NCERT Solutions for Class 11 Physics Chapter 13 Kinectic Theory includes all the important topics with detailed explanation that aims to help students to understand the concepts better. Students who are preparing for their Class 11 Physics exams must go through NCERT Solutions for Class 11 Physics Chapter 13 Kinectic Theory. Going through the solutions provided on this page will help you to know how to approach and solve the problems.
Students can also find NCERT intext, exercises and back of chapter questions. Also working on Class 11 Physics Chapter 13 Kinectic Theory NCERT Solutions will be most helpful to the students to solve their Homeworks and Assignments on time.
Table of Contents
ToggleClass 11th Chapter -13 Kinectic Theory | NCERT PHYSICS SOLUTION |
NCERT Exercises
Question 1.
Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the
diameter of an oxygen molecule to be 3 Å
Answer:
Here, the diameter of an oxygen molecule
d = 3 A = 3 x 10-10 m
The radius of an oxygen molecule
Question 2.
Molar volume is the volume occupied by 1 mol of any (ideal) gas at standard temperature and pressure (STP : 1 atmospheric pressure, 0°C). Show that it is 22.4 liters.
Answer:
Here, R = 8.31 J mol-1 K -1
T = 0°C = 273 K; n= 1 mole
P = 1 atm = 0.76 of Hg column
= 0.76 x 13.6 x 103 x 9.8 = 1.013 x 105 N m2
Question 3.
Figure shows plot of PV/T versus P for 1.00 x 10-3 kg of oxygen gas at two different temperatures.
(a) What does the dotted plot signify?
(b) Which is true: T, > T2 or T, < T2?
(c) What is the value of PV/T where the curves meet on the y-axis?
(d) If we obtained similar plots for 1.00 x 10-3 kg of hydrogen, would we get the same value of PV/T at the point where the curves meet on the y-axis? If not, what mass of hydrogen yields the same value of PV/T (for low pressure high temperature region of the plot)? (Molecular mass of H2 = 2.02 u, of 02 = 32.0 u, ff = 8.31 J mol-1 MK-1.)
Answer:
(a) Since the dotted plot is parallel to P-axis, it tells that value of remains constant even when P is changed.
(b) Curve at temperature T, is more close to the dotted plot than the curve at the temperature T2. Since the behaviour of a real gas approaches the perfect gas behaviour, as the temperature is increased therefore T1 > T2.
(c) If the amount of gas under consideration is 1 mole, then the value of PV/T, where the curves meet PV/T- axis will be R (=8.31 J mole-1 K-1). For oxygen, molecular mass is 32.0 g i.e. 32.0 x 10-3 kg. Since mass of oxygen gas under considerations is 1.0 x 10-3 kg, the value of PV/T, where the curves meet the PV/T-axis is given by
(d) If we obtained similar plots for 1.0 x 10-3 kg of hydrogen, the value of PV/T, where the curves meet the y-axis will not be the same. Since molecular mass of hydrogen is 2.02 x 10-3 kg, the mass of hydrogen that will yield same value of PV/T i.e., 0.26 J K-1 will be
Question 4.
An oxygen cylinder of volume 30 liters has an initial gauge pressure of 15 atm and a temperature of 27°C. After some oxygen is withdrawn from the cylinder, the gauge pressure drops to 11 atm and its temperature drops to 17°C. Estimate the mass of oxygen taken out of the cylinder (R = 8.31 J mol-1 K-1,
molecular mass of 02 = 32 u).
Answer:
Here, initially in the oxygen cylinder
Volume V2 = 30 liters = 30 x 10-3 m3
Pressure P1= 15 atm = 15 x 1.013 x 105 Pa
Temperature = 27 + 273 = 300 K
If the cylinder contains,let n2 moles of the oxygen gas then P1V1 = n1RT,
Initial mass of oxygen in the cylinder
mx = n1 molecular weight of 02
= 18.253 x 32 = 584.1 g
Finally in the oxygen cylinder, let n2 moles of oxygen be left
Final volume V2 = 30 x 10-3 m3
Final pressure P2 = 11 atm = 11 x 1.013 x 105 Pa
Final temperature T2 = 17 + 273 = 290 K
Question 5.
An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a temperature of 12 °C. To what volume does it grow when it reaches the surface, which is at a temperature of 35°C?
Answer:
When the air bubble is at depth of 40 m
Volume of air bubble V2 = 1.0 cm3 = 1.0 x 10-6 m3
Pressure of air bubble P1 = 1 atm + 40 m depth of water = 1 atm + h1ρg
= 1.013 x 105 + 40 x 103 x 9.8 = 4.93 x 105 Pa
Temperature of air bubble T1 = 12 + 273 = 285 K
When the air bubbles reaches at the surface of lake, pressure of air bubbles
P2 = 1 atm = 1.013 x 105 Pa
Temperature of air bubble T2 = 35°C = 35 + 273 = 308 K
Volume of air bubbles = ?
Question 6.
Estimate the total number of air molecules (inclusive of oxygen, nitrogen, water vapour and other constituents) in a room of capacity 25.0 m3 at a temperature of 27°C and 1 atm pressure.
Answer:
Here, volume of air molecules, V = 25.0 m3
Temperature of air molecules
T = 27°C = 27 + 273 = 300 K
Pressure of air molecules
P = 1 atm = 1.013 x 10s Pa
Now, PV = nRT
Question 7.
Estimate the average thermal energy of a helium atom at
(i) room temperature (27°C),
(ii) the temperature on the surface of the Sun(6000 K),
(iii) the temperature of 10 million kelvin (the typical core temperature in case of a star).
Answer:
The average kinetic energy of the gas at a temperature T
Question 8.
Three vessels of equal capacity have gases at the same temperature and pressure. The first vessel contains neon (monatomic), the second contains chlorine (diatomic), and the third contains uranium hexafluoride (polyatomic). Do the vessels contain equal number of respective molecules? Is the root mean square speed of molecules the same in the three cases? If not, in which case is vms the largest?
Answer:
All the three vessels (at the same temperature and pressure) have same volume. So, in accordance with the Avogadro’s law, the three vessels will contain equal number of respective molecules, being equal to Avogadro’s number N = 6.023 x 1023.
at a given temperature therefore, rms speed of molecules will not be the same in the three cases. As neon has the smallest mass, therefore, rms speed will be the largest in case of neon.
Question 9.
At what temperature is the root mean square speed of an atom in an argon gas cylinder equal to the rms speed of a helium gas atom at -20°C? (atomic mass of Ar = 39.9 u, of He = 4.0 u).
Answer:
Here, atomic mass of argon M1= 39.9
Atomic mass of helium He = 4.0
Let C1 and C2 be the rms velocities of argon and helium at temperature T1K and T2 K respectively.
We know that rms speed is given by
Question 10.
Estimate the mean free path and collision frequency of a nitrogen molecule in a cylinder containing nitrogen at 2.0 atm and temperature 17°C. Take the radius of a nitrogen molecule to be roughly 1.0 A. Compare the collision time with the time the molecule moves freely between two successive collisions (Molecular mass of N2 = 28.0 u).
Answer:
Here, Pressure of nitrogen = 2 atm
= 2 x 1.013 x 105 N m-2 = 2.026 x 105 Nm2
Temperature of nitrogen = 17° C
= 17 + 273 = 290 K
Molecular diameter d = 2 x 1= 2Å= 2x 10-10 m
Question 11.
A meter long narrow bore held horizontally (and closed at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of air. What happens if the tube is held vertically with the open end at the bottom?
Answer:
When the tube is held horizontally, the mercury thread of length 76 cm traps a length of air = 15 cm. A length of 9 cm of the tube will be left at the open end, figure
(a) The pressure of air enclosed in tube will be atmospheric pressure. Let area of cross-section of the tube be 1 sq. cm.
∴ P1 = 76 cm and V1 = 15 cm3
When the tube is held vertically, 15 cm air gets another 9 cm of air filled in the right hand side (in the horizontal position) and let h cm of mercury flows out to balance the atmospheric pressure, figure
(b) Then the heights of air column and mercury column are (24 + h) cm and (76 – h) cm respectively.
The pressure of air = 76 – (76 – h) = h cm of mercury
∴ V2 = (24 + h) cm3 and P2 = h cm.
Since h cannot be negative (because more mercury cannot flow into the tube), therefore h = 23.8 cm. Thus, in the vertical
Question 12.
From a certain apparatus, the diffusion rate of hydrogen has an average value of 28.7 cm3 s-1. The diffusion of another gas under the same conditions is measured to have an average rate of 7.2 cm3 s-1. Identify the gas.
Answer:
According to Graham’s law of diffusion
Question 13.
A gas in equilibrium has uniform density and pressure throughout its volume. This is strictly true only if there are no external influences. A gas column under gravity, for example, does not have uniform density (and pressure). As you might expect, its density decreases with height. The precise dependence is given by the so-called law of atmospheres
n2 = n1 exp [-mg (h2 – h1)/kBT]
where n2,n1 refer to number density at heights h2 and /i, respectively. Use this relation to derive the equation for sedimentation equilibrium of a suspension in a liquid column:
n2 = n1 exp [-mg NA (ρ – ρ’) [h2– h1)/(ρRT)]
where ρ is the density of the suspended particle, and ρ’ that of surrounding medium.
[NA is Avogadro’s number, and R is the universal gas constant.]
Answer:
According to the law of atmospheres,
where n2, n2 refer to number density of particles at heights h2 and h1 , respectively.
If we consider the sedimentation equilibrium of suspended particles in a liquid, then in place of mg, we will have to take effective weight of the suspended particles.
Let V = average volume of a suspended particle, r = density of suspended particle, r’ = density of liquid, m = mass of equal volume of liquid displaced.
According to Archimede’s principle, effective weight of one suspended particle = actual weight – weight of liquid displaced = mg- m’g
Question 14.
Given below are the densities of some solids and liquids. Give rough estimates of the sizes of their atoms
Substance | Atomic Mass (u) | Density (103km-3) |
Carbon(diamond) | 12.01 | 2.22 |
Gold | 197.0 | 19.32 |
Nitrogen (liquid) | 14.01 | 1.00 |
Lithium | 6.94 | 0.53 |
Fluorine (liquid) | 19.00 | 1.14 |
Answer:
Now that you are provided all the necessary information regarding NCERT Solutions for Class 11 Physics Physics Chapter 13 Kinetic Theory and we hope this detailed NCERT Solutions are helpful.
Related
Discover more from EduGrown School
Subscribe to get the latest posts sent to your email.