Q.1 In a rectangle, one diagonal is inclined to one of its sides at 25°. Measure the acute angle between the two diagonals.
Solution:
Let ABCD be a rectangle where AC and BD are the two diagonals which are intersecting at point O.
Now, assume ∠BDC = 25° (given)
Now, ∠BDA = 90° – 25° = 65°
Also, ∠DAC = ∠BDA, (as diagonals of a rectangle divide the rectangle into two congruent right triangles)
So, ∠BOA = the acute angle between the two diagonals = 180° – 65° – 65° = 50°
Q.2. Is it possible to draw a quadrilateral whose all angles are obtuse angles?
Solution:
It is known that the sum of angles of a quadrilateral is always 360°. To have all angles as obtuse, the angles of the quadrilateral will be greater than 360°. So, it is not possible to draw a quadrilateral whose all angles are obtuse angles.
Q.2 Prove that the angle bisectors of a parallelogram form a rectangle.
Solution:
LMNO is a parallelogram in which bisectors of the angles L, M, N, and O intersect at P, Q, R and S to form the quadrilateral PQRS.
LM || NO (opposite sides of parallelogram LMNO)
L + M = 180 (sum of consecutive interior angles is 180o)
MLS + LMS = 90
In LMS, MLS + LMS + LSM = 180
90 + LSM = 180
LSM = 90
RSP = 90 (vertically opposite angles)
SRQ = 90, RQP = 90 and SPQ = 90
Therefore, PQRS is a rectangle.
Q3. In a trapezium ABCD, AB∥CD. Calculate ∠C and ∠D if ∠A = 55° and ∠B = 70°
Solution:
In a trapezium ABCD, ∠A + ∠D = 180° and ∠B + ∠C = 180°
So, 55° + ∠D = 180°
Or, ∠D = 125°
Similarly,
70° + ∠C = 180°
Or, ∠C = 110°
Q4. Calculate all the angles of a parallelogram if one of its angles is twice its adjacent angle.
Solution:
Let the angle of the parallelogram given in the question statement be “x”.
Now, its adjacent angle will be 2x.
It is known that the opposite angles of a parallelogram are equal.
So, all the angles of a parallelogram will be x, 2x, x, and 2x
As the sum of interior angles of a parallelogram = 360°,
x + 2x + x + 2x = 360°
Or, x = 60°
Thus, all the angles will be 60°, 120°, 60°, and 120°.
Q5. Calculate all the angles of a quadrilateral if they are in the ratio 2:5:4:1.
Solution:
As the angles are in the ratio 2:5:4:1, they can be written as-
2x, 5x, 4x, and x
Now, as the sum of the angles of a quadrilateral is 360°,
2x + 5x + 4x + x = 360°
Or, x = 30°
Now, all the angles will be,
2x =2 × 30° = 60°
5x = 5 × 30° = 150°
4x = 4 × 30° = 120°, and
x = 30°
Q 6 Prove that a diagonal of a parallelogram divide it into two congruent triangles. [CBSE March 2012]
Solution. Given : A parallelogram ABCD and AC is its diagonal.
Question. 7 ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see fig.). Show that :
(i) AAPB ≅ ACQD (ii) AP = CQ [CBSE March 2012]
Solution.
Q.8
Solution.
Q.9
Solution.
Q.10
Solution.
Important Link
Quick Revision Notes :Quadrilaterals
NCERT Solution : Quadrilaterals
MCQs: Quadrilaterals
Click here for Free Video Lectures
Discover more from EduGrown School
Subscribe to get the latest posts sent to your email.