 1,000 amount to Rs 1102.50 in 2 years at compound interest ?
Solution:
Principal (P) = Rs 1,000
Amount (A) = Rs 1102.50 .
Period (n) = 2 years
Let R be the rate of interest p.a.
Question 26.
The compound interest on Rs 1,800 at 10% per annum for a certain period of time is Rs 378. Find the time in years.
Solution:
Principal (P) = Rs 1,800
C.I. = Rs 378
Amount (A) = P + C.I. = Rs 1,800 + 378 = Rs 2,178
Rate (R) = 10% p.a.
Let n be the period in years
Comparing, we get:
n = 2
Period = 2 years
Question 27.
What sum of money will amount to Rs 45582.25 at 634 % per annum in two years, interest being compounded annually ?
Solution:
Amount (A) = Rs 45582.25
Question 28.
Sum of money amounts to Rs 4,53,690 in 2 years at 6.5% per annum compounded annually. Find the sum.
Solution:
Amount (A) = Rs 4,53,690
Exercise 14.4
Question 1.
The present population of a town is 28,000. If it increases at the rate of 5% per annum, what will be its population after 2 years ?
Solution:
Present population = 28000
Rate of increase (R) = 5% p.a.
Period (n) = 2 years
Population after 2 years
Question 2.
The population of a city is 125000. If the annual birth rate and death rate are 5.5% and 3.5% respectively, calculate the population of city after 3 years.
Solution:
Present population = 125000
Rate of birth = 5.5%
and rate of death = 3.5%
Increase = 5.5 – 3.5 = 2% p.a.
Period = 3 years.
Population after 3 years
Question 3.
The present population of a town is 25000. It grows at 4%, 5% and 8% during first year, second year and third year respectively. Find its population after 3 years.
Solution:
Present population = 25000
Increase in first year = 4%
in second year= 5% and
in third year = 8%
Population after 3 years =
Question 4.
Three years ago, the population of a town was 50000. If the annual increase during three successive years be at the rate of 4%, 5% and 3% respectively, find the present population.
Solution:
Three years ago,
Population of a town = 50000
Annual increase in population in first year = 4%
in second year = 5%
and in third year = 3%
Present population
Question 5.
There is a continuous growth in population of a village at the rate of 5% per annum. If its present population is 9261, what it was 3 years ago ?
Solution:
Let 3 years ago, population = P
Present population = 9261
Rate of increase (R) = 5% p.a.
Period (n) = 3 years.
Question 6.
In a factory, the production of scooters rose to 46305 from 40000 in 3 years. Find the annual rate of growth of the production of scooters.
Solution:
Production of scooters 3 years ago (P) = 40000
Present production (A) = 46305
Period (n) = 3 years
Question 7.
The annual rate of growth in population of a certain city is 8%. If its present population is 196830, what it was 3 years ago ?
Solution:
Let 3 years ago, the population of a city = P
Rate of growth (R) = 8% p.a.
Present population = 196830
Period (n) = 3 years
Question 8.
The population of a town increases at the rate of 50 per thousand. Its population after 2 years will be 22050. Find its present population.
Solution:
Population after 2 years = 22050
Rate of increase = 50 per thousand
Period (n) = 2 years
Let present population = P, then
Question 9.
The count of bacteria in a culture grows by 10% in the first hour, decreases by 8% in the second hour and again increases by 12% in the third hour. If the count of bacteria in the sample is 13125000, what will be the count of bacteria after 3 hours ?
Solution:
Present count of bacteria = 13125000
In first hour increase = 10%
decrease in second hour = 8%
increase in third hour = 12%
Count of bacteria after 3 hours
Question 10.
The population of a certain city was 72000 on the last day of the year 1998. During next year it increased by 7% but due to an epidemic it decreased by 10% in the following year. What was its population at the end of the year 2000 ?
Solution:
On the last day of 1998,
Population of a town = 72000
In the first year, increase = 7%
In the second year, decrease = 10%
Population in the last day of 2000
Question 11.
6400 workers were employed to construct a river bridge in four years. At the end of the first year, 25% workers were retrenched. At the end of the second year, 25% of those working at that time were retrenched. However, to complete the project in time, the number of workers was increased by 25% at the end of the third year. How many workers were working during the fourth year ?
Solution:
Number of workers at the beginning = 6400
Period = 4 years.
At the end of 1st year, workers retrenched = 25%
At the end of second year, workers retrenched = 25%
At the end of third year, workers increased = 25%
Total number of workers during the 4 years
Question 12.
Aman started a factory with an initial investment of Rs 1,00,000. In the first year, he incurred a loss of 5%. However, during the second year, he earned a profit of 10% which in the third year rose to 12%. Calculate his net profit for the entire period of three years.
Solution:
Initial investment = Rs 100000
Loss in the first year = 5%
Profit in the second year = 10%
Profit in the third year = 12%
Investment at the end of 3 years
Question 13.
The population of a town increases at the rate of 40 per thousand annually. If the present population be 175760, what was the population three years ago ?
Solution:
Present population (A) = 175760
Increase rate = 40 per 1000
Period = 3 years
Let 3 years ago,
population was = P
Question 14.
The production of a mixi company in 1996 was 8000 mixies. Due to increase in demand it increases its production by 15% in the next two years and after two years its demand decreases by 5%. What will be its production after 3 years ?
Solution:
Production of Mixi in 1996 = 8000
Increase in next 2 years = 15%
Decrease in the third year = 5%
Production after 3 years
Question 15.
The population of a city increases each year by 4% of what it had been at the beginning of each year. If the population in 1999 had been 6760000, find the population of the city in (i) 2001 (ii) 1997.
Solution:
Population of a city in 1999 = 6760000
Increase = 4%
(i) Population in 2001 is after 2 years
Question 16.
Jitendra set up a factory by investing Rs 25,00,000. During the first two successive years his profits were 5% and f 10% respectively. If each year the profit was on previous year’s capital, compute his total profit.
Solution:
Investment in the beginning = Rs 25,00,000
Profit during the first 2 years = 5% and 10% respectively
Investment after 2 years will be
= Rs 28,87,500
Amount of profit = Rs 28,87,500 – Rs 25,00,000 = Rs 3,87,500
Exercise 14.5
Question 1.
Mr. Cherian purchased a boat for Rs 16,000. If the total cost of the boat is depreciating at the rate of 5% per annum, calculate its value after 2 years.
Solution:
Cost of boat = Rs 16,000
Rate of depreciating = 5% p.a.
Period = 2 years
Value of boat after 2 years
Question 2.
The value of a machine depreciates at the rate of 10% per annum. What will be its value 2 years hence, if the present value is Rs 1,0,000 ? Also, find the total depreciation during this period.
Solution:
Present value of machine = Rs 1,00,000
Rate of depreciation = 10% p.a.
Period (n) = 2 years
Value of machine after 2 years
Question 3.
Pritam bought a plot of land for Rs 6,40,000. Its value is increasing by 5% of its previous value after every six months. What will be the value of the plot after 2 years ?
Solution:
Present value of plot = Rs 6,40,000
Increase = 5% per half year
Period (n) = 2 years or 4 half years
Question 4.
Mohan purchased a house for Rs 30,000 and its value is depreciating at the rate of 25% per year. Find the value of the house after 3 years.
Solution:
Present value of the house (P) = Rs 30,000
Rate of depreciation = 25% p.a.
Period (n) = 3 years
Value of house after 3 years
Question 5.
The value of a machine depreciates at the rate of 10% per annum. It was purchased 3 years ago. If its present value is Rs 43,740, find its purchased price.
Solution:
Let the purchase price of machine = Rs P
Rate of depreciation = 10% p.a.
Period (n) = 3 years.
and present value = Rs 43,740
Question 6.
The value of a refrigerator which was purchased 2 years ago, depreciates at 12% per annum. If its present value is Rs 9,680, for how much was it purchased ?
Solution:
Let the refrigerator was purchased for = Rs P
Rate of depreciation (R) = 12% p.a.
Period (n) = 2 years
and present value (A) = Rs 9,680
Question 7.
The cost of a TV set was quoted Rs 17,000 at the beginning of 1999. In the beginning of2000, the price was hiked by 5%. Because of decrease in demand the cost was reduced by 4% in the beginning of 2001. What is the cost of the TV set in 2001 ?
Solution:
List price of TV set in 1999 = Rs 17,000
Rate of hike in 2000 = 5%
Rate of decrease in 2001 = 4%
Price of TV set in 2001
Question 8.
Ashish started the business with an initial investment of Rs 5,00,000. In the first year, he incurred a loss of 4%. However, during the second year he earned a profit of 5% which in third year, rose to 10%. Calculate the net profit for the entire period of 3 years.
Solution:
Initial investment = Rs 5,00,000
In the first year, rate of loss = 4%
In the second year, rate of gain = 5%
and in the third year, rate of gain = 10%
Investment after 3 years
Discover more from EduGrown School
Subscribe to get the latest posts sent to your email.