NCERT Solutions Class 11 Computer Science Chapter 2 Encoding Schemes and Number System
Question 1: Write base values of binary, octal and hexadecimal number system.
Answer:
NUMBER SYSTEM | BASE VALUE |
Binary number system | 2 |
Octal number system | 8 |
hexadecimal number system | 16 |
Question 2: Give full form of ASCII and ISCII.
Answer:
- The full form of ASCII is American Standard Code for Information
- The full form of ISCII is Indian Script Code for Information Interchange.
Question 3: Try the following conversions.
(i) (514)8 = (?)10 (iv) (4D9)16 = (?)10
(ii) (220)8 = (?)2 (v) (11001010)2 = (?)10
(iii) (76F)16 = (?)10 (vi) (1010111)2 = (?)10
Answer:
- (514)8 = (?)10
Digits | 5 | 1 | 4 |
Position | 2 | 1 | 0 |
Weight | 82 | 81 | 80 |
Therefore,
Decimal number = 5×82 + 1×81 + 4×80
= 5×64 + 1×8 + 4× 1
= 320 + 8 + 4
= (332)10
- (220)8 = (?)2
Octal Digits | 2 | 2 | 0 |
Binary value (3 bits) | 010 | 010 | 000 |
Therefore,
Binary number = (010010000)2
- (76F)16 = (?)10
Digits | 7 | 6 | F(15) |
Position | 2 | 1 | 0 |
Weight | 162 | 161 | 160 |
Therefore,
Decimal number = 7×162 + 6×161 + F×160
= 7×256 + 6×16 + F× 1
= 1792 + 96 + 15
= (1903)10
- (4D9)16 = (?)10
Digits | 4 | D | 9 |
Position | 2 | 1 | 0 |
Weight | 162 | 161 | 160 |
Therefore,
Decimal number = 4×162 + 13×161 + 9×160
= 4×256 + 13×16 + 9× 1
= 1024 + 208 + 9
= (1241)10
- (11001010)2 = (?)10
Digits | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Weight | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 |
Therefore,
Decimal number = 1×27+ 1×26+0×25 +0×24 +1×23 +0×22 +1×21 +0×20
= 128+64 +8 + 2
= (202)10
- (1010111)2 = (?)10
Digits | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
Position | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Weight | 26 | 25 | 24 | 23 | 22 | 21 | 20 |
Therefore,
Decimal number = 1×26+ 0×25+1×24 +0×23 +1×22 +1×21 +1×20
= 64 +16 + 4+ 2 +1
= (87)10
Question 4: Do the following conversions from decimal number to other number systems.
(i) (54)10 = (?)2 (iv) (889)10 = (?)8
(ii) (120)10 = (?)2 (v) (789)10 = (?)16
(iii) (76)10 = (?)8 (vi) (108)10 = (?)16
Answer:
Question 5: Express the following octal numbers into their equivalent decimal numbers.
(i) 145
(ii) 6760
(iii) 455
(iv) 10.75
Answer:
(i) 145
Digits | 1 | 4 | 5 |
Position | 2 | 1 | 0 |
Weight | 82 | 81 | 80 |
Therefore,
Decimal number = 1×82 +4×81 + 5×80
=1×64 + 4×8 + 5× 1
=64 + 32 + 5
= (101)10
(ii) 6760
Digits | 6 | 7 | 6 | 0 |
Position | 3 | 2 | 1 | 0 |
Weight | 83 | 82 | 81 | 80 |
Therefore,
Decimal number = 6×83 +7×82 +6×81 + 0×80
=6×512 + 7×64 +6×8 + 0× 1
=3072 + 448 + 48+0
= (3568)10
(i) 455
Digits | 4 | 5 | 5 |
Position | 2 | 1 | 0 |
Weight | 82 | 81 | 80 |
Therefore,
Decimal number = 4×82 +5×81 + 5×80
=4×64 + 5×8 + 5× 1
=256 + 40 + 5
= (301)10
(iv) 10.75
Digits | 1 | 0 | 7 | 5 |
Position | 1 | 0 | -1 | -2 |
Weight | 81 | 80 | 8-1 | 8-2 |
Therefore,
Decimal number = 1×81+0×80+7×8-1+5×8-2
=1×8+0×1+7×0.125+5×0.015625
=8+0+0.875+0.078125
= (8.953125)10
Question 6: Express the following decimal numbers into hexadecimal numbers. (i) 548 (ii) 4052 (iii) 58 (iv) 100.25
Discover more from EduGrown School
Subscribe to get the latest posts sent to your email.