NCERT Solutions Class 11 Computer Science Chapter 2 Encoding Schemes and Number System
Question 1: Write base values of binary, octal and hexadecimal number system.
Answer:
NUMBER SYSTEM | BASE VALUE |
Binary number system | 2 |
Octal number system | 8 |
hexadecimal number system | 16 |
Question 2: Give full form of ASCII and ISCII.
Answer:
- The full form of ASCII is American Standard Code for Information
- The full form of ISCII is Indian Script Code for Information Interchange.
Question 3: Try the following conversions.
(i) (514)8 = (?)10 (iv) (4D9)16 = (?)10
(ii) (220)8 = (?)2 (v) (11001010)2 = (?)10
(iii) (76F)16 = (?)10 (vi) (1010111)2 = (?)10
Answer:
- (514)8 = (?)10
Digits | 5 | 1 | 4 |
Position | 2 | 1 | 0 |
Weight | 82 | 81 | 80 |
Therefore,
Decimal number = 5×82 + 1×81 + 4×80
= 5×64 + 1×8 + 4× 1
= 320 + 8 + 4
= (332)10
- (220)8 = (?)2
Octal Digits | 2 | 2 | 0 |
Binary value (3 bits) | 010 | 010 | 000 |
Therefore,
Binary number = (010010000)2
- (76F)16 = (?)10
Digits | 7 | 6 | F(15) |
Position | 2 | 1 | 0 |
Weight | 162 | 161 | 160 |
Therefore,
Decimal number = 7×162 + 6×161 + F×160
= 7×256 + 6×16 + F× 1
= 1792 + 96 + 15
= (1903)10
- (4D9)16 = (?)10
Digits | 4 | D | 9 |
Position | 2 | 1 | 0 |
Weight | 162 | 161 | 160 |
Therefore,
Decimal number = 4×162 + 13×161 + 9×160
= 4×256 + 13×16 + 9× 1
= 1024 + 208 + 9
= (1241)10
- (11001010)2 = (?)10
Digits | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
Position | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Weight | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 |
Therefore,
Decimal number = 1×27+ 1×26+0×25 +0×24 +1×23 +0×22 +1×21 +0×20
= 128+64 +8 + 2
= (202)10
- (1010111)2 = (?)10
Digits | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
Position | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Weight | 26 | 25 | 24 | 23 | 22 | 21 | 20 |
Therefore,
Decimal number = 1×26+ 0×25+1×24 +0×23 +1×22 +1×21 +1×20
= 64 +16 + 4+ 2 +1
= (87)10
Question 4: Do the following conversions from decimal number to other number systems.
(i) (54)10 = (?)2 (iv) (889)10 = (?)8
(ii) (120)10 = (?)2 (v) (789)10 = (?)16
(iii) (76)10 = (?)8 (vi) (108)10 = (?)16
Answer:
Question 5: Express the following octal numbers into their equivalent decimal numbers.
(i) 145
(ii) 6760
(iii) 455
(iv) 10.75
Answer:
(i) 145
Digits | 1 | 4 | 5 |
Position | 2 | 1 | 0 |
Weight | 82 | 81 | 80 |
Therefore,
Decimal number = 1×82 +4×81 + 5×80
=1×64 + 4×8 + 5× 1
=64 + 32 + 5
= (101)10
(ii) 6760
Digits | 6 | 7 | 6 | 0 |
Position | 3 | 2 | 1 | 0 |
Weight | 83 | 82 | 81 | 80 |
Therefore,
Decimal number = 6×83 +7×82 +6×81 + 0×80
=6×512 + 7×64 +6×8 + 0× 1
=3072 + 448 + 48+0
= (3568)10
(i) 455
Digits | 4 | 5 | 5 |
Position | 2 | 1 | 0 |
Weight | 82 | 81 | 80 |
Therefore,
Decimal number = 4×82 +5×81 + 5×80
=4×64 + 5×8 + 5× 1
=256 + 40 + 5
= (301)10
(iv) 10.75
Digits | 1 | 0 | 7 | 5 |
Position | 1 | 0 | -1 | -2 |
Weight | 81 | 80 | 8-1 | 8-2 |
Therefore,
Decimal number = 1×81+0×80+7×8-1+5×8-2
=1×8+0×1+7×0.125+5×0.015625
=8+0+0.875+0.078125
= (8.953125)10
Question 6: Express the following decimal numbers into hexadecimal numbers. (i) 548 (ii) 4052 (iii) 58 (iv) 100.25