1. (sin30° + cos30°) – (sin 60° + cos60°)
(A) – 1
(B) 0
(C) 1
(D) 2
Answer: (B)
Explanation: According to question
2. Value of tan30°/cot60° is:
(A) 1/√2
(B) 1/√3
(C) √3
(D) 1
Answer: (D)
Explanation:
3. sec2θ – 1 = ?
(A) tan2θ
(B) tan2θ + 1
(C) cot2θ – 1
(D) cos2θ
Answer: (A)
Explanation: From trigonometric identity
1+ tan2θ = sec2θ
⇒sec2θ – 1 = tan2θ
4. The value of sin θ and cos (90° – θ)
(A) Are same
(B) Are different
(C) No relation
(D) Information insufficient
Answer: (A)
Explanation: Since from trigonometric identities,
cos(90° – θ) = sin θ
So, both represents the same value.
5. If cos A = 4/5, then tan A = ?
(A) 3/5
(B) 3/4
(C) 4/3
(D) 4/5
Answer: (B)
Explanation: From trigonometric identity
6. The value of the expression [cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)] is
(A) 1
(B) −1
(C) 0
(D) 1/2
Answer: (C)
Explanation: Since
cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)
= cosec (75° + θ) – cosec [90° – (15° – θ)] – tan (55° + θ) + tan [90° – (35° – θ)]
= cosec (75° + θ) – cosec (75° + θ) – tan (55° + θ) + tan (55° + θ)
= 0
7. Given that: SinA = a/b, then cosA = ?
(C) b/a
(D) a/b
Answer:(B)
Explanation: We have
8. The value of (tan1° tan2° tan3° … tan89°) is
(A) 0
(B) 1
(C) 2
(D)1/2
Answer: (B)
Explanation: This can be written as,
(tan1° tan2° tan3° … tan89°)
(tan1° tan2° tan3° ……. tan44° tan45° tan46° ….. tan87°tan88°tan89°)
= [tan1° tan2° tan3° ……. tan44° tan45° tan (90 – 44)° ….. tan(90° – 3) tan (90° – 2) tan (90° – 1)]
= (tan1° tan2° tan3° ……. tan44° tan45° cot 44° ….. cot3° cot2° cot 1°)
= 1
Since tan and cot are reciprocals of each other, so they cancel each other.
9. If sin A + sin2 A = 1, then cos2 A + cos4 A = ?
(A) 1
(B) 0
(C) 2
(D) 4
Answer: (A)
Explanation: We have
sin A + sin 2 A = 1
⇒ sin A = 1 – sin2 A
⇒ sin A = cos2 A ……(i)
Squaring both sides
⇒sin2A = cos4A ……(ii)
From equations (i) and (ii), we have
cos2A + cos4A = sin A + sin2A = 1
10. If sin A = 1/2 and cos B = 1/2, then A + B = ?
(A) 00
(B) 300
(C) 600
(D) 900
Answer: (D)
Explanation: Since
(A) 3
(B) 2
(C) 1
(D) 0
Answer: (B)
Explanation: Using trigonometric properties, we have:
12. If cos9α = sin α and 9α < 90°, then the value of tan 5α is
(A) √3
(B) 1/√3
(C) 0
(D) 1
Answer: (D)
Explanation: Since
cos9α = sinα
⇒ sin (90° – 9α) = sinα
⇒ (90° – 9α) = α
⇒ α = 9°
Therefore,
tan 5α = tan 5 (9°)
= tan45°
= 1
13. If a pole 6m high casts a shadow 2√3 m long on the ground, then the sun’s elevation is
(A) 60°
(B) 45°
(C) 30°
(D)90°
Answer: (A)
Explanation: Given condition can be represented as follows:
14. If cos (A + B) = 0, then sin (A – B) is reduced to:
(A) cos A
(B) cos 2B
(C) sin A
(D) sin 2B
Answer: (B)
Explanation: Since
cos (A + B) = 0
⇒ cos (A + B) = cos90°
⇒ (A + B) = 90°
⇒ A = 90° – B
This implies
sin (A – B) = sin (90° – B – B)
⇒ sin (A – B) = sin (90° – 2B)
sin (A – B) = cos 2B
(A) 2/3
(B) 1/3
(C) 1/2
(D) 3/4
Answer:(C)
Explanation: This can be solved as,
Important Link
Quick Revision Notes : Introduction to Trigonometry
NCERT Solution : Introduction to Trigonometry
MCQs: Introduction to Trigonometry
Click here for Free Video Lectures
Discover more from EduGrown School
Subscribe to get the latest posts sent to your email.