In This Post we are providing Chapter 6 Triangle NCERT Solutions for Class 10 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These Triangle Class 10 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.
We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 10 Maths Triangle NCERT Written Solutions & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.
Table of Contents
ToggleNCERT Solutions for Class 10 Maths Chapter 6 Triangle
Exercise 6.1
1. Fill in the blanks using correct word given in the brackets:-
(i) All circles are __________. (congruent, similar)
► Similar
(ii) All squares are __________. (similar, congruent)
(iii) All __________ triangles are similar. (isosceles, equilateral)
► Equilateral
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are __________ and (b) their corresponding sides are __________. (equal, proportional)
► (a) Equal, (b) Proportional
2. Give two different examples of pair of
(i) Similar figures
(ii) Non-similar figures
Answer
(i) Two twenty-rupee notes, Two two rupees coins.
(ii) One rupee coin and five rupees coin, One rupee not and ten rupees note.
3. State whether the following quadrilaterals are similar or not:
1. In figure.6.17. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).
⇒ 1.5/3 = 1/EC
EC = 3×10/15 = 2 cm
Hence, EC = 2 cm.
(ii) In △ ABC, DE∥BC (Given)
∴ AD/DB = AE/EC [By using Basic proportionality theorem]
⇒ AD/7.2 = 1.8/5.4
⇒ AD = 1.8×7.2/5.4 = 18/10 × 72/10 × 10/54 = 24/10
⇒ AD = 2.4
Hence, AD = 2.4 cm.
2. E and F are points on the sides PQ and PR respectively of a ΔPQR. For each of the following cases, state whether EF || QR.
(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm
(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.63 cm
Answer
3. In the fig 6.18, if LM || CB and LN || CD, prove that AM/MB = AN/AD
By using basic proportionality theorem, we get,
Similarly, LN || CD
∴ AN/AD = AL/LC … (ii)
From (i) and (ii), we get
AM/MB = AN/AD
4. In the fig 6.19, DE||AC and DF||AE. Prove that
In ΔABC, DE || AC (Given)
∴ BD/DA = BF/FE …(ii) [By using Basic Proportionality Theorem]
From equation (i) and (ii), we get
BE/EC = BF/FE
5. In the fig 6.20, DE||OQ and DF||OR, show that EF||QR.
6. In the fig 6.21, A, B and C are points on OP, OQ and OR respectively such that AB || PQ and AC || PR. Show that BC || QR.
7. Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).
Answer
⇒ AD/BD = 1 … (i)
Therefore, AD/DB = AE/EC [By using Basic Proportionality Theorem]
⇒1 = AE/EC [From equation (i)]
∴ AE =EC
Hence, E is the mid point of AC.
8. Using Converse of basic proportionality theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).
Answer
Given: ΔABC in which D and E are the mid points of AB and AC respectively such that AD=BD and AE=EC.
To Prove: DE || BC
Proof: D is the mid point of AB (Given)
⇒ AD/BD = 1 … (i)
∴ AE=EC
⇒AE/EC = 1 [From equation (i)]
From equation (i) and (ii), we get
AD/BD = AE/EC
Hence, DE || BC [By converse of Basic Proportionality Theorem]
9. ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show that AO/BO = CO/DO.
Answer
Given: ABCD is a trapezium in which AB || DC in which diagonals AC and BD intersect each other at O.
To Prove: AO/BO = CO/DO
Construction: Through O, draw EO || DC || AB
Proof: In ΔADC, we have
OE || DC (By Construction)
∴ AE/ED = AO/CO …(i) [By using Basic Proportionality Theorem]
In ΔABD, we have
OE || AB (By Construction)
∴ DE/EA = DO/BO …(ii) [By using Basic Proportionality Theorem]
From equation (i) and (ii), we get
AO/CO = BO/DO
⇒ AO/BO = CO/DO
10. The diagonals of a quadrilateral ABCD intersect each other at the point O such that AO/BO = CO/DO. Show that ABCD is a trapezium.
Answer
1. State which pairs of triangles in Fig. 6.34 are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:
∠B = ∠Q = 80° (Given)
∠C = ∠R = 40° (Given)
∴ ΔABC ~ ΔPQR (AAA similarity criterion)
(ii) In ΔABC and ΔPQR, we have
AB/QR = BC/RP = CA/PQ
∴ ΔABC ~ ΔQRP (SSS similarity criterion)
(iii) In ΔLMP and ΔDEF, we have
LM = 2.7, MP = 2, LP = 3, EF = 5, DE = 4, DF = 6
MP/DE = 2/4 = 1/2
PL/DF = 3/6 = 1/2
LM/EF= 2.7/5 = 27/50
Here, MP/DE = PL/DF ≠ LM/EF
Hence, ΔLMP and ΔDEF are not similar.
(iv) In ΔMNL and ΔQPR, we have
MN/QP = ML/QR = 1/2
∠M = ∠Q = 70°
∴ ΔMNL ~ ΔQPR (SAS similarity criterion)
(v) In ΔABC and ΔDEF, we have
AB = 2.5, BC = 3, ∠A = 80°, EF = 6, DF = 5, ∠F = 80°
Here, AB/DF = 2.5/5 = 1/2
And, BC/EF = 3/6 = 1/2
⇒ ∠B ≠ ∠F
Hence, ΔABC and ΔDEF are not similar.
(vi) In ΔDEF,we have
∠D + ∠E + ∠F = 180° (sum of angles of a triangle)
⇒ 70° + 80° + ∠F = 180°
⇒ ∠F = 180° – 70° – 80°
⇒ ∠F = 30°
In PQR, we have
∠P + ∠Q + ∠R = 180 (Sum of angles of Δ)
⇒ ∠P + 80° + 30° = 180°
⇒ ∠P = 180° – 80° -30°
⇒ ∠P = 70°
In ΔDEF and ΔPQR, we have
∠D = ∠P = 70°
∠F = ∠Q = 80°
∠F = ∠R = 30°
Hence, ΔDEF ~ ΔPQR (AAA similarity criterion)
Page No: 139
2. In the fig 6.35, ΔODC ∝ ¼ ΔOBA, ∠ BOC = 125° and ∠ CDO = 70°. Find ∠ DOC, ∠ DCO and ∠ OAB.
Answer
DOB is a straight line.
Therefore, ∠DOC + ∠ COB = 180°
⇒ ∠DOC = 180° – 125°
= 55°
∠DCO + ∠ CDO + ∠ DOC = 180°
(Sum of the measures of the angles of a triangle is 180º.)
⇒ ∠DCO + 70º + 55º = 180°
⇒ ∠DCO = 55°
It is given that ΔODC ~ ΔOBA.
∴ ∠OAB = ∠OCD [Corresponding angles are equal in similar triangles.]
⇒ ∠ OAB = 55°
∴ ∠OAB = ∠OCD [Corresponding angles are equal in similar triangles.]
3. Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using a similarity criterion for two triangles, show that AO/OC = OB/OD
Answer
In ΔDOC and ΔBOA,
∠CDO = ∠ABO [Alternate interior angles as AB || CD]
∠DCO = ∠BAO [Alternate interior angles as AB || CD]
∠DOC = ∠BOA [Vertically opposite angles]
∴ ΔDOC ~ ΔBOA [AAA similarity criterion]
Page No: 140
Answer
In ΔPQR, ∠PQR = ∠PRQ
∴ PQ = PR …(i)
Given,QR/QS = QT/PR
Using (i), we get
QR/QS = QT/QP …(ii)
In ΔPQS and ΔTQR,
QR/QS = QT/QP [using (ii)]
∠Q = ∠Q
∴ ΔPQS ~ ΔTQR [SAS similarity criterion]
5. S and T are point on sides PR and QR of ΔPQR such that ∠P = ∠RTS. Show that ΔRPQ ~ ΔRTS.
Answer
In ΔRPQ and ΔRST,
∠RTS = ∠QPS (Given)
∠R = ∠R (Common angle)
∴ ΔRPQ ~ ΔRTS (By AA similarity criterion)
It is given that ΔABE ≅ ΔACD.
∴ AB = AC [By cpct] …(i)
And, AD = AE [By cpct] …(ii)
In ΔADE and ΔABC,
∠A = ∠A [Common angle]
∴ ΔADE ~ ΔABC [By SAS similarity criterion]
(i) ΔAEP ~ ΔCDP
(ii) ΔABD ~ ΔCBE
(iii) ΔAEP ~ ΔADB
(iv) ΔPDC ~ ΔBEC
Answer
(i) In ΔAEP and ΔCDP,
∠AEP = ∠CDP (Each 90°)
∠APE = ∠CPD (Vertically opposite angles)
Hence, by using AA similarity criterion,
ΔAEP ~ ΔCDP
(ii) In ΔABD and ΔCBE,
∠ADB = ∠CEB (Each 90°)
Hence, by using AA similarity criterion,
ΔABD ~ ΔCBE
(iii) In ΔAEP and ΔADB,
∠AEP = ∠ADB (Each 90°)
Hence, by using AA similarity criterion,
ΔAEP ~ ΔADB
(iv) In ΔPDC and ΔBEC,
∠PDC = ∠BEC (Each 90°)
∠PCD = ∠BCE (Common angle)
Hence, by using AA similarity criterion,
ΔPDC ~ ΔBEC
8. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that ΔABE ~ ΔCFB.
Answer
In ΔABE and ΔCFB,
∠A = ∠C (Opposite angles of a parallelogram)
∠AEB = ∠CBF (Alternate interior angles as AE || BC)
∴ ΔABE ~ ΔCFB (By AA similarity criterion)
(i) CD/GH = AC/FG
(ii) ΔDCB ~ ΔHGE
(iii) ΔDCA ~ ΔHGF
Answer
(i) It is given that ΔABC ~ ΔFEG.
∴ ∠A = ∠F, ∠B = ∠E, and ∠ACB = ∠FGE
∠ACB = ∠FGE
∴ ∠ACD = ∠FGH (Angle bisector)
And, ∠DCB = ∠HGE (Angle bisector)
In ΔACD and ΔFGH,
∠A = ∠F (Proved above)
∠ACD = ∠FGH (Proved above)
∴ ΔACD ~ ΔFGH (By AA similarity criterion)
∠DCB = ∠HGE (Proved above)
∠B = ∠E (Proved above)
∴ ΔDCB ~ ΔHGE (By AA similarity criterion)
∠ACD = ∠FGH (Proved above)
∠A = ∠F (Proved above)
∴ ΔDCA ~ ΔHGF (By AA similarity criterion)
Page No: 141
11. In the following figure, E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If AD ⊥ BC and EF ⊥ AC, prove that ΔABD ~ ΔECF.
Answer
It is given that ABC is an isosceles triangle.
∴ AB = AC
⇒ ∠ABD = ∠ECF
In ΔABD and ΔECF,
∠ADB = ∠EFC (Each 90°)
∠BAD = ∠CEF (Proved above)
∴ ΔABD ~ ΔECF (By using AA similarity criterion)
13. D is a point on the side BC of a triangle ABC such that ∠ADC = ∠BAC. Show that CA2 = CB.CD
Answer
In ΔADC and ΔBAC,
∠ADC = ∠BAC (Given)
∠ACD = ∠BCA (Common angle)
∴ ΔADC ~ ΔBAC (By AA similarity criterion)
We know that corresponding sides of similar triangles are in proportion.
14. Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that ΔABC ~ ΔPQR.
Answer
15. A vertical pole of a length 6 m casts a shadow 4m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.
Answer
16. If AD and PM are medians of triangles ABC and PQR, respectively where ΔABC ~ ΔPQR prove that AB/PQ = AD/PM.
It is given that ΔABC ~ ΔPQR
We know that the corresponding sides of similar triangles are in proportion.∴ AB/PQ = AC/PR = BC/QR …(i)
Also, ∠A = ∠P, ∠B = ∠Q, ∠C = ∠R …(ii)
Since AD and PM are medians, they will divide their opposite sides.∴ BD = BC/2 and QM = QR/2 …(iii)
From equations (i) and (iii), we get
AB/PQ = BD/QM …(iv)
In ΔABD and ΔPQM,
∠B = ∠Q [Using equation (ii)]
AB/PQ = BD/QM [Using equation (iv)]
∴ ΔABD ~ ΔPQM (By SAS similarity criterion)⇒ AB/PQ = BD/QM = AD/PM.
1. Let ΔABC ~ ΔDEF and their areas be, respectively, 64 cm2 and 121 cm2. If EF = 15.4 cm, find BC.
Answer
It is given that,
Area of ΔABC = 64 cm2
Area of ΔDEF = 121 cm2
∴ Area of ΔABC/Area of ΔDEF = AB2/DE2
= AC2/DF2 = BC2/EF2 …(i)
[If two triangles are similar, ratio of their areas are equal to the square of the ratio of their corresponding sides]
∴ 64/121 = BC2/EF2
⇒ (8/11)2 = (BC/15.4)2
⇒ 8/11 = BC/15.4
⇒ BC = 8×15.4/11
⇒ BC = 8 × 1.4
⇒ BC = 11.2 cm
2. Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2CD, find the ratio of the areas of triangles AOB and COD.
Answer
ABCD is a trapezium with AB || DC. Diagonals AC and BD intersect each other at point O.
In ΔAOB and ΔCOD, we have
∠1 = ∠2 (Alternate angles)
∠3 = ∠4 (Alternate angles)
∠5 = ∠6 (Vertically opposite angle)
∴ ΔAOB ~ ΔCOD [By AAA similarity criterion]
Now, Area of (ΔAOB)/Area of (ΔCOD)
= AB2/CD2 [If two triangles are similar then the ratio of their areas are equal to the square of the ratio of their corresponding sides]
= (2CD)2/CD2 [∴ AB = CD]
∴ Area of (ΔAOB)/Area of (ΔCOD)
= 4CD2/CD = 4/1
Hence, the required ratio of the area of ΔAOB and ΔCOD = 4:1
3. In the fig 6.53, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that area (ΔABC)/area (ΔDBC) = AO/DO.
Answer
In ΔAPO and ΔDMO,
∠APO = ∠DMO (Each equals to 90°)
∠AOP = ∠DOM (Vertically opposite angles)
∴ ΔAPO ~ ΔDMO (By AA similarity criterion)∴ AP/DM = AO/DO
⇒ area (ΔABC)/area (ΔDBC) = AO/DO.
4. If the areas of two similar triangles are equal, prove that they are congruent.
Answer
Given: ΔABC and ΔPQR are similar and equal in area.
To Prove: ΔABC ≅ ΔPQR
Proof: Since, ΔABC ~ ΔPQR
∴ Area of (ΔABC)/Area of (ΔPQR) = BC2/QR2
⇒ BC2/QR2 =1 [Since, Area(ΔABC) = (ΔPQR)
⇒ BC2/QR2
⇒ BC = QR
Similarly, we can prove that
AB = PQ and AC = PR
Thus, ΔABC ≅ ΔPQR [BY SSS criterion of congruence]
5. D, E and F are respectively the mid-points of sides AB, BC and CA of ΔABC. Find the ratio of the area of ΔDEF and ΔABC.
To Find: area(ΔDEF) and area(ΔABC)
Solution: In ΔABC, we have
F is the mid point of AB (Given)
E is the mid-point of AC (Given)
So, by the mid-point theorem, we have
FE || BC and FE = 1/2BC
⇒ FE || BC and FE || BD [BD = 1/2BC]
∴ BDEF is parallelogram [Opposite sides of parallelogram are equal and parallel]
Similarly in ΔFBD and ΔDEF, we have
FB = DE (Opposite sides of parallelogram BDEF)
FD = FD (Common)
BD = FE (Opposite sides of parallelogram BDEF)
∴ ΔFBD ≅ ΔDEF
Similarly, we can prove that
ΔAFE ≅ ΔDEF
ΔEDC ≅ ΔDEF
If triangles are congruent,then they are equal in area.
So, area(ΔFBD) = area(ΔDEF) …(i)
area(ΔAFE) = area(ΔDEF) …(ii)
and, area(ΔEDC) = area(ΔDEF) …(iii)
Now, area(ΔABC) = area(ΔFBD) + area(ΔDEF) + area(ΔAFE) + area(ΔEDC) …(iv)
area(ΔABC) = area(ΔDEF) + area(ΔDEF) + area(ΔDEF) + area(ΔDEF)
⇒ area(ΔDEF) = 1/4area(ΔABC) [From (i), (ii) and (iii)]
⇒ area(ΔDEF)/area(ΔABC) = 1/4
Hence, area(ΔDEF):area(ΔABC) = 1:4
6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
Answer
Proof: ΔABC ~ ΔDEF (Given)
∴ area(ΔABC)/area(ΔDEF) = (AB2/DE2) …(i)
and, AB/DE = BC/EF = CA/FD …(ii)
In ΔABM and ΔDEN, we have
∠B = ∠E [Since ΔABC ~ ΔDEF]
AB/DE = BM/EN [Prove in (i)]
∴ ΔABC ~ ΔDEF [By SAS similarity criterion]
⇒ AB/DE = AM/DN …(iii)
∴ ΔABM ~ ΔDEN
As the areas of two similar triangles are proportional to the squares of the corresponding sides.
∴ area(ΔABC)/area(ΔDEF) = AB2/DE2 = AM2/DN2
7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
Answer
Given: ABCD is a square whose one diagonal is AC. ΔAPC and ΔBQC are two equilateral triangles described on the diagonals AC and side BC of the square ABCD.
To Prove: area(ΔBQC) = 1/2area(ΔAPC)
Proof: ΔAPC and ΔBQC are both equilateral triangles (Given)
∴ ΔAPC ~ ΔBQC [AAA similarity criterion]
∴ area(ΔAPC)/area(ΔBQC) = (AC2/BC2) = AC2/BC2
⇒ area(ΔBQC) = 1/2area(ΔAPC)
8. ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the area of triangles ABC and BDE is
(A) 2 : 1
(B) 1 : 2
(C) 4 : 1
(D) 1 : 4
Answer
(A) 2 : 3
(B) 4 : 9
(C) 81 : 16
(D) 16 : 81
Answer
1. Sides of triangles are given below. Determine which of them are right triangles? In case of a right triangle, write the length of its hypotenuse.
(i) 7 cm, 24 cm, 25 cm
(ii) 3 cm, 8 cm, 6 cm
(iii) 50 cm, 80 cm, 100 cm
(iv) 13 cm, 12 cm, 5 cm
Answer
(i) Given that the sides of the triangle are 7 cm, 24 cm, and 25 cm.
Squaring the lengths of these sides, we will get 49, 576, and 625.
49 + 576 = 625
(7)2 + (24)2 = (25)2
The sides of the given triangle are satisfying Pythagoras theorem.Hence, it is right angled triangle.
Length of Hypotenuse = 25 cm
(ii) Given that the sides of the triangle are 3 cm, 8 cm, and 6 cm.
Squaring the lengths of these sides, we will get 9, 64, and 36.
However, 9 + 36 ≠ 64
Or, 32 + 62 ≠ 82
Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.
Therefore, the given triangle is not satisfying Pythagoras theorem.
(iii) Given that sides are 50 cm, 80 cm, and 100 cm.
Squaring the lengths of these sides, we will get 2500, 6400, and 10000.
However, 2500 + 6400 ≠ 10000
Or, 502 + 802 ≠ 1002
Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.
Therefore, the given triangle is not satisfying Pythagoras theorem.
Hence, it is not a right triangle.
(iv) Given that sides are 13 cm, 12 cm, and 5 cm.
Squaring the lengths of these sides, we will get 169, 144, and 25.
Clearly, 144 +25 = 169
The sides of the given triangle are satisfying Pythagoras theorem.
Therefore, it is a right triangle.
Length of the hypotenuse of this triangle is 13 cm.
2. PQR is a triangle right angled at P and M is a point on QR such that PM ⊥ QR. Show that PM2 = QM × MR.
Answer
3. In Fig. 6.53, ABD is a triangle right angled at A and AC ⊥ BD. Show that
(i) AB2 = BC × BD
(ii) AC2 = BC × DC
(iii) AD2 = BD × CD
Answer
(i) In ΔADB and ΔCAB, we have
∠DAB = ∠ACB (Each equals to 90°)
∠ABD = ∠CBA (Common angle)
∴ ΔADB ~ ΔCAB [AA similarity criterion]
⇒ AB/CB = BD/AB
⇒ AB2 = CB × BD
(ii) Let ∠CAB = x
In ΔCBA,
∠CBA = 180° – 90° – x
∠CBA = 90° – x
Similarly, in ΔCAD
∠CAD = 90° – ∠CBA = 90° – x
∠CDA = 180° – 90° – (90° – x)
∠CDA = x
In ΔCBA and ΔCAD, we have
∠CBA = ∠CAD
∠CAB = ∠CDA
∠ACB = ∠DCA (Each equals to 90°)
∴ ΔCBA ~ ΔCAD [By AAA similarity criterion]
⇒ AC/DC = BC/AC
⇒ AC2 = DC × BC
(iii) In ΔDCA and ΔDAB, we have
∠DCA = ∠DAB (Each equals to 90°)
∠CDA = ∠ADB (common angle)
∴ ΔDCA ~ ΔDAB [By AA similarity criterion]
⇒ DC/DA = DA/DA
⇒ AD2 = BD × CD
4. ABC is an isosceles triangle right angled at C. Prove that AB2 = 2AC2 .
Answer
5. ABC is an isosceles triangle with AC = BC. If AB2 = 2AC2, prove that ABC is a right triangle.
Answer
Since, the diagonals of a rhombus bisect each other at right angles.
= 4AO2 + 4BO2 [Since, AO = CO and BO =DO]
= (2AO)2 + (2BO)2 = AC2 + BD2
Page No: 151
8. In Fig. 6.54, O is a point in the interior of a triangle
ABC, OD ⊥ BC, OE ⊥ AC and OF ⊥ AB. Show that
(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2 ,
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2.
Answer
Join OA, OB and OC
Similarly, in ΔBOD
OB2 = OD2 + BD2
Similarly, in ΔCOE
OC2 = OE2 + EC2
Adding these equations,
OA2 + OB2 + OC2 = OF2 + AF2 + OD2 + BD2 + OE2 + EC2
OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2.
(ii) AF2 + BD2 + EC2 = (OA2 – OE2) + (OC2 – OD2) + (OB2 – OF2)
∴ AF2 + BD2 + CE2 = AE2 + CD2 + BF2.
9. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.
Answer
Therefore, the distance of the foot of the ladder from the base of the wall is 6 m.
10. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut ?
Answer
Let AB be the pole and AC be the wire.
By Pythagoras theorem,
242 = 182 + BC2
BC2 = 576 – 324
BC2 = 252
BC = 6√7m
Therefore, the distance from the base is 6√7m.
11. An aeroplane leaves an airport and flies due north at a speed of 1,000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1,200 km per hour. How far apart will be the two planes after hours?
Answer
12. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops.
Answer
Let CD and AB be the poles of height 11 m and 6 m.
Therefore, CP = 11 – 6 = 5 m
From the figure, it can be observed that AP = 12m
Applying Pythagoras theorem for ΔAPC, we get
(12m)2 + (5m)2 = (AC)2
AC2 = (144+25)m2 = 169 m2
AC = 13m
Therefore, the distance between their tops is 13 m.
13. D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that AE2 + BD2 = AB2 + DE2.
Answer
Putting these values in equation (iii), we get
DE2 + AB2 = AE2 + BD2.
14. The perpendicular from A on side BC of a Δ ABC intersects BC at D such that DB = 3CD (see Fig. 6.55). Prove that 2AB2 = 2AC2 + BC2.
= 9CD2 – CD2 [∴ BD = 3CD]
= 9CD2 = 8(BC/4)2 [Since, BC = DB + CD = 3CD + CD = 4CD]
Therefore, AB2 – AC2 = BC2/2
⇒ 2(AB2 – AC2) = BC2
⇒ 2AB2 – 2AC2 = BC2
∴ 2AB2 = 2AC2 + BC2.
15. In an equilateral triangle ABC, D is a point on side BC such that BD = 1/3BC. Prove that 9AD2 = 7AB2.
Answer
Let the side of the equilateral triangle be a, and AE be the altitude of ΔABC.
Given that, BD = 1/3BC
∴ BD = a/3
Applying Pythagoras theorem in ΔADE, we get
AD2 = AE2 + DE2
⇒ 9 AD2 = 7 AB2
16. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.
Answer
Let the side of the equilateral triangle be a, and AE be the altitude of ΔABC.
∴ BE = EC = BC/2 = a/2
Applying Pythagoras theorem in ΔABE, we get
AB2 = AE2 + BE2
4AE2 = 3a2
⇒ 4 × (Square of altitude) = 3 × (Square of one side)
17. Tick the correct answer and justify: In ΔABC, AB = 6√3 cm, AC = 12 cm and BC = 6 cm.
The angle B is:
(A) 120°
(C) 90°
Answer
Given that, AB = 6√3 cm, AC = 12 cm, and BC = 6 cm
We can observe that
AB2 = 108
AC2 = 144
And, BC2 = 36
AB2 + BC2 = AC2
The given triangle, ΔABC, is satisfying Pythagoras theorem.
Therefore, the triangle is a right triangle, right-angled at B.
∴ ∠B = 90°
Hence, the correct option is (C).
Exercise 6.6
1. In Fig. 6.56, PS is the bisector of ∠QPR of ΔPQR. Prove that QS/SR = PQ/PR
2. In Fig. 6.57, D is a point on hypotenuse AC of ΔABC, such that BD ⊥ AC, DM ⊥ BC and
DN ⊥ AB. Prove that :
(i) DM2 = DN.MC
(ii) DN2 = DM.AN
Answer
Given that, D is a point on hypotenuse AC of ∆ABC, DM ⊥ BC and DN ⊥ AB.
Now, join NM.
Let BD and NM intersect at O.
3. In Fig. 6.58, ABC is a triangle in which ∠ABC > 90° and AD ⊥ CB produced. Prove that AC2 = AB2 + BC2 + 2 BC.BD.
4. In Fig. 6.59, ABC is a triangle in which ∠ABC < 90° and AD ⊥ BC. Prove that AC2 = AB2 + BC2 – 2BC.BD.
Answer
Given that, in figure, ABC is a triangle in which ∠ABC < 90° and AD ⊥ BC.
Proof:
In right △ADC,
∠D = 90°
= AD2 + (BC – BD)2 [∵BC = BD + DC]
= AD2 + (BC – BD)2 (BC = BD + DC)
= AD2 + BC2 + BD2 – 2BC.BD [∵ (a + b)2 = a2 + b2 + 2ab]
= (AD2 + BD2) + BC2 – 2BC . BD
= AB2 + BC2 – 2BC . BD
{In right △ADB with ∠D = 90°, AB2 = AD2 + BD2} (By Pythagoras theorem)
5. In Fig. 6.60, AD is a median of a triangle ABC and AM ⊥ BC. Prove that :
(i) AC2 = AD2 + BC.DM + (BC/2)2
(ii) AB2 = AD2 – BC.DM + (BC/2)2
(iii) AC2 + AB2 = 2 AD2 + 1/2 BC2
Answer
Given that, in figure, AD is a median of a ∆ABC and AM ⊥ BC.
Proof:
(i) In right ∆AMC,
Answer
Given that, ABCD is a parallelogram whose diagonals are AC and BD.
AD = BC (Opposite sides of a parallelogram)
AM = BN (Both are altitudes of the same parallelogram to the same base) ,
△AMD ⩭ △BNC (RHS congruence criterion)
MD = NC (CPCT) —(i)
In right △BND,
∠N = 90°
BD2 = BN2 + DN2 (By Pythagoras theorem)
= BN2 + (DC + CN)2 (∵ DN = DC + CN)
= BN2 + DC2 + CN2 + 2DC.CN [∵ (a + b)2 = a2 + b2 + 2ab]
= (BN2 + CN2) + DC2 + 2DC.CN
= BC2 + DC2 + 2DC.CN — (ii) (∵In right △BNC with ∠N = 90°)
BN2 + CN2 = BC2 (By Pythagoras theorem)
In right △AMC,
∠M = 90°
AC2 = AM2 + MC2 (∵MC = DC – DM)
= AM2 + (DC – DM)2 [∵ (a + b)2 = a2 + b2 + 2ab]
= AM2 + DC2 + DM2 – 2DC.DM
(AM2 + DM2) + DC2 – 2DC.DM
= AD2 + DC2 – 2DC.DM
[∵ In right triangle AMD with ∠M = 90°, AD2 = AM2 + DM2 (By Pythagoras theorem)]
= AD2 + AB2 = 2DC.CN — (iii)
[∵ DC = AB, opposite sides of parallelogram and BM = CN from eq (i)]
Now, on adding Eqs. (iii) and (ii), we get
AC2 + BD2 = (AD2 + AB2) + (BC2 + DC2)
= AB2 + BC2 + CD2 + DA2
7. In Fig. 6.61, two chords AB and CD intersect each other at the point P. Prove that :
(i) Δ APC ~ Δ DPB
(ii) AP . PB = CP . DP
Answer
Given that, in figure, two chords AB and CD intersects each other at the point P.
Proof:
(i) ∆APC and ∆DPB
∠APC = ∠DPB (Vertically opposite angles)
∠CAP = ∠BDP (Angles in the same segment)
∴ ∆APC ~ ∆DPB (AA similarity criterion)
(ii) ∆APC ~ ∆DPB [Proved in (i)]
∴ AP/DP = CP/BP
(∴ Corresponding sides of two similar triangles are proportional)
⇒ AP.BP = CP.DP
⇒ AP.PB = CP.DP
8. In Fig. 6.62, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that
(i) Δ PAC ~ Δ PDB
(ii) PA.PB = PC.PD
Answer
Given that, in figure, two chords AB and CD of a circle intersect each other at the point P (when produced) out the circle.
Proof:
(i) We know that, in a cyclic quadrilaterals, the exterior angle is equal to the interior opposite angle.
Therefore, ∠PAC = ∠PDB …(i)
and ∠PCA = ∠PBD …(ii)
In view of Eqs. (i) and (ii), we get
∆PAC ~ ∆PDB (∵ AA similarity criterion)
(ii) ∆PAC ~ ∆PDB [Proved in (i)]
∴ PA/PD = PC/PB
(∵ Corresponding sides of the similar triangles are proportional)
⇒ PA.PB = PC.PD
9. In Fig. 6.63, D is a point on side BC of ΔABC such that BD/CD = AB/AC. Prove that AD is the bisector of ∠BAC.
10. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see Fig. 6.64)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?
Answer
Length of the string that she has out
Important Links
Triangle – Quick Revision Notes
Arithmetic Progressions – Most Important Questions
Arithmetic Progressions – Important MCQs
For Free Video Lectures – Click here
Related
Discover more from EduGrown School
Subscribe to get the latest posts sent to your email.