NCERT Solutions for Class 9 Maths Chapter 8 Quadrilaterals| EduGrown

In This Post we are  providing Chapter 8  Quadrilaterals NCERT Solutions for Class 9 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These  Quadrilaterals Class 9 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.

We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 9 Maths  Quadrilaterals NCERT Written Solutions  & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.

NCERT Solutions for Class 9 Maths Chapter 8 Quadrilaterals

Exercise 8.1

1. The angles of quadrilateral are in the ratio 3 : 5 : 9 : 13. Find all the angles of the quadrilateral.

Answer

Let x be the common ratio between the angles.
Sum of the interior angles of the quadrilateral = 360°
Now,
3x + 5x + 9x + 13x = 360°
⇒ 30x = 360°
⇒ x = 12°
Angles of the quadrilateral are:
3x = 3×12° = 36°
5x = 5×12° = 60°
9x = 9×12° = 108°
13x = 13×12° = 156°

2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Answer

Given,
AC = BD
To show,
To show ABCD is a rectangle we have to prove that one of its interior angle is right angled.
Proof,
In ΔABC and ΔBAD,
BC = BA (Common)
AC = AD (Opposite sides of a parallelogram are equal)
AC = BD (Given)
Therefore, ΔABC ≅ ΔBAD by SSS congruence condition.
∠A = ∠B (by CPCT)
also,
∠A + ∠B = 180° (Sum of the angles on the same side of the transversal)
⇒ 2∠A = 180°
⇒ ∠A = 90° = ∠B
Thus ABCD is a rectangle.

3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

 Answer

Let ABCD be a quadrilateral whose diagonals bisect each other at right angles.
Given,
OA = OC, OB = OD and ∠AOB = ∠BOC = ∠OCD = ∠ODA = 90°
To show,
ABCD is parallelogram and AB = BC = CD = AD
Proof,
In ΔAOB and ΔCOB,
OA = OC (Given)
∠AOB = ∠COB (Opposite sides of a parallelogram are equal)
OB = OB (Common)
Therefore, ΔAOB ≅ ΔCOB by SAS congruence condition.
Thus, AB = BC (by CPCT)
Similarly we can prove,
AB = BC = CD = AD
Opposites sides of a quadrilateral are equal hence ABCD is a parallelogram.
Thus, ABCD is rhombus as it is a parallelogram whose diagonals intersect at right angle.

 


4. Show that the diagonals of a square are equal and bisect each other at right angles.

Answer

Let ABCD be a square and its diagonals AC and BD intersect each other at O.
To show,
 AC = BD, AO = OC and ∠AOB = 90°
Proof,
In ΔABC and ΔBAD,
BC = BA (Common)
∠ABC = ∠BAD = 90°
AC = AD (Given)
Therefore, ΔABC ≅ ΔBAD by SAS congruence condition.
Thus, AC = BD by CPCT. Therefore, diagonals are equal.
Now,
In ΔAOB and ΔCOD,
∠BAO = ∠DCO (Alternate interior angles)
∠AOB = ∠COD (Vertically opposite)
AB = CD (Given)
Therefore, ΔAOB ≅ ΔCOD by AAS congruence condition.
Thus, AO = CO by CPCT. (Diagonal bisect each other.)
Now,
In ΔAOB and ΔCOB,
OB = OB (Given)
AO = CO (diagonals are bisected)
AB = CB (Sides of the square)
Therefore, ΔAOB ≅ ΔCOB by SSS congruence condition.
also, ∠AOB = ∠COB
∠AOB + ∠COB = 180° (Linear pair)
Thus, ∠AOB = ∠COB = 90° (Diagonals bisect each other at right angles)

5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Answer


Given,
Let ABCD be a quadrilateral in which diagonals AC and BD bisect each other at right angle at O.
To prove,
Quadrilateral ABCD is a square.
Proof,
In ΔAOB and ΔCOD,
AO = CO (Diagonals bisect each other)
∠AOB = ∠COD (Vertically opposite)
OB = OD (Diagonals bisect each other)
Therefore, ΔAOB ≅ ΔCOD by SAS congruence condition.
Thus, AB = CD by CPCT. — (i)
also,
∠OAB = ∠OCD (Alternate interior angles)
⇒ AB || CD
Now,
In ΔAOD and ΔCOD,
AO = CO (Diagonals bisect each other)
∠AOD = ∠COD (Vertically opposite)
OD = OD (Common)
Therefore, ΔAOD ≅ ΔCOD by SAS congruence condition.
Thus, AD = CD by CPCT. — (ii)
also,
AD = BC and AD = CD
⇒ AD = BC = CD = AB — (ii)
also,  ∠ADC = ∠BCD  by CPCT.
and ∠ADC + ∠BCD = 180° (co-interior angles)
⇒ 2∠ADC = 180°
⇒ ∠ADC = 90° — (iii)
One of the interior ang is right angle.
Thus, from (i), (ii) and (iii) given quadrilateral ABCD is a square.

6. Diagonal AC of a parallelogram ABCD bisects ∠A (see Fig. 8.19). Show that
(i) it bisects ∠C also,
(ii) ABCD is a rhombus.

Answer

(i)
In ΔADC and ΔCBA,
AD = CB (Opposite sides of a ||gm)
DC = BA (Opposite sides of a ||gm)
AC = CA (Common)
Therefore, ΔADC ≅ ΔCBA by SSS congruence condition.
Thus,
∠ACD = ∠CAB by CPCT
and ∠CAB = ∠CAD (Given)
⇒ ∠ACD = ∠BCA
Thus, AC bisects ∠C also.

(ii) ∠ACD = ∠CAD (Proved)
⇒ AD = CD (Opposite sides of equal angles of a triangle are equal)
Also, AB = BC = CD = DA (Opposite sides of a ||gm)
Thus, ABCD is a rhombus.

7. ABCD is a rhombus. Show that diagonal AC bisects ∠A as well as ∠C and diagonal BD bisects ∠B as well as ∠D.

Answer

Let ABCD is a rhombus and AC and BD are its diagonals.
Proof,
AD = CD (Sides of a rhombus)
∠DAC = ∠DCA (Angles opposite of equal sides of a triangle are equal.)
also, AB || CD
⇒ ∠DAC = ∠BCA (Alternate interior angles)
⇒ ∠DCA = ∠BCA
Therefore, AC bisects ∠C.
Similarly, we can prove that diagonal AC bisects ∠A.

Also, by preceding above method we can prove that diagonal BD bisects ∠B as well as ∠D.


8. ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that:
(i) ABCD is a square
(ii) diagonal BD bisects ∠B as well as ∠D.

Answer

(i)∠DAC = ∠DCA (AC bisects ∠A as well as ∠C)
⇒ AD = CD (Sides opposite to equal angles of a triangle are equal)
also, CD = AB (Opposite sides of a rectangle)
Therefore, AB = BC = CD = AD
Thus, ABCD is a square.

(ii) In ΔBCD,
BC = CD
⇒ ∠CDB = ∠CBD (Angles opposite to equal sides are equal)
also, ∠CDB = ∠ABD (Alternate interior angles)
⇒ ∠CBD = ∠ABD
Thus, BD bisects ∠B
Now,
∠CBD = ∠ADB
⇒ ∠CDB = ∠ADB
Thus, BD bisects ∠D

Page No: 147

9. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.20). Show that:
(i) ΔAPD ≅ ΔCQB
(ii) AP = CQ
(iii) ΔAQB ≅ ΔCPD
(iv) AQ = CP
(v) APCQ is a parallelogram



Answer

(i) In ΔAPD and ΔCQB,
DP = BQ (Given)
∠ADP = ∠CBQ (Alternate interior angles)
AD = BC (Opposite sides of a ||gm)
Thus, ΔAPD ≅ ΔCQB by SAS congruence condition.

(ii) AP = CQ by CPCT as ΔAPD ≅ ΔCQB.

(iii) In ΔAQB and ΔCPD,
BQ = DP (Given)
∠ABQ = ∠CDP (Alternate interior angles)
AB = BCCD (Opposite sides of a ||gm)
Thus, ΔAQB ≅ ΔCPD by SAS congruence condition.

(iv) AQ = CP by CPCT as ΔAQB ≅ ΔCPD.

(v) From (ii)  and (iv), it is clear that APCQ has equal opposite sides also it has equal opposite angles. Thus, APCQ is a ||gm.

 

10. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that
(i) ΔAPB ≅ ΔCQD
(ii) AP = CQ

Answer

(i) In ΔAPB and ΔCQD,
∠ABP = ∠CDQ (Alternate interior angles)
∠APB = ∠CQD (equal to right angles as AP and CQ are perpendiculars)
AB = CD (ABCD is a parallelogram)
Thus, ΔAPB ≅ ΔCQD by AAS congruence condition.

(ii) AP = CQ by CPCT as ΔAPB ≅ ΔCQD.

 

11. In ΔABC and ΔDEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively (see Fig. 8.22).
Show that
(i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(iii) AD || CF and AD = CF
(iv) quadrilateral ACFD is a parallelogram
(v) AC = DF
(vi) ΔABC ≅ ΔDEF.

Answer

(i) AB = DE and AB || DE (Given)
Thus, quadrilateral ABED is a parallelogram because two opposite sides of a quadrilateral are equal and parallel to each other.
(ii) Again BC = EF and BC || EF.
Thus, quadrilateral BEFC is a parallelogram.
 
(iii)  Since ABED and BEFC are parallelograms.
⇒ AD = BE and BE = CF (Opposite sides of a parallelogram are equal)
Thus, AD = CF.
Also, AD || BE and BE || CF (Opposite sides of a parallelogram are parallel)
Thus, AD || CF

(iv) AD and CF are opposite sides of quadrilateral ACFD which are equal and parallel to each other. Thus, it is a parallelogram.
 

(v) AC || DF and AC = DF because ACFD is a parallelogram.
 
(vi) In ΔABC and ΔDEF,
AB = DE (Given)
BC = EF (Given)
AC = DF (Opposite sides of a parallelogram)
Thus, ΔABC ≅ ΔDEF by SSS congruence condition.
 

12. ABCD is a trapezium in which AB || CD and
AD = BC (see Fig. 8.23). Show that
(i) ∠A = ∠B
(ii) ∠C = ∠D
(iii) ΔABC ≅ ΔBAD
(iv) diagonal AC = diagonal BD
[Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]


Answer

Construction: Draw a line through C parallel to DA intersecting AB produced at E.
(i) CE = AD (Opposite sides of a parallelogram)
AD = BC (Given)
Therefor, BC = CE
⇒ ∠CBE = ∠CEB
also,
∠A + ∠CBE = 180° (Angles on the same side of transversal and ∠CBE = ∠CEB)
∠B + ∠CBE = 180° (Linear pair)
⇒ ∠A = ∠B

(ii) ∠A + ∠D = ∠B + ∠C = 180° (Angles on the same side of transversal)
⇒ ∠A + ∠D = ∠A + ∠C (∠A = ∠B)
⇒ ∠D = ∠C

(iii) In ΔABC and ΔBAD,
AB = AB (Common)
∠DBA = ∠CBA
AD = BC (Given)
Thus, ΔABC ≅ ΔBAD by SAS congruence condition.

(iv) Diagonal AC = diagonal BD by CPCT as ΔABC ≅ ΔBA.

Exercise 8.2

1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that :
(i) SR || AC and SR = 1/2 AC
(ii) PQ = SR
(iii) PQRS is a parallelogram.
 
Answer

(i) In ΔDAC,
R is the mid point of DC and S is the mid point of DA.
Thus by mid point theorem, SR || AC and SR = 1/2 AC

(ii) In ΔBAC,
P is the mid point of AB and Q is the mid point of BC.
Thus by mid point theorem, PQ || AC and PQ = 1/2 AC
also, SR = 1/2 AC
Thus, PQ = SR

(iii) SR || AC – from (i)
and, PQ || AC – from (ii)
⇒ SR || PQ – from (i) and (ii)
also, PQ = SR
Thus, PQRS is a parallelogram.

2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.

Answer
Given,
ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively.
To Prove,
PQRS is a rectangle.
Construction,
AC and BD are joined.
Proof,
In ΔDRS and ΔBPQ,
DS = BQ (Halves of the opposite sides of the rhombus)
∠SDR = ∠QBP (Opposite angles of the rhombus)
DR = BP (Halves of the opposite sides of the rhombus)
Thus, ΔDRS ≅ ΔBPQ by SAS congruence condition.
RS = PQ by CPCT — (i)
In ΔQCR and ΔSAP,
RC = PA (Halves of the opposite sides of the rhombus)
∠RCQ = ∠PAS (Opposite angles of the rhombus)
CQ = AS (Halves of the opposite sides of the rhombus)
Thus, ΔQCR ≅ ΔSAP by SAS congruence condition.
RQ = SP by CPCT — (ii)
Now,
In ΔCDB,
R and Q are the mid points of CD and BC respectively.
⇒ QR || BD 
also,
P and S are the mid points of AD and AB respectively.
⇒ PS || BD
⇒ QR || PS
Thus, PQRS is a parallelogram.
also, ∠PQR = 90°
Now,
In PQRS,
RS = PQ and RQ = SP from (i) and (ii)
∠Q = 90°
Thus, PQRS is a rectangle.

3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Answer
Given,
ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively.
Construction,
AC and BD are joined.
To Prove,
PQRS is a rhombus.
Proof,
In ΔABC
P and Q are the mid-points of AB and BC respectively
Thus, PQ || AC and PQ = 1/2 AC (Mid point theorem) — (i)
In ΔADC,
SR || AC and SR = 1/2 AC (Mid point theorem) — (ii)
So, PQ || SR and PQ = SR
As in quadrilateral PQRS one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram.
PS || QR and PS = QR (Opposite sides of parallelogram) — (iii)
Now,
In ΔBCD,
Q and R are mid points of side BC and CD respectively.
Thus, QR || BD and QR = 1/2 BD (Mid point theorem) — (iv)
AC = BD (Diagonals of a rectangle are equal) — (v)
From equations (i), (ii), (iii), (iv) and (v),
PQ = QR = SR = PS
So, PQRS is a rhombus.

4. ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig. 8.30). Show that F is the mid-point of BC.

Answer

Given,
ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD.
To prove,
F is the mid-point of BC.
Proof,
BD intersected EF at G.
In ΔBAD,
E is the mid point of AD and also EG || AB.
Thus, G is the mid point of BD (Converse of mid point theorem)
Now,
In ΔBDC,
G is the mid point of BD and also GF || AB || DC.
Thus, F is the mid point of BC (Converse of mid point theorem)

Page No: 151

5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD.
Answer

Given,
ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively.
To show,
AF and EC trisect the diagonal BD.
Proof,
ABCD is a parallelogram
Therefor, AB || CD
also, AE || FC
Now,
AB = CD (Opposite sides of parallelogram ABCD)
⇒ 1/2 AB = 1/2 CD
⇒ AE = FC (E and F are midpoints of side AB and CD)
AECF is a parallelogram (AE and CF are parallel and equal to each other)
AF || EC (Opposite sides of a parallelogram)
Now,
In ΔDQC,
F is mid point of side DC and FP || CQ (as AF || EC).
P is the mid-point of DQ (Converse of mid-point theorem)
⇒ DP = PQ — (i)
Similarly,
In APB,
E is mid point of side AB and EQ || AP (as AF || EC).
Q is the mid-point of PB (Converse of mid-point theorem)
⇒ PQ = QB — (ii)
From equations (i) and (i),
DP = PQ = BQ
Hence, the line segments AF and EC trisect the diagonal BD.

6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Answer
Let ABCD be a quadrilateral and P, Q, R and S are the mid points of AB, BC, CD and DA respectively.
Now,
In ΔACD,
R and S are the mid points of CD and DA respectively.
Thus, SR || AC.
Similarly we can show that,
PQ || AC
PS || BD
QR || BD
Thus, PQRS is parallelogram.
PR and QS are the diagonals of the parallelogram PQRS. So, they will bisect each other.

7. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
(i) D is the mid-point of AC
(ii) MD ⊥ AC
(iii) CM = MA = 1/2 AB

Answer

(i) In ΔACB,
M is the mid point of AB and MD || BC
Thus, D is the mid point of AC (Converse of mid point theorem)

(ii) ∠ACB = ∠ADM (Corresponding angles)
also, ∠ACB = 90°
Thus, ∠ADM = 90° and MD ⊥ AC

(iii)  In ΔAMD and ΔCMD,
AD = CD (D is the midpoint of side AC)
∠ADM = ∠CDM (Each 90°)
DM = DM (common)
Thus, ΔAMD ≅ ΔCMD by SAS congruence condition.
AM = CM by CPCT
also, AM =  1/2 AB (M is mid point of AB)
Hence, CM = MA =  1/2 AB

Important Links

 Quadrilaterals – Quick Revision Notes

 Quadrilaterals – Most Important Questions

 Quadrilaterals – Important MCQs

For Free Video Lectures – Click here

Read More

NCERT Solutions for Class 9 Maths Chapter 7 Triangles| EduGrown

In This Post we are  providing Chapter 7 Triangles NCERT Solutions for Class 9 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These Triangles Class 9 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.

We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 9 Maths Triangles NCERT Written Solutions  & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.

NCERT Solutions for Class 9 Maths Chapter 7 Triangles

Exercise 7.1

1. In quadrilateral ACBD, AC = AD and AB bisects ∠A (see Fig. 7.16). Show that ΔABC ≅ ΔABD. What can you say about BC and BD?



Answer

Given,
AC = AD and AB bisects ∠A
To prove,
ΔABC ≅ ΔABD
Proof,
In ΔABC and ΔABD,
AB = AB (Common)
AC = AD (Given)
∠CAB = ∠DAB (AB is bisector)
Therefore, ΔABC ≅ ΔABD by SAS congruence condition.
BC and BD are of equal length.

Page No: 119

2. ABCD is a quadrilateral in which AD = BC and ∠DAB = ∠CBA (see Fig. 7.17). Prove that
(i) ΔABD ≅ ΔBAC
(ii) BD = AC
(iii) ∠ABD = ∠BAC.

Answer

Given,
AD = BC and ∠DAB = ∠CBA

(i) In ΔABD and ΔBAC,
AB = BA (Common)
∠DAB = ∠CBA (Given)
AD = BC (Given)
Therefore, ΔABD ≅ ΔBAC by SAS congruence condition.
(ii) Since, ΔABD ≅ ΔBAC
Therefore BD = AC by CPCT
(iii) Since, ΔABD ≅ ΔBAC
Therefore ∠ABD = ∠BAC by CPCT

3. AD and BC are equal perpendiculars to a line segment AB (see Fig. 7.18). Show that CD bisects AB.

Answer

Given,
AD and BC are equal perpendiculars to AB.
To prove,
CD bisects AB
Proof,
In ΔAOD and ΔBOC,
∠A = ∠B (Perpendicular)
∠AOD = ∠BOC (Vertically opposite angles)
AD = BC (Given)
Therefore, ΔAOD ≅ ΔBOC by AAS congruence condition.
Now,
AO = OB (CPCT). CD bisects AB.

4. l and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that ΔABC ≅ ΔCDA.


Answer

Given,
l || m and p || q
To prove,
ΔABC ≅ ΔCDA
Proof,
In ΔABC and ΔCDA,
∠BCA = ∠DAC (Alternate interior angles)
AC = CA (Common)
∠BAC = ∠DCA (Alternate interior angles)
Therefore, ΔABC ≅ ΔCDA by ASA congruence condition.

5. Line l is the bisector of an angle ∠A and B is any point on l. BP and BQ are perpendiculars from B to the arms of ∠A (see Fig. 7.20). Show that:
(i) ΔAPB ≅ ΔAQB
(ii) BP = BQ or B is equidistant from the arms of ∠A.

 Answer

Given,
l is the bisector of an angle ∠A.
BP and BQ are perpendiculars.

(i) In ΔAPB and ΔAQB,
∠P = ∠Q (Right angles)
∠BAP = ∠BAQ (l is bisector)
AB = AB (Common)
Therefore, ΔAPB ≅ ΔAQB by AAS congruence condition.
(ii) BP = BQ by CPCT. Therefore, B is equidistant from the arms of ∠A.

Page No: 120

6. In Fig. 7.21, AC = AE, AB = AD and ∠BAD = ∠EAC. Show that BC = DE.


Answer

Given,
AC = AE, AB = AD and ∠BAD = ∠EAC
To show,
BC = DE
Proof,
∠BAD = ∠EAC (Adding ∠DAC both sides)
∠BAD + ∠DAC = ∠EAC + ∠DAC
⇒ ∠BAC = ∠EAD
In ΔABC and ΔADE,
AC = AE (Given)
∠BAC = ∠EAD
AB = AD (Given)
Therefore, ΔABC ≅ ΔADE by SAS congruence condition.
BC = DE by CPCT.

7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that ∠BAD = ∠ABE and ∠EPA = ∠DPB (see Fig. 7.22). Show that
(i) ΔDAP ≅ ΔEBP
(ii) AD = BE

Answer

Given,
P is mid-point of AB.
∠BAD = ∠ABE and ∠EPA = ∠DPB

(i) ∠EPA = ∠DPB (Adding ∠DPE both sides)
∠EPA + ∠DPE = ∠DPB + ∠DPE
⇒ ∠DPA = ∠EPB
In ΔDAP ≅ ΔEBP,
∠DPA = ∠EPB
AP = BP (P is mid-point of AB)
∠BAD = ∠ABE (Given)
Therefore, ΔDAP ≅ ΔEBP by ASA congruence condition.
(ii) AD = BE by CPCT.

8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig. 7.23). Show that:
(i) ΔAMC ≅ ΔBMD
(ii) ∠DBC is a right angle.
(iii) ΔDBC ≅ ΔACB
(iv) CM = 1/2 AB

Answer

Given,
∠C = 90°, M is the mid-point of AB and DM = CM

(i) In ΔAMC and ΔBMD,
AM = BM (M is the mid-point)
∠CMA = ∠DMB (Vertically opposite angles)
CM = DM (Given)
Therefore, ΔAMC ≅ ΔBMD by SAS congruence condition.

(ii) ∠ACM = ∠BDM (by CPCT)
Therefore, AC || BD as alternate interior angles are equal.
Now,
∠ACB + ∠DBC = 180° (co-interiors angles)
⇒ 90° + ∠B = 180°
⇒ ∠DBC = 90°

(iii) In ΔDBC and ΔACB,
BC = CB (Common)
∠ACB = ∠DBC (Right angles)
DB = AC (byy CPCT, already proved)
Therefore, ΔDBC ≅ ΔACB by SAS congruence condition.

(iv)  DC = AB (ΔDBC ≅ ΔACB)
⇒ DM = CM = AM = BM (M is mid-point)
⇒ DM + CM = AM + BM
⇒ CM + CM = AB
⇒ CM = 1/2AB

Exercise 7.2

1. In an isosceles triangle ABC, with AB = AC, the bisectors of ∠B and ∠C intersect each other at O. Join A to O. Show that :
(i) OB = OC                     (ii) AO bisects ∠A

Answer

Given,
AB = AC, the bisectors of ∠B and ∠C intersect each other at O

(i) Since ABC is an isosceles with AB = AC,
∴ ∠B = ∠C
⇒ 1/2∠B = 1/2∠C
⇒ ∠OBC = ∠OCB (Angle bisectors.)
⇒ OB = OC (Side opposite to the equal angles are equal.)

(ii) In ΔAOB and ΔAOC,
AB = AC (Given)
AO = AO (Common)
OB = OC (Proved above)
Therefore, ΔAOB ≅ ΔAOC by SSS congruence condition.
∠BAO = ∠CAO (by CPCT)
Thus, AO bisects ∠A.

2. In ΔABC, AD is the perpendicular bisector of BC (see Fig. 7.30). Show that ΔABC is an isosceles triangle in which AB = AC.

Answer

Given,
AD is the perpendicular bisector of BC
To show,
AB = AC
Proof,
In ΔADB and ΔADC,
AD = AD (Common)
∠ADB = ∠ADC
BD = CD (AD is the perpendicular bisector)
Therefore, ΔADB ≅ ΔADC by SAS congruence condition.
AB = AC (by CPCT)

Page No: 124

3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig. 7.31). Show that these altitudes are equal.

Answer

Given,
BE and CF are altitudes.
AC = AB
To show,
BE = CF
Proof,
In ΔAEB and ΔAFC,
∠A = ∠A (Common)
∠AEB = ∠AFC (Right angles)
AB = AC (Given)
Therefore, ΔAEB ≅ ΔAFC by AAS congruence condition.
Thus, BE = CF by CPCT.

4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig. 7.32). Show that
(i) ΔABE ≅ ΔACF
(ii) AB = AC, i.e., ABC is an isosceles triangle.


Answer

Given,
BE = CF

(i) In ΔABE and ΔACF,
∠A = ∠A (Common)
∠AEB = ∠AFC (Right angles)
BE = CF (Given)
Therefore, ΔABE ≅ ΔACF by AAS congruence condition.

(ii) Thus, AB = AC by CPCT and therefore ABC is an isosceles triangle.


5. ABC and DBC are two isosceles triangles on the same base BC (see Fig. 7.33). Show that ∠ABD = ∠ACD.


Answer

Given,
ABC and DBC are two isosceles triangles.
To show,
∠ABD = ∠ACD
Proof,
In ΔABD and ΔACD,
AD = AD (Common)
AB = AC (ABC is an isosceles triangle.)
BD = CD (BCD is an isosceles triangle.)
Therefore, ΔABD ≅ ΔACD by SSS congruence condition. Thus, ∠ABD = ∠ACD by CPCT.

6. ΔABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig. 7.34). Show that ∠BCD is a right angle.

Answer

Given,
AB = AC and AD = AB
To show,
∠BCD is a right angle.
Proof,
In ΔABC,
AB = AC (Given)
⇒ ∠ACB = ∠ABC (Angles opposite to the equal sides are equal.)
In ΔACD,
AD = AB
⇒ ∠ADC = ∠ACD (Angles opposite to the equal sides are equal.)
Now,
In ΔABC,
∠CAB + ∠ACB + ∠ABC = 180°
⇒ ∠CAB + 2∠ACB = 180°
⇒ ∠CAB = 180° – 2∠ACB — (i)
Similarly in ΔADC,
∠CAD = 180° – 2∠ACD — (ii)
also,
∠CAB + ∠CAD = 180° (BD is a straight line.)
Adding (i) and (ii)
∠CAB + ∠CAD = 180° – 2∠ACB + 180° – 2∠ACD
⇒ 180° = 360° – 2∠ACB – 2∠ACD
⇒ 2(∠ACB + ∠ACD) = 180°
⇒ ∠BCD = 90°

7. ABC is a right angled triangle in which ∠A = 90° and AB = AC. Find ∠B and ∠C.

Answer

Given,
∠A = 90° and AB = AC
A/q,
AB = AC
⇒ ∠B = ∠C (Angles opposite to the equal sides are equal.)
Now,
∠A + ∠B + ∠C = 180° (Sum of the interior angles of the triangle.)
⇒ 90° + 2∠B = 180°
⇒ 2∠B = 90°
⇒ ∠B = 45°
Thus, ∠B = ∠C = 45°

8. Show that the angles of an equilateral triangle are 60° each.

Answer

Let ABC be an equilateral triangle.
BC = AC = AB (Length of all sides is same)
⇒ ∠A = ∠B = ∠C (Sides opposite to the equal angles are equal.)
Also,
∠A + ∠B + ∠C = 180°
⇒ 3∠A = 180°
⇒ ∠A = 60°
Therefore, ∠A = ∠B = ∠C = 60°
Thus, the angles of an equilateral triangle are 60° each.

Exercise 7.3

1. ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at P, show that
(i) ΔABD ≅ ΔACD
(ii) ΔABP ≅ ΔACP
(iii) AP bisects ∠A as well as ∠D.
(iv) AP is the perpendicular bisector of BC.

Answer

Given,
ΔABC and ΔDBC are two isosceles triangles.

(i) In ΔABD and ΔACD,
AD = AD (Common)
AB = AC (ΔABC is isosceles)
BD = CD (ΔDBC is isosceles)
Therefore, ΔABD ≅ ΔACD by SSS congruence condition.

(ii) In ΔABP and ΔACP,
AP = AP (Common)
∠PAB = ∠PAC (ΔABD ≅ ΔACD so by CPCT)
AB = AC (ΔABC is isosceles)
Therefore, ΔABP ≅ ΔACP by SAS congruence condition.

(iii) ∠PAB = ∠PAC by CPCT as ΔABD ≅ ΔACD.
AP bisects ∠A. — (i)
also,
In ΔBPD and ΔCPD,
PD = PD (Common)
BD = CD (ΔDBC is isosceles.)
BP = CP (ΔABP ≅ ΔACP so by CPCT.)
Therefore, ΔBPD ≅ ΔCPD by SSS congruence condition.
Thus, ∠BDP = ∠CDP by CPCT. — (ii)
By (i) and (ii) we can say that AP bisects ∠A as well as ∠D.

(iv) ∠BPD = ∠CPD (by CPCT as ΔBPD ≅ ΔCPD)
and BP = CP — (i)
also,
∠BPD + ∠CPD = 180° (BC is a straight line.)
⇒ 2∠BPD = 180°
⇒ ∠BPD = 90° —(ii)
From (i) and (ii),
AP is the perpendicular bisector of BC.

2. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
(i) AD bisects BC                      (ii) AD bisects ∠A.

Answer
 
 
Given,
AD is an altitude and AB = AC
 
(i) In ΔABD and ΔACD,
∠ADB = ∠ADC = 90°
 AB = AC (Given)
AD = AD (Common)
Therefore, ΔABD ≅ ΔACD by RHS congruence condition.
Now,
BD = CD (by CPCT)
Thus, AD bisects BC

(ii) ∠BAD = ∠CAD (by CPCT)
Thus, AD bisects ∠A.

3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see Fig. 7.40). Show that:
(i) ΔABM ≅ ΔPQN
(ii) ΔABC ≅ ΔPQR
Answer

Given,
AB = PQ, BC = QR and AM = PN

(i) 1/2 BC = BM and 1/2QR = QN (AM and PN are medians)
also,
BC = QR
⇒ 1/2 BC = 1/2QR
⇒ BM = QN
In ΔABM and ΔPQN,
AM = PN (Given)
AB = PQ (Given)
BM = QN (Proved above)
Therefore, ΔABM ≅ ΔPQN by SSS congruence condition.

(ii) In ΔABC and ΔPQR,
AB = PQ (Given)
∠ABC = ∠PQR (by CPCT)
BC = QR (Given)

Therefore, ΔABC ≅ ΔPQR by SAS congruence condition.

4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Answer
 
Given,
BE and CF are two equal altitudes.
In ΔBEC and ΔCFB,
∠BEC = ∠CFB = 90° (Altitudes)
 BC = CB (Common)
BE = CF (Common)
Therefore, ΔBEC ≅ ΔCFB by RHS congruence condition.
Now,
∠C = ∠B (by CPCT)
Thus, AB = AC as sides opposite to the equal angles are equal.

5. ABC is an isosceles triangle with AB = AC. Draw AP ⊥ BC to show that ∠B = ∠C.

Answer
Given,
AB = AC
In ΔABP and ΔACP,
∠APB = ∠APC = 90° (AP is altitude)
AB = AC (Given)
AP = AP (Common)
Therefore, ΔABP ≅ ΔACP by RHS congruence condition.
Thus, ∠B = ∠C (by CPCT)

Exercise 7.4

1. Show that in a right angled triangle, the hypotenuse is the longest side.

Answer

ABC is a triangle right angled at B.
Now,
∠A + ∠B + ∠C = 180°
⇒ ∠A + ∠C = 90° and ∠B is 90°.
Since, B is the largest angle of the triangle, the side opposite to it must be the largest.
So, BC is the hypotenuse which is the largest side of the right angled triangle ABC.

 

2. In Fig. 7.48, sides AB and AC of ΔABC are extended to points P and Q respectively. Also, ∠PBC < ∠QCB. Show that AC > AB.

Answer

Given,
∠PBC < ∠QCB
Now,
∠ABC + ∠PBC = 180°
⇒ ∠ABC = 180° – ∠PBC
also,
∠ACB + ∠QCB = 180°
⇒ ∠ACB = 180° – ∠QCB
Since,
∠PBC < ∠QCB therefore, ∠ABC > ∠ACB
Thus, AC > AB as sides opposite to the larger angle is larger.

3. In Fig. 7.49, ∠B < ∠A and ∠C < ∠D. Show that AD < BC.

Answer

Given,
∠B < ∠A and ∠C < ∠D
Now,
AO <  BO — (i) (Side opposite to the smaller angle is smaller)
OD < OC —(ii) (Side opposite to the smaller angle is smaller)
Adding (i) and (ii)
AO + OD < BO + OC
⇒ AD < BC

4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig. 7.50).
Show that ∠A > ∠C and ∠B > ∠D.




Answer


In ΔABD,
AB < AD < BD
∴ ∠ADB < ∠ABD — (i) (Angle opposite to longer side is larger.)
Now,
In ΔBCD,
BC < DC < BD
∴ ∠BDC < ∠CBD — (ii)
Adding (i) and (ii) we get,
∠ADB + ∠BDC < ∠ABD + ∠CBD
⇒ ∠ADC < ∠ABC
⇒ ∠B > ∠D
Similarly,
In ΔABC,
∠ACB < ∠BAC — (iii) (Angle opposite to longer side is larger.)
Now,
In ΔADC,
∠DCA < ∠DAC — (iv)
Adding (iii) and (iv) we get,
∠ACB + ∠DCA < ∠BAC + ∠DAC
⇒ ∠BCD < ∠BAD
⇒ ∠A > ∠C

5. In Fig 7.51, PR > PQ and PS bisects ∠QPR. Prove that ∠PSR > ∠PSQ.

Answer

Given,
PR > PQ and PS bisects ∠QPR
To prove,
∠PSR > ∠PSQ
Proof,
∠PQR > ∠PRQ — (i) (PR > PQ as angle opposite to larger side is larger.)
∠QPS = ∠RPS — (ii) (PS bisects ∠QPR)
∠PSR = ∠PQR + ∠QPS — (iii) (exterior angle of a triangle equals to the sum of opposite interior angles)
∠PSQ = ∠PRQ + ∠RPS — (iv) (exterior angle of a triangle equals to the sum of opposite interior angles)
Adding (i) and (ii)
∠PQR + ∠QPS > ∠PRQ + ∠RPS
⇒ ∠PSR > ∠PSQ [from (i), (ii), (iii) and (iv)]

Page No: 133

6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Answer

Let l is a line segment and B is a point lying o it. We drew a line AB perpendicular to l. Let C be any other point on l.
To prove,
AB < AC
Proof,
In ΔABC,
∠B = 90°
Now,
∠A + ∠B + ∠C = 180°
⇒ ∠A + ∠C = 90°
∴ ∠C must be acute angle. or ∠C < ∠B
⇒ AB < AC (Side opposite to the larger angle is larger.)

Important Links

Triangles – Quick Revision Notes

Triangles– Most Important Questions

Triangles – Important MCQs

For Free Video Lectures – Click here

Read More

NCERT Solutions for Class 9 Maths Chapter 6 Lines and angles | EduGrown

In This Post we are  providing Chapter 6 Lines and angles NCERT Solutions for Class 9 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These Lines and angles Class 9 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.

We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 9 Maths Lines and angles NCERT Written Solutions  & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.

NCERT Solutions for Class 9 Maths Chapter 6 Lines and angles

https://youtu.be/8zyFiuaWVec

Exercise 6.1

1. In Fig. 6.13, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.


Answer
Given,
∠AOC + ∠BOE = 70° and ∠BOD = 40°
A/q,
∠AOC + ∠BOE +∠COE = 180° (Forms a straight line)
⇒ 70° +∠COE = 180°
⇒ ∠COE = 110°
also,
∠COE +∠BOD + ∠BOE = 180° (Forms a straight line)
⇒ 110° +40° + ∠BOE = 180°
⇒ 150° + ∠BOE = 180°
⇒ ∠BOE = 30°

Page No: 97

2. In Fig. 6.14, lines XY and MN intersect at O. If ∠POY = 90° and a : b = 2 : 3, find c.


Answer

Given,
∠POY = 90° and a : b = 2 : 3
A/q,
∠POY + a + b = 180°
⇒ 90° + a + b = 180°
⇒ a + b = 90°
Let a be 2x then will be 3x
2x + 3x = 90°
⇒ 5x = 90°
⇒ x = 18°
∴ a = 2×18° = 36°
and b = 3×18° = 54°
also,
b + c = 180° (Linear Pair)
⇒ 54° + c = 180°
⇒ c = 126°

3. In Fig. 6.15, ∠PQR = ∠PRQ, then prove that ∠PQS = ∠PRT.


Answer

Given,
∠PQR = ∠PRQ
To prove,
∠PQS = ∠PRT
A/q,
∠PQR +∠PQS = 180° (Linear Pair)
⇒ ∠PQS = 180° – ∠PQR — (i)
also,
∠PRQ +∠PRT = 180° (Linear Pair)
⇒ ∠PRT = 180° – ∠PRQ
⇒ ∠PRQ = 180° – ∠PQR — (ii) (∠PQR = ∠PRQ)
From (i) and (ii)
∠PQS = ∠PRT = 180° – ∠PQR
Therefore,  ∠PQS = ∠PRT

4. In Fig. 6.16, if x + y = w + z, then prove that AOB is a line.

Answer

Given,
x + y = w + z
To Prove,
AOB is a line or x + y = 180° (linear pair.)
A/q,
x + y + w + z = 360° (Angles around a point.)
⇒ (x + y) +  (w + z) = 360°
⇒ (x + y) +  (x + y) = 360° (Given x + y = w + z)
⇒ 2(x + y) = 360°
⇒ (x + y) = 180°
Hence, x + y makes a linear pair. Therefore, AOB is a staright line.

5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that ∠ROS = 1/2(∠QOS – ∠POS).

Answer

Given,
OR is perpendicular to line PQ
To prove,
∠ROS = 1/2(∠QOS – ∠POS)
A/q,
∠POR = ∠ROQ = 90° (Perpendicular)
∠QOS = ∠ROQ + ∠ROS = 90° + ∠ROS — (i)
∠POS = ∠POR – ∠ROS = 90° – ∠ROS — (ii)
Subtracting (ii) from (i)
∠QOS – ∠POS = 90° + ∠ROS – (90° – ∠ROS)
⇒ ∠QOS – ∠POS = 90° + ∠ROS – 90° + ∠ROS
⇒ ∠QOS – ∠POS = 2∠ROS
⇒ ∠ROS = 1/2(∠QOS – ∠POS)
Hence, Proved.

6. It is given that ∠XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.

Answer

Given,
∠XYZ = 64°
YQ bisects ∠ZYP

∠XYZ +∠ZYP = 180° (Linear Pair)
⇒ 64° +∠ZYP = 180°
⇒ ∠ZYP = 116°
also, ∠ZYP = ∠ZYQ + ∠QYP
∠ZYQ = ∠QYP (YQ bisects ∠ZYP)
⇒ ∠ZYP = 2∠ZYQ
⇒ 2∠ZYQ = 116°
⇒ ∠ZYQ = 58° = ∠QYP
Now,
∠XYQ = ∠XYZ + ∠ZYQ
⇒ ∠XYQ = 64° + 58°
⇒ ∠XYQ = 122°
also,
reflex ∠QYP = 180° + ∠XYQ
∠QYP = 180° + 122°
⇒ ∠QYP = 302°

https://youtu.be/jum4L0ChTLw

 

Exercise 6.2

1. In Fig. 6.28, find the values of x and y and then show that AB || CD.

 

Answer

x + 50° = 180° (Linear pair)
⇒ x = 130°
also,
y = 130° (Vertically opposite)
Now,
x = y = 130° (Alternate interior angles)
Alternate interior angles are equal.
Therefore, AB || CD.

Page No: 104

2. In Fig. 6.29, if AB || CD, CD || EF and y : z = 3 : 7, find x.



 

Answer

Given,
AB || CD and CD || EF
y : z = 3 : 7
Now,
x + y = 180° (Angles on the same side of transversal.)
also,
∠O = z (Corresponding angles)
and, y + ∠O = 180° (Linear pair)
⇒ y + z = 180°
A/q,
y = 3w and z = 7w
3w + 7w = 180°
⇒ 10 w = 180°
⇒ w = 18°
∴ y = 3×18° = 54°
and, z = 7×18° = 126°
Now,
x + y = 180°
⇒ x + 54° = 180°
⇒ x = 126°

3. In Fig. 6.30, if AB || CD, EF ⊥ CD and ∠GED = 126°, find ∠AGE, ∠GEF and ∠FGE.


Answer

Given,
AB || CD
EF ⊥ CD
∠GED = 126°
A/q,
∠FED = 90° (EF ⊥ CD)
Now,
∠AGE = ∠GED (Since, AB || CD and GE is transversal. Alternate interior angles.)
∴ ∠AGE = 126°
Also, ∠GEF = ∠GED – ∠FED
⇒ ∠GEF = 126° – 90°
⇒ ∠GEF = 36°
Now,
∠FGE +∠AGE = 180° (Linear pair)
⇒ ∠FGE = 180° – 126°
⇒ ∠FGE = 54°

4. In Fig. 6.31, if PQ || ST, ∠PQR = 110° and ∠RST = 130°, find ∠QRS.
[Hint : Draw a line parallel to ST through point R.]

 
 Answer
 
Given,
PQ || ST, ∠PQR = 110° and ∠RST = 130°
Construction,
A line XY parallel to PQ and ST is drawn.

∠PQR + ∠QRX = 180° (Angles on the same side of transversal.)
⇒ 110° + ∠QRX = 180°
⇒ ∠QRX = 70°
Also,
∠RST + ∠SRY = 180° (Angles on the same side of transversal.)
⇒ 130° + ∠SRY = 180°
⇒ ∠SRY = 50°
Now,
∠QRX +∠SRY + ∠QRS = 180°
⇒ 70° + 50° + ∠QRS = 180°
⇒ ∠QRS = 60°

5. In Fig. 6.32, if AB || CD, ∠APQ = 50° and ∠PRD = 127°, find x and y.

 Answer

Given,
AB || CD, ∠APQ = 50° and ∠PRD = 127°
A/q,
x = 50° (Alternate interior angles.)
∠PRD + ∠RPB = 180° (Angles on the same side of transversal.)
⇒ 127° + ∠RPB = 180°
⇒ ∠RPB = 53°
Now,
y + 50° + ∠RPB = 180° (AB is a straight line.)
⇒ y + 50° + 53° = 180°
⇒ y + 103° = 180°
⇒ y = 77°

6. In Fig. 6.33, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD.

 
Answer
Let us draw BE ⟂ PQ and CF ⟂ RS.

 As PQ || RS
So, BE || CF

By laws of reflection we know that,
Angle of incidence = Angle of reflection
Thus, ∠1 = ∠2 and ∠3 = ∠4  — (i)
also, ∠2 = ∠3     (alternate interior angles because BE || CF and a transversal line BC cuts them at B and C)    — (ii)

From (i) and (ii),

∠1 + ∠2 = ∠3 + ∠4

⇒ ∠ABC = ∠DCB

⇒ AB || CD      (alternate interior angles are equal)

https://youtu.be/rKakJ64X8Nc

 

Exercise 6.3

1. In Fig. 6.39, sides QP and RQ of ΔPQR are produced to points S and T respectively. If ∠SPR = 135° and ∠PQT = 110°, find ∠PRQ.
Answer

Given,
∠SPR = 135° and ∠PQT = 110°
A/q,
∠SPR +∠QPR = 180° (SQ is a straight line.)
⇒ 135° +∠QPR = 180°
⇒ ∠QPR = 45°
also,
 
∠PQT +∠PQR = 180° (TR is a straight line.)
⇒ 110° +∠PQR = 180°
⇒ ∠PQR = 70°
Now,
∠PQR +∠QPR + ∠PRQ = 180° (Sum of the interior angles of the triangle.)
⇒ 70° + 45° + ∠PRQ = 180°
⇒ 115° + ∠PRQ = 180°
⇒ ∠PRQ = 65°

2. In Fig. 6.40, ∠X = 62°, ∠XYZ = 54°. If YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively of Δ XYZ, find ∠OZY and ∠YOZ.
Answer

Given,
∠X = 62°, ∠XYZ = 54°
YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively.
A/q,
∠X +∠XYZ + ∠XZY = 180° (Sum of the interior angles of the triangle.)
⇒ 62° + 54° + ∠XZY = 180°
⇒ 116° + ∠XZY = 180°
⇒ ∠XZY = 64°
Now,
∠OZY = 1/2∠XZY (ZO is the bisector.)
⇒ ∠OZY = 32°
also,
∠OYZ = 1/2∠XYZ (YO is the bisector.)
⇒ ∠OYZ = 27°
Now,
∠OZY +∠OYZ + ∠O = 180° (Sum of the interior angles of the triangle.)
⇒ 32° + 27° + ∠O = 180°
⇒ 59° + ∠O = 180°
⇒ ∠O = 121°

3. In Fig. 6.41, if AB || DE, ∠BAC = 35° and ∠CDE = 53°, find ∠DCE.

Answer

Given,
AB || DE, ∠BAC = 35° and ∠ CDE = 53°
A/q,
∠BAC = ∠CED (Alternate interior angles.)
∴ ∠CED = 35°
Now,
∠DCE +∠CED + ∠CDE = 180° (Sum of the interior angles of the triangle.)
⇒ ∠DCE + 35° + 53° = 180°
⇒ ∠DCE + 88° = 180°
⇒ ∠DCE = 92°

4. In Fig. 6.42, if lines PQ and RS intersect at point T, such that ∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75°, find ∠SQT.

Answer

Given,
∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75°
A/q,
∠PRT +∠RPT + ∠PTR = 180° (Sum of the interior angles of the triangle.)
⇒ 40° + 95° + ∠PTR = 180°
⇒ 40° + 95° + ∠PTR = 180°
⇒ 135° + ∠PTR = 180°
⇒ ∠PTR = 45°
∠PTR = ∠STQ = 45° (Vertically opposite angles.)
Now,
∠TSQ +∠PTR + ∠SQT = 180° (Sum of the interior angles of the triangle.)
⇒ 75° + 45° + ∠SQT = 180°
⇒ 120° + ∠SQT = 180°
⇒ ∠SQT = 60°

Page No: 108

5. In Fig. 6.43, if PQ ⊥ PS, PQ || SR, ∠SQR = 28° and ∠QRT = 65°, then find the values of x and y.
Answer

Given,
PQ ⊥ PS, PQ || SR, ∠SQR = 28° and ∠QRT = 65°
A/q,
x +∠SQR = ∠QRT (Alternate angles  as QR is transveersal.)
⇒ x + 28° = 65°
⇒ x = 37°
also,
∠QSR = x
⇒ ∠QSR = 37°
also,
∠QRS +∠QRT = 180° (Linea pair)
⇒ ∠QRS + 65° = 180°
⇒ ∠QRS = 115°
Now,
∠P + ∠Q+ ∠R +∠S = 360° (Sum of the angles in a quadrilateral.)
⇒ 90° + 65° + 115° + ∠S = 360°
⇒ 270° + y + ∠QSR = 360°
⇒ 270° + y + 37° = 360°
⇒ 307° + y = 360°
⇒ y = 53°

6. In Fig. 6.44, the side QR of ΔPQR is produced to a point S. If the bisectors of ∠PQR and ∠PRS meet at point T, then prove that ∠QTR = 1/2∠QPR.

Answer

Given,
Bisectors of ∠PQR and ∠PRS meet at point T.
To prove,
∠QTR = 1/2∠QPR.
Proof,
∠TRS = ∠TQR +∠QTR (Exterior angle of a triangle equals to the sum of the two interior angles.)
⇒ ∠QTR = ∠TRS – ∠TQR — (i)
also,
∠SRP = ∠QPR + ∠PQR
⇒ 2∠TRS = ∠QPR + 2∠TQR
⇒ ∠QPR =  2∠TRS – 2∠TQR
⇒ 1/2∠QPR =  ∠TRS – ∠TQR — (ii)
Equating (i) and (ii)
∠QTR – ∠TQR = 1/2∠QPR
Hence proved.

Important Links

Lines and angles – Quick Revision Notes

Lines and angles– Most Important Questions

Lines and angles – Important MCQs

For Free Video Lectures – Click here

Read More

NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid’s Geometry | EduGrown

In This Post we are  providing Chapter 5 Introduction to Euclid’s Geometry NCERT Solutions for Class 9 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These Introduction to Euclid’s Geometry Class 9 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.

We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 9 Maths Introduction to Euclid’s Geometry NCERT Written Solutions  & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.

NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid’s Geometry

https://youtu.be/UBrZiKewNmQ

Exercise 5.1

1. Which of the following statements are true and which are false? Give reasons for your
answers.
(i) Only one line can pass through a single point.
(ii) There are an infinite number of lines which pass through two distinct points.
(iii) A terminated line can be produced indefinitely on both the sides.
(iv) If two circles are equal, then their radii are equal.
(v) In Fig. 5.9, if AB = PQ and PQ = XY, then AB = XY.


Answer

(i) False. There can be infinite line drawn passing through a single point.

(ii) False. Only one line can be drawn which passes through two distinct points.

(iii) True. A terminated line can be produced indefinitely on both the sides.
In geometry, a line can be extended in both direction. A line means infinite long length.

(iv) True. If two circles are equal, then their radii are equal.
By superposition, we will find that the centre and circumference of the both circles coincide. Hence, their radius must be equal.

(v) True. By Euclid’s first axiom things which are equal to the same thing, are equal to one another.

 

2. Give a definition for each of the following terms. Are there other terms that need to be defined first? What are they, and how might you define them?
(i) parallel lines                 (ii) perpendicular lines                (iii) line segment  
(iv) radius of a circle         (v) square

Answer

Yes, other terms need to be defined first which are:
Plane: A plane is flat surface on which geometric figures are drawn.
Point: A point is a dot drawn on a plane surface and is dimensionless.
Line: A line is collection of points which can extends in both direction and has only length not breadth.

(i) Parallel lines: When two or more never intersect each other in a plane and perpendicular distance between them is always constant then they are said to be parallel lines.

(ii) Perpendicular lines: When two lines intersect each other at right angle in a plane then they are said to be perpendicular to each other.

(iii) Line segment: A line segment is a part of a line with two end points and cannot be extended further.

(iv) Radius of circle: The fixed distance between the centre and the circumference of the circle is called the radius of the circle.

(v) Square: A square is a quadrilateral in which all the four sides are equal and each internal angle is a right angle.

3. Consider two ‘postulates’ given below:
(i) Given any two distinct points A and B, there exists a third point C which is in between A and B.
(ii) There exist at least three points that are not on the same line.
Do these postulates contain any undefined terms? Are these postulates consistent? Do they follow from Euclid’s postulates? Explain.

Answer

Undefined terms in the postulates:
→ Many points lie in a plane. But here it is not given about the position of the point C whether it lies on the line segment joining AB or not.
→ Also, there is no information about the plane whether the points are in same plane or not.
Yes, these postulates are consistent when we deal with these two situation:
(i) Point C is lying in between and on the line segment joining A and B.
(ii) Point C not lies on the line segment joining A and B.

No, they don’t follow from Euclid’s postulates. They follow the axioms.

Page No: 86

4. If a point C lies between two points A and B such that AC = BC, then prove that AC = 1/2 AB. Explain by drawing the figure.

Answer

Here, AC = BC
Now, adding AC both sides.
AC + AC = BC + AC
also, BC +AC  = AB (as it coincides with line segment AB)
∴ 2 AC = AB (If equals are added to equals, the wholes are equal.)
⇒ AC = 1/2 AB.

5. In Question 4, point C is called a mid-point of line segment AB. Prove that every line segment has one and only one mid-point.

Answer
 

Let A and B be the line segment and points P and Q be two different mid points of AB.
Now,
∴ P and Q are midpoints of AB.
Therefore AP=PB and also AQ = QB.
also, PB + AP = AB (as it coincides with line segment AB)
Similarly, QB + AQ = AB.
Now,
AP + AP = PB + AP (If equals are added to equals, the wholes are equal.)
⇒ 2 AP = AB — (i)
Similarly, 
2 AQ = AB — (ii)
From (i) and (ii)
2 AP  = 2 AQ (Things which are equal to the same thing are equal to one another.)
⇒ AP = AQ (Things which are double of the same things are equal to one another.)
Thus, P and Q are the same points. This contradicts the fact that P and Q are two different mid points of AB. Thus, it is proved hat every line segment has one and only one mid-point.

6. In Fig. 5.10, if AC = BD, then prove that AB = CD.

 
Answer

Given, AC = BD
From the figure,
AC = AB + BC
BD = BC + CD   
⇒ AB + BC = BC + CD
According to Euclid’s axiom, when equals are subtracted from equals, remainders are also equal.
Subtracting BC both sides,
AB + BC – BC = BC + CD – BC
AB = CD

7. Why is Axiom 5, in the list of Euclid’s axioms, considered a ‘universal truth’? (Note that the question is not about the fifth postulate.)

Answer

Axiom 5 : The whole is always greater than the part.
Take an example of a cake. When it is whole it will measures 2 pound but when we took out a part from it and measures its weigh it will came out lower than the previous one. So, the fifth axiom of Euclid is true for all the universal things. That is why it is considered a ‘universal truth’.

https://youtu.be/VuFtU6PVj9U

Exercise 5.2

1. How would you rewrite Euclid’s fifth postulate so that it would be easier to understand?

Answer

The fifth postulates is about parallel lines.
When two or more never intersect each other in a plane and perpendicular distance between them is always constant then they are said to be parallel lines.
Two facts of the postulates:
(i) If P doesn’t lie on l then we can draw a line through P which will be parallel to the line l.
(ii) There will be only one line can be drawn through P which is parallel to the line l.

2. Does Euclid’s fifth postulate imply the existence of parallel lines? Explain.

Answer

Yes, Euclid’s fifth postulate imply the existence of parallel lines.
If the sum of the interior angles will be equal to sum of the two right angles then two lines will not meet each other on either sides and therefore they will be parallel to each other.




m and n will be parallel if
∠1 + ∠3 = 180°
Or  ∠3 + ∠4 = 180°

Important Links

Introduction to Euclid’s Geometry – Quick Revision Notes

Introduction to Euclid’s Geometry– Most Important Questions

Introduction to Euclid’s Geometry – Important MCQs

For Free Video Lectures – Click here

Read More

NCERT Solutions for Class 9 Maths Chapter 4 Linear Equation In Two Variables | EduGrown

In This Post we are  providing Chapter 4 Linear Equation In Two Variables NCERT Solutions for Class 9 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These Linear Equation In Two Variables Class 9 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.

We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 9 Maths Linear Equation In Two Variables NCERT Written Solutions  & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.

NCERT Solutions for Class 9 Maths Chapter 4 Linear Equation In Two Variables

https://youtu.be/MxNJ_K6ybLs

Exercise 4.1

1. The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.
(Take the cost of a notebook to be x and that of a pen to be y).

Answer

Let the cost of pen be y and the cost of notebook be x.
A/q,
Cost  of a notebook = twice the pen = 2y.
2y = x
⇒ x – 2y = 0
This is a linear equation in two variables to represent this statement.

2. Express the following linear equations in the form ax + by + c = 0 and indicate the values of a, b and c in each case:

(i) 2x + 3y = 9.35               (ii) x – y/5 – 10 = 0                  (iii) -2x + 3y = 6                (iv) x = 3y


(v) 2x = -5y                        (vi) 3x + 2 = 0                        (vii) y – 2 = 0                     (viii) 5 = 2x

Answer

(i) 2x + 3y = 9.35
⇒ 2x + 3y – 9.35 = 0
On comparing this equation with ax + by + c = 0, we get
a = 2x, b = 3 and c = -9.35

(ii) x – y/5 – 10 = 0
On comparing this equation with ax + by + c = 0, we get
a = 1, b = -1/5 and c = -10


(iii) -2x + 3y = 6
⇒ -2x + 3y – 6 = 0
On comparing this equation with ax + by + c = 0, we get
a = -2, b = 3 and c = -6

(iv) x = 3y
⇒ x – 3y = 0
On comparing this equation with ax + by + c = 0, we get
a = 1, b = -3 and c = 0

(v) 2x = -5y
⇒ 2x + 5y = 0
On comparing this equation with ax + by + c = 0, we get
a = 2, b = 5 and c = 0

(vi) 3x + 2 = 0
⇒ 3x + 0y + 2 = 0
On comparing this equation with ax + by + c = 0, we get
a = 3, b = 0 and c = 2

(vii) y – 2 = 0
⇒ 0x + y – 2 = 0
On comparing this equation with ax + by + c = 0, we get
a = 0, b = 1 and c = -2

(viii) 5 = 2x
⇒ -2x + 0y + 5 = 0
On comparing this equation with ax + by + c = 0, we get
a = -2, b = 0 and c = 5

https://youtu.be/_31qm2RCxmw

Exercise 4.2

1. Which one of the following options is true, and why?
y = 3x + 5 has
(i) a unique solution,               (ii) only two solutions,             (iii) infinitely many solutions

Answer

Since the equation, y = 3x + 5 is a linear equation in two variables. It will have (iii) infinitely many solutions.

2. Write four solutions for each of the following equations:

    (i) 2x + y = 7             (ii) πx + y = 9                (iii) x = 4y

Answer

(i) 2x + y = 7
⇒ y = 7 – 2x
→ Put x = 0,
y = 7 – 2 × 0 ⇒ y = 7
(0, 7) is the solution.
→ Now, put x = 1
y = 7 – 2 × 1 ⇒ y = 5
(1, 5) is the solution.
→ Now, put x = 2
y = 7 – 2 × 2 ⇒ y = 3
(2, 3) is the solution.
→ Now, put x = -1
y = 7 – 2 × -1 ⇒ y = 9
(-1, 9) is the solution.
The four solutions of the equation 2x + y = 7 are (0, 7), (1, 5), (2, 3) and (-1, 9).

(ii) πx + y = 9
⇒ y = 9 – πx
→ Put x = 0,
y = 9 – π×0 ⇒ y = 9
(0, 9) is the solution.
→ Now, put x = 1
y = 9 – π×1 ⇒ y = 9-π
(1, 9-π) is the solution.
→ Now, put x = 2
y = 9 – π×2 ⇒ y = 9-2π
(2, 9-2π) is the solution.
→ Now, put x = -1
y = 9 – π× -1 ⇒ y = 9+π
(-1, 9+π) is the solution.
The four solutions of the equation πx + y = 9 are (0, 9), (1, 9-π), (2, 9-2π) and (-1, 9+π).

(iii) x = 4y
→ Put x = 0,
0 = 4y ⇒ y = 0
(0, 0) is the solution.
→ Now, put x = 1
1 = 4y ⇒ y = 1/4
(1, 1/4) is the solution.
→ Now, put x = 4
4 = 4y ⇒ y = 1
(4, 1) is the solution.
→ Now, put x = 8
8 = 4y ⇒ y = 2
(8, 2) is the solution.
The four solutions of the equation πx + y = 9 are (0, 0), (1, 1/4), (4, 1) and (8, 2).

3. Check which of the following are solutions of the equation x – 2y = 4 and which are not:

 


    (i) (0, 2)              (ii) (2, 0)             (iii) (4, 0)            (iv) (√2, 4√2)              (v) (1, 1)

Answer

(i) Put x = 0 and y = 2 in the equation x – 2y = 4.
0 – 2×2 = 4
⇒ -4 ≠ 4
∴ (0, 2) is not a solution of the given equation.

(ii) Put x = 2 and y = 0 in the equation x – 2y = 4.
2 – 2×0 = 4
⇒ 2 ≠ 4
∴ (2, 0) is not a solution of the given equation.

(iii) Put x = 4 and y = 0 in the equation x – 2y = 4.
4 – 2×0 = 4
⇒ 4 = 4
∴ (4, 0) is a solution of the given equation.

(iv) Put x = √2 and y = 4√2 in the equation x – 2y = 4.
√2 – 2×4√2 = 4 ⇒ √2 – 8√2 = 4 ⇒ √2(1 – 8) = 4
⇒ -7√2  ≠ 4
∴ (√2, 4√2) is not a solution of the given equation.

(v) Put x = 1 and y = 1 in the equation x – 2y = 4.
1 – 2×1 = 4
⇒ -1 ≠ 4
∴ (1, 1) is not a solution of the given equation.

4. Find the value of k, if x = 2, y = 1 is a solution of the equation 2x + 3y = k.

Answer

Given equation = 2x + 3y = k
x = 2, y = 1 is the solution of the given equation.
A/q,
Putting the value of x and y in the equation, we get
2×2 + 3×1 = k
⇒ k = 4 + 3
⇒ k = 7

https://youtu.be/RzvMsJVBsvo

Exercise 4.3

1. Draw the graph of each of the following linear equations in two variables:
   (i) x + y = 4                  (ii) x – y = 2               (iii) y = 3x              (iv) 3 = 2x + y

Answer

(i) x + y = 4
Put x = 0 then y = 4
Put x = 4 then y = 0
x04
         y                4               0        


(ii) x – y = 2
Put x = 0 then y = -2
Put x = 2 then y = 0
      x      0     2       
y     -2       0


(iii) y = 3x
Put x = 0 then y = 0
Put x = 1 then y = 3
x0
        y              0          3      


(iv) 3 = 2x + y
Put x = 0 then y = 3
Put x = 1 then y = 1
x01
      y            3            1     


2. Give the equations of two lines passing through (2, 14). How many more such lines are there, and why?

Answer

Here, x = 2 and y =14.
Thus, x + y = 1
also, y = 7x ⇒ y – 7x = 0
∴ The equations of two lines passing through (2, 14) are
x + y = 1 and y – 7x = 0.
There will be infinite such lines because infinite number of lines can pass through a given point.

3. If the point (3, 4) lies on the graph of the equation 3y = ax + 7, find the value of a.

Answer

The point (3, 4) lies on the graph of the equation.
∴ Putting x = 3 and y = 4 in the equation 3y = ax + 7, we get
3×4 = a×3 + 7
⇒ 12 = 3a + 7
⇒ 3a = 12 – 7
⇒ a = 5/3

4. The taxi fare in a city is as follows: For the first kilometre, the fare is Rs 8 and for the subsequent distance it is Rs 5 per km. Taking the distance covered as x km and total fare as Rs y, write a linear equation for this information, and draw its graph.

Answer

Total fare = y
Total distance covered = x
Fair for the subsequent distance after 1st kilometre = Rs 5
Fair for 1st kilometre = Rs 8
A/q
y = 8 + 5(x-1)
⇒ y = 8 + 5x – 5
⇒ y = 5x + 3

x0-3/5 
        y              3          0      


5. From the choices given below, choose the equation whose graphs are given in Fig. 4.6 and Fig. 4.7.
   For Fig. 4. 6                           For Fig. 4.7
   (i) y = x                                  (i) y = x + 2
   (ii) x + y = 0                           (ii) y = x – 2
   (iii) y = 2x                              (iii) y = –x + 2
   (iv) 2 + 3y = 7x                     (iv) x + 2y = 6

Answer

In fig. 4.6, Points are (0, 0), (-1, 1) and (1, -1).
∴ Equation (ii) x + y = 0 is correct as it satisfies all the value of the points.

In fig. 4.7, Points are (-1, 3), (0, 2) and (2, 0).
∴ Equation (iii) y = –x + 2 is correct as it satisfies all the value of the points.

Page No: 75
 
6. If the work done by a body on application of a constant force is directly proportional to the distance travelled by the body, express this in the form of an equation in two variables and draw the graph of the same by taking the constant force as 5 units. Also read from the graph the work done when the distance travelled by the body is
                     (i) 2 units               (ii) 0 unit

Answer

Let the distance traveled by the body be x and y be the work done by the force.
y ∝ x (Given)
⇒ y = 5x (To equate the proportional, we need a constant. Here, it was given 5)
A/q,
(i) When x = 2 units then y = 10 units
(ii) When x = 0 unit then y = 0 unit

x2
        y              10          0      


7. Yamini and Fatima, two students of Class IX of a school, together contributed Rs 100 towards the Prime Minister’s Relief Fund to help the earthquake victims. Write a linear equation which satisfies this data. (You may take their contributions as Rs x and Rs y.) Draw the graph of the same.

Answer

Let the contribution amount by Yamini be x and contribution amount by Fatima be y.
A/q,
x + y = 100
When x = 0 then y = 100
When x = 50 then y = 50
When x = 100 then y = 0

x050 100 
        y              100          50           0      


 
 
8. In countries like USA and Canada, temperature is measured in Fahrenheit, whereas in countries like India, it is measured in Celsius. Here is a linear equation that converts Fahrenheit to Celsius:
                                           F = (9/5)C + 32
(i) Draw the graph of the linear equation above using Celsius for x-axis and Fahrenheit for y-axis.
(ii) If the temperature is 30°C, what is the temperature in Fahrenheit?
(iii) If the temperature is 95°F, what is the temperature in Celsius?
(iv) If the temperature is 0°C, what is the temperature in Fahrenheit and if the temperature is 0°F, what is the temperature in Celsius?
(v) Is there a temperature which is numerically the same in both Fahrenheit and Celsius? If yes, find it.
 
Answer
 
(i) F = (9/5)C + 32
When C = 0 then F = 32
also, when C = -10 then F = 14

C0-10 
        F              32          14      


(ii) Putting the value of C = 30 in F = (9/5)C + 32, we get
F = (9/5)×30  + 32
⇒ F = 54 + 32
⇒ F = 86

(iii) Putting the value of F = 95 in F = (9/5)C + 32, we get
95 = (9/5)C  + 32
⇒ (9/5)C = 95 – 32
⇒ C = 63 × 5/9
⇒ C = 35

(iv) Putting the value of F = 0 in F = (9/5)C + 32, we get
0 = (9/5)C  + 32
⇒ (9/5)C = -32
⇒ C = -32 × 5/9
⇒ C = -160/9

Putting the value of C = 0 in F = (9/5)C + 32, we get
F = (9/5)× 0  + 32
⇒ F = 32

(v) Here, we have to find when F = C.
Therefore, Putting F = C in F = (9/5)C + 32, we get
F = (9/5)F + 32
⇒ F – 9/5 F = 32
⇒ -4/5 F = 32
⇒ F = -40
Therefore at -40, both Fahrenheit and Celsius numerically the same.

https://youtu.be/wnegZVDCOzo

Exercise 4.4

1. Give the geometric representations of y = 3 as an equation
(i) in one variable
(ii) in two variables

Answer

(i) in one variable, it is represented as
y = 3

 
 
(ii) in two variables, it is represented as a line parallel to X-axis.
0x + y = 3
 


2. Give the geometric representations of 2x + 9 = 0 as an equation
(i) in one variable
(ii) in two variables

Answer

(i) in one variable, it is represented as
x = -9/2

 

(ii) in two variables, it is represented as a line parallel to Y-axis.
2x + 0y + 9 = 0
Read More

NCERT Solutions for Class 9 Maths Chapter 3 Coordinate Geometry | EduGrown

In This Post we are  providing Chapter 3 Coordinate Geometry NCERT Solutions for Class 9 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These Coordinate Geometry Class 9 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.

We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 9 Maths Coordinate Geometry NCERT Written Solutions  & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.

NCERT Solutions for Class 9 Maths Chapter 3 Coordinate Geometry

https://youtu.be/qezAU35eZm0

Exercise 3.1

1. How will you describe the position of a table lamp on your study table to another person?

Answer

To describe the position of a table lamp on the study table, we have two take two lines, a perpendicular and horizontal. Considering the table as a plane and taking perpendicular line as Y axis and horizontal as X axis. Take one corner of table as origin where both X and Y axes intersect each other. Now, the length of table is Y axis and breadth is X axis. From The origin, join the line to the lamp and mark a point. Calculate the distance of this point from both X and Y axes and then write it in terms of coordinates.
Let the distance of point from X axis is x and from Y axis is y then the the position of the table lamp in terms of coordinates is (x,y).


2. (Street Plan) : A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction.
All the other streets of the city run parallel to these roads and are 200 m apart. There are 5 streets in each direction. Using 1cm = 200 m, draw a model of the city on your notebook. Represent the roads/streets by single lines. There are many cross- streets in your model. A particular cross-street is made by two streets, one running in the North – South direction and another in the East – West direction. Each cross street is referred to in the following manner : If the 2nd street running in the North – South direction and 5 th in the East – West direction meet at some crossing, then we will call this cross-street (2, 5). Using this convention, find:
(i) how many cross – streets can be referred to as (4, 3).
(ii) how many cross – streets can be referred to as (3, 4)

Answer

 
(i) Only one street can be referred to as (4, 3) as we see from the figure.
(ii) Only one street can be referred to as (3, 4) as we see from the figure.

https://youtu.be/usRYLKnTT_E

Exercise 3.2
 
1. Write the answer of each of the following questions:

(i) What is the name of horizontal and the vertical lines drawn to determine the position of any point in the Cartesian plane?

(ii) What is the name of each part of the plane formed by these two lines?
(iii) Write the name of the point where these two lines intersect.
 
Answer
 
(i) The name of horizontal lines and vertical lines drawn to determine the position of any point in the Cartesian plane is x-axis and y-axis respectively.
(ii) The name of each part of the plane formed by these two lines x-axis and y-axis is quadrants.
(iii) The point where these two lines intersect is called origin.
 
 
 
2. See Fig.3.14, and write the following:

(i) The coordinates of B.
(ii) The coordinates of C.
(iii) The point identified by the coordinates (-3, -5).
(iv) The point identified by the coordinates (2, -4).
(v) The abscissa of the point D.
(vi) The ordinate of the point H.
(vii)The coordinates of the point L.
(viii) The coordinates of the point M.

 
 
Answer
 

(i) The coordinates of B is (-5, 2).

(ii) The coordinates of C is (5, -5).

(iii) The point identified by the coordinates (-3, -5) is E.

(iv) The point identified by the coordinates (2, -4) is G.

 



(v) Abscissa means x coordinate of point D. So, abscissa of the point D is 6.

(vi) Ordinate means y coordinate of point H. So, ordinate of point H is -3.

(vii) The coordinates of the point L is (0, 5).

(viii) The coordinates of the point M is (- 3, 0).

https://youtu.be/ILVmMPtFim4

Exercise 3.3

1. In which quadrant or on which axis do each of the points (-2, 4), (3, -1), (-1, 0), (1, 2) and (-3, -5) lie? Verify your answer by locating them on the Cartesian plane.

Answer
 
(-2, 4) → Second quadrant
(3, -1) → Fourth quadrant
(-1, 0) → Second quadrant
(1, 2) → First quadrant
(-3, -5) → Third quadrant

2. Plot the points (x, y) given in the following table on the plane, choosing suitable units of distance on the axes.
 
      x         -2               -1               0               1                   3         
y87-1.253-1

Answer

Points (x,y) on the plane. 1unit = 1 cm
Read More

NCERT Solutions for Class 9 Maths Chapter 2 Polynomial | EduGrown

In This Post we are  providing Chapter 2 Polynomials NCERT Solutions for Class 9 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These Polynomials Class 9 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.

We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 9 Maths Polynomials NCERT Written Solutions  & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials

https://youtu.be/Zsql4HVImSk

Exercise 2.1
 

1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i) 4x2 – 3x + 7
(ii) y2 + √2

(iii) 3√t + t√2

(iv) y + 2/y
(v) x10 + y3 + t50

Answer
 
(i) 4x2 – 3x + 7
There is only one variable x with whole number power so this polynomial in one variable.
 
(ii)  y2 + √2

There is only one variable y with whole number power so this polynomial in one variable.

 
(iii) 3√2 + t√2 

There is only one variable t but in 3√t power of t is 1/2 which is not a whole number so 3√t + t√2 is not a polynomial.

 
(iv) y + 2/y

There is only one variable but 2/y = 2y-1 so the power is not a whole number so y + 2/y is not a polynomial.

 
(v) x10 + y3 + t50

There are three variable xy and t and there powers are whole number so this polynomial in three variable.

 

2. Write the coefficients of x2 in each of the following:
(i) 2 + x2 + x
(ii) 2 – x2 + x3

(iv) √2x – 1

Answer

(i) coefficients of x2 = 1
(ii) coefficients of x2 = -1
(iii) coefficients of x2 = π/2
(iv) coefficients of x2 = 0

3. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

 
Answer
 
3x35+7 and 4x100

4. Write the degree of each of the following polynomials:
(i) 5x3 + 4x2 + 7x 
(ii) 4 – y2 
(iii) 5t – √7
(iv) 3
 
Answer

(i) 5x3 has highest power in the given polynomial which power is 3. Therefore, degree of polynomial is 3.

(ii) – y2  has highest power in the given polynomial which power is 2. Therefore, degree of polynomial is 2.

(iii) 5t has highest power in the given polynomial which power is 1. Therefore, degree of polynomial is 1.

(iv) There is no variable in the given polynomial. Therefore, degree of polynomial is 0.

5. Classify the following as linear, quadratic and cubic polynomial:
(i) x2 + x
► Quadratic Polynomial


(ii) x – x3
► Cubic Polynomial


(iii) y + y2 +4
► Quadratic Polynomial

(iv) 1 + x
► Linear Polynomial

(v) 3t
►Linear Polynomial

(vi) r2
► Quadratic Polynomial

(vii) 7x3
► Cubic Polynomial

https://youtu.be/aZ-LJird–k

Exercise 2.2

1. Find the value of the polynomial at 5+ 4x2 + 3 at

(i) x = 0 (ii) x = – 1 (iii) x = 2
 
Answer
 
(i) p(x) = 5+ 4x2 + 3
    p(0) = 5(0) + 4(0)2 + 3
           = 3

(ii) p(x) = 5+ 4x2 + 3
    p(-1) = 5(-1) + 4(-1)2 + 3
           = -5 + 4(1) + 3 = 2

(iii) p(x) = 5+ 4x2 + 3
    p(2) = 5(2) + 4(2)2 + 3
           = 10 + 16 + 3 = 29

2. Find p(0), p(1) and p(2) for each of the following polynomials:

(i) p(y) = y2 – y + 1

(ii) p(t) = 2 + t + 2t2 – t3
(iii) p(x) = x3 
(iv) p(x) = (x – 1) (x + 1)
 
Answer
 

(i) p(y) = y2 – y + 1
p(0) = (0)2 – (0) + 1 = 1
p(1) = (1)2 – (1) + 1 = 1
p(2) = (2)2 – (2) + 1 = 3

(ii) p(t) = 2 + t + 2t2 – t3
p(0) = 2 + 0 + 2 (0)2 – (0)3 = 2
p(1) = 2 + (1) + 2(1)2 – (1)3
= 2 + 1 + 2 – 1 = 4
p(2) = 2 + 2 + 2(2)2 – (2)3
= 2 + 2 + 8 – 8 = 4

(iii) p(x) = x3
p(0) = (0)3 = 0
p(1) = (1)3 = 1
p(2) = (2)3 = 8


(iv) p(x) = (x – 1) (x + 1)
p(0) = (0 – 1) (0 + 1) = (- 1) (1) = – 1
p(1) = (1 – 1) (1 + 1) = 0 (2) = 0
p(2) = (2 – 1 ) (2 + 1) = 1(3) = 3

Page No: 35

3. Verify whether the following are zeroes of the polynomial, indicated against them.
(i) p(x) = 3x + 1, x = -1/3
(ii)  p(x) = 5x – π, x = 4/5

(iii) p(x) = x2 – 1, x = 1, -1

(iv) p(x) = (x + 1) (x – 2), x = -1, 2
(v) p(x) = x2 , x = 0

(viii) p(x) = 2x + 1, x = 1/2

Answer

(i) If x = -1/3 is a zero of polynomial p(x) = 3x + 1 then p(-1/3) should be 0.
At, p(-1/3) = 3(-1/3) + 1 = -1 + 1 = 0
Therefore, x = -1/3 is a zero of polynomial p(x) = 3x + 1.

(ii) If x = 4/5 is a zero of polynomial p(x) = 5x – π then p(4/5) should be 0.
At, p(4/5) = 5(4/5) – π = 4 – π
Therefore, x = 4/5 is not a zero of given polynomial p(x) = 5x – π.

(iii) If x = 1 and x = -1 are zeroes of polynomial p(x) = x2 – 1, then p(1) and p(-1) should be 0.
At, p(1) = (1)2 – 1 = 0 and
At, p(-1) = (-1)2 – 1 = 0
Hence, x = 1 and -1 are zeroes of the polynomial  p(x) = x2 – 1.

(iv) If x = -1 and x = 2 are zeroes of polynomial p(x) = (x +1) (x – 2), then p( – 1) and (2)should be 0.
At, p(-1) = (-1 + 1) (-1 – 2) = 0 (-3) = 0, and
At, p(2) = (2 + 1) (2 – 2) = 3 (0) = 0
Therefore, x = -1 and x = 2 are zeroes of the polynomial p(x) = (x +1) (x – 2).
 
(v) If x = 0 is a zero of polynomial p(x) = x2, then p(0) should be zero.
Here, p(0) = (0)2 = 0
Hence, x = 0 is a zero of the polynomial p(x) = x2.



(viii)  If x = 1/2 is a zero of polynomial p(x) = 2x + 1 then p(1/2) should be 0.
At, p(1/2) = 2(1/2) + 1 = 1 + 1 = 2
Therefore, x = 1/2 is not a zero of given polynomial p(x) = 2x + 1.

4. Find the zero of the polynomial in each of the following cases:
(i) p(x) = x + 5 
(ii) p(x) = x – 5 
(iii) p(x) = 2x + 5
(iv) p(x) = 3x – 2 
(v) p(x) = 3x 
(vi) p(x) = axa ≠ 0
(vii) p(x) = cx + d, c ≠ 0, c, are real numbers.
 
Answer
 
(i) p(x) = x + 5 
p(x) = 0
x + 5 = 0
x = -5
Therefore, x = -5 is a zero of polynomial p(x) = x + 5 .
 
(ii) p(x) = x – 5
p(x) = 0
x – 5 = 0
x = 5
Therefore, x = 5 is a zero of polynomial p(x) = x – 5.
 
(iii) p(x) = 2x + 5
p(x) = 0
2x + 5 = 0
2x = -5
x = -5/2
Therefore, x = -5/2 is a zero of polynomial p(x) = 2x + 5.

(iv) p(x) = 3x – 2
p(x) = 0
3x – 2 = 0
x = 2/3
Therefore, x = 2/3 is a zero of polynomial p(x) = 3x – 2.

(v) p(x) = 3x
p(x) = 0
3x = 0
x = 0
Therefore, x = 0 is a zero of polynomial p(x) = 3x.

(vi) p(x) = ax
p(x) = 0
ax = 0
= 0
Therefore, x = 0 is a zero of polynomial p(x) = ax.

(vii) p(x) = cx + d
p(x) = 0
cx + d = 0
x = –d/c
Therefore, x = –d/c is a zero of polynomial p(x) = cx + d.

https://youtu.be/sIqZwHl8qw8

Exercises 2.3

1. Find the remainder when x3 + 3x2 + 3x + 1 is divided by
(i) x + 1
(ii) x – 1/2
(iii) x
(iv) x + π
(v) 5 + 2x

Answer

(i) x + 1
By long division,

Therefore, the remainder is 0.

(ii) x – 1/2
By long division,


Therefore, the remainder is 27/8.

(iii) x

Therefore, the remainder is 1.

(iv) x + π

Therefore, the remainder is [1 – 3π + 3π2 – π3].

(v) 5 + 2x

Therefore, the remainder is -27/8.

2. Find the remainder when x3 – ax2 + 6x – a is divided by x – a.

Answer

By Long Division,

Therefore, remainder obtained is 5when x3 – ax2 + 6x – a is divided by x – a.

3. Check whether 7 + 3x is a factor of 3x3 + 7x.

Answer

We have to divide 3x3 + 7by 7 + 3x. If remainder comes out to be 0 then 7 + 3x will be a factor of 3x3 + 7x.
By Long Division,

As remainder is not zero so 7 + 3x is not a factor of 3x3 + 7x.

https://youtu.be/IXQ8DZKnyI0

Exercise 2.4

1. Determine which of the following polynomials has (x + 1) a factor:
(i) x3 + x2 + x + 1

(ii) x4 + x3 + x2 + x + 1
(iii) x4 + 3x3 + 3x2 + x + 1 
(iv) x3 – x2 – (2 + √2)x + √2

Answer

(i) If (x + 1) is a factor of p(x) = x3 + x2 + x + 1, p(-1) must be zero. 
Here, p(x) = x3 + x2 + x + 1 
p(-1) = (-1)3 + (-1)2 + (-1) + 1 
= -1 + 1 – 1 + 1 = 0
Therefore, x + 1 is a factor of this polynomial

(ii) If (x + 1) is a factor of p(x) = x4 + x3 + x2 + x + 1, p(-1) must be zero. 
Here, p(x) = x4 + x3 + x2 + x + 1 
p(-1) = (-1)4 + (-1)3 + (-1)2 + (-1) + 1
= 1 – 1 + 1 – 1 + 1 = 1

As, p(-1) ≠ 0
Therefore, x + 1 is not a factor of this polynomial

(iii)If (x + 1) is a factor of polynomial p(x) = x4 + 3x3 + 3x2 + x + 1, p(- 1) must be 0. 
p(-1) = (-1)4 + 3(-1)3 + 3(-1)2 + (-1) + 1
= 1 – 3 + 3 – 1 + 1 = 1
As, p(-1) ≠ 0
Therefore, x + 1 is not a factor of this polynomial.

 

(iv) If (x + 1) is a factor of polynomial

p(x) = x3 – x2 – (2 + √2)x + √2, p(- 1) must be 0.

p(-1) =  (-1)3 –  (-1)2 –  (2 + √2) (-1) + √2
= -1 – 1 + 2 + √2 + √2
=2√2
As, p(-1) ≠ 0
Therefore,, x + 1 is not a factor of this polynomial.

2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
(i) p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
(ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
(iii) p(x) = x3 – 4 x2 + x + 6, g(x) = x – 3

Answer

(i) If g(x) = x + 1 is a factor of given polynomial p(x), p(- 1) must be zero.
p(x) = 2x3 + x2 – 2x – 1
p(- 1) = 2(-1)3 + (-1)2 – 2(-1) – 1
= 2(- 1) + 1 + 2 – 1 = 0
Hence, g(x) = x + 1 is a factor of given polynomial.

(ii) If g(x) = x + 2 is a factor of given polynomial p(x), p(- 2) must be 0.
p(x) = x3 +3x2 + 3x + 1
p(-2) = (-2)3 + 3(- 2)2 + 3(- 2) + 1
= -8 + 12 – 6 + 1
= -1

As, p(-2) ≠ 0
Hence g(x) = x + 2 is not a factor of given polynomial.


(iii) If g(x) = x – 3 is a factor of given polynomial p(x), p(3) must be 0.
p(x) = x3 – 4x2 + x + 6
p(3) = (3)3 – 4(3)2 + 3 + 6
= 27 – 36 + 9 = 0
Therefore,, g(x) = x – 3 is a factor of given polynomial.

Page No: 44

3. Find the value of k, if x – 1 is a factor of p(x) in each of the following cases:(i) p(x) = x2 + x + k
(ii) p(x) = 2x2 + kx +  √2
(iii) p(x) = kx2 – √2x + 1
(iv) p(x) = kx2 – 3x + k

Answer

(i) If x – 1 is a factor of polynomial p(x) = x2 + x + k, then

p(1) = 0
⇒ (1)2 + 1 + k = 0
⇒ 2 + k = 0
⇒ k = – 2
Therefore, value of k is -2.


(ii) If x – 1 is a factor of polynomial p(x) = 2x2 + kx +  √2, then
p(1) = 0
⇒ 2(1)2 + k(1) + √2 = 0
⇒ 2 + k + √2 = 0
⇒ k = -2 – √2 = -(2 + √2)

Therefore, value of k is -(2 + √2).


(iii) If x – 1 is a factor of polynomial p(x) = kx2 – √2x + 1, then
p(1) = 0
⇒ k(1)2 – √2(1) + 1 = 0
⇒ k – √2 + 1 = 0
⇒ k = √2 – 1

Therefore, value of k is √2 – 1.


(iv) If x – 1 is a factor of polynomial p(x) = kx2 – 3x + k, then
p(1) = 0
⇒ k(1)2 + 3(1) + k = 0
⇒ k – 3 + k = 0
⇒ 2k – 3 = 0
⇒ k = 3/2

Therefore, value of k is 3/2.


4. Factorise:
(i) 12x2 + 7x + 1
(ii) 2x2 + 7x + 3
(iii) 6x2 + 5x – 6
(iv) 3x2 – x – 4 

Answer

(i) 12x2 + 7x + 1
= 12x2 – 4x – 3x+ 1                   
= 4x (3x – 1) – 1 (3x – 1)
= (3x – 1) (4x – 1)

(ii) 2x2 + 7x + 3
= 2x2 + 6x + + 3
= 2x (x + 3) + 1 (x + 3)
=  (x + 3) (2+ 1) 

(iii) 6x2 + 5x – 6
= 6x2 + 9– 4x – 6

 = 3x (2x + 3) – 2 (2x + 3)
= (2x + 3) (3x – 2)


(iv) 3x2 – x – 4
= 3x2 – 4+ 3x – 4 
x (3x – 4) + 1 (3x – 4)
= (3x – 4) (x + 1)

5. Factorise:
(i) x3 – 2x2 – x + 2

(ii) x3 – 3x2 – 9x – 5
(iii) x3 + 13x2 + 32x + 20 
(iv) 2y3 + y2 – 2y – 1

Answer

(i) Let p(x) = x3 – 2x2 – x + 2
Factors of 2 are ±1 and ± 2
By trial method, we find that
p(1) = 0
So, (x+1) is factor of p(x)
Now,
p(x) = x3 – 2x2 – x + 2
p(-1) = (-1)3 – 2(-1)2  (-1) + 2 = -1 -2 + 1 + 2 = 0
Therefore, (x+1) is the factor of  p(x)

 
Now, Dividend = Divisor × Quotient + Remainder
(x+1) (x2 – 3x + 2)
= (x+1) (x2 – x – 2x + 2)
= (x+1) {x(x-1) -2(x-1)}
= (x+1) (x-1) (x+2)


(ii) Let p(x) = x3 – 3x2 – 9x – 5
Factors of 5 are ±1 and ±5
By trial method, we find that
p(5) = 0
So, (x-5) is factor of p(x)
Now,
p(x) = x3 – 2x2 – x + 2
p(5) = (5)3 – 3(5)2  9(5) – 5 = 125 – 75 – 45 – 5 = 0
Therefore, (x-5) is the factor of  p(x)

Now, Dividend = Divisor × Quotient + Remainder

(x-5) (x2 + 2x + 1)

= (x-5) (x2 + x + x + 1)
(x-5) {x(x+1) +1(x+1)}
(x-5) (x+1) (x+1)

(iii) Let p(x) = x3 + 13x2 + 32x + 20
Factors of 20 are ±1, ±2, ±4, ±5, ±10 and ±20
By trial method, we find that
p(-1) = 0
So, (x+1) is factor of p(x)
Now,
p(x) =  x3 + 13x2 + 32x + 20
p(-1) = (-1)3 + 13(-1)2 + 32(-1) + 20 = -1 + 13 – 32 + 20 = 0
Therefore, (x+1) is the factor of  p(x)

 
Now, Dividend = Divisor × Quotient + Remainder
(x+1) (x2 + 12x + 20)
= (x+1) (x2 + 2x + 10x + 20)
(x-5) {x(x+2) +10(x+2)}
(x-5) (x+2) (x+10)

(iv) Let p(y) = 2y3 + y2 – 2y – 1
Factors of ab = 2× (-1) = -2 are ±1 and ±2
By trial method, we find that
p(1) = 0
So, (y-1) is factor of p(y)
Now,
p(y) =  2y3 + y2 – 2y – 1
p(1) = 2(1)3 + (1)2 – 2(1) – 1 = 2 +1 – 2 – 1 = 0
Therefore, (y-1) is the factor of  p(y)

 
 Now, Dividend = Divisor × Quotient + Remainder
(y-1) (2y2 + 3y + 1)
(y-1) (2y2 + 2y + y + 1)
(y-1) {2y(y+1) +1(y+1)}
(y-1) (2y+1) (y+1)

Part-1 ( Q1 to Q12)

https://youtu.be/eUwEQgj6dgU

Part-2 ( Q13 to Q16)

https://youtu.be/1qa2EdkkBGE

Exercise 2.5

1. Use suitable identities to find the following products:
    (i) (x + 4) (x + 10)                     (ii) (x + 8) (x – 10)                      (iii) (3x + 4) (3x – 5)
    (iv) (y+ 3/2) (y– 3/2)             (v) (3 – 2x) (3 + 2x)

Answer

(i) Using identity, (+ a) (x + b) = x2 + (a + b) x + ab 
In (x + 4) (x + 10), a = 4 and b = 10
Now,
(x + 4) (x + 10) = x2 + (4 + 10)x + (4 × 10)
                         = x2 + 14x + 40

(ii) (x + 8) (x – 10)
Using identity, (+ a) (x + b) = x2 + (a + b) x + ab
Here, a = 8 and b = –10
(x + 8) (x – 10) = x2 + {8 +(– 10)}x + {8×(– 10)}
                         = x2 + (8 – 10)x – 80
                         = x2 – 2x – 80

(iii) (3x + 4) (3x – 5)
Using identity, (+ a) (x + b) = x2 + (a + b) x + ab
Here, x = 3x , a = 4 and b = -5
(3x + 4) (3x – 5) = (3x2 + {4 + (-5)}3x + {4×(-5)}
                           = 9x2 + 3x(4 – 5) – 20
                           = 9x2 – 3x – 20

(iv) (y+ 3/2) (y– 3/2)
Using identity, (+ y) (x –y) = x2 – y2
Here, x = y2 and y = 3/2
(y+ 3/2) (y– 3/2) = (y2)– (3/2)2
                                         y4 – 9/4

(v) (3 – 2x) (3 + 2x)
Using identity, (+ y) (x –y) = x2 – y2
Here, x = 3 and y = 2x
(3 – 2x) (3 + 2x) = 32 – (2x)2
                                   =  9 – 4x2

2. Evaluate the following products without multiplying directly:
    (i) 103 × 107               (ii) 95 × 96               (iii) 104 × 96


Answer

(i) 103 × 107 = (100 + 3) (100 + 7)
Using identity, (+ a) (x + b) = x2 + (a + b) x + ab
Here, x = 100, a = 3 and b = 7
103 × 107 = (100 + 3) (100 + 7) = (100)2 + (3 + 7)10 + (3 × 7)
                 = 10000 + 100 + 21 
                 = 10121

(ii) 95 × 96 = (90 + 5) (90 + 4)
Using identity, (+ a) (x + b) = x2 + (a + b) x + ab 
Here, x = 90, a = 5 and b = 4
95 × 96 = (90 + 5) (90 + 4) = 902 + 90(5 + 6) + (5 × 6) 
 
             = 8100 + (11 × 90) + 30
             = 8100 + 990 + 30 = 9120
(iii) 104 × 96 = (100 + 4) (100 – 4)
Using identity, (+ y) (x –y) = x2 – y2
Here, x = 100 and y = 4
104 × 96 = (100 + 4) (100 – 4) = (100)2 – (4)= 10000 – 16 = 9984 

3. Factorise the following using appropriate identities:
   (i) 9x2 + 6xy + y2                 (ii) 4y2 – 4y + 1              (iii) x– y2/100

Answer

(i) 9x2 + 6xy + y2  = (3x) 2 + (2×3x×y) + y2
Using identity, (a + b)2 = a2 + 2ab + b2
Here, a = 3x and b = y
9x2 + 6xy + y2  = (3x) 2 + (2×3x×y) + y= (3x + y)= (3x + y) (3x + y)

(ii) 4y2 – 4y + 1 = (2y)2 – (2×2y×1) + 1
Using identity, (a – b)2 = a2 – 2ab + b2
Here, a = 2y and b = 1
4y2 – 4y + 1 = (2y)2 – (2×2y×1) + 1= (2y – 1)= (2y – 1) (2y – 1)

(iii) x– y2/100 = x– (y/10)2
Using identity, a2 – b2 = (a + b) (a – b)
Here, a = x and b = (y/10)
x– y2/100 = x– (y/10)= (x – y/10) (x + y/10)

Page No: 49

4. Expand each of the following, using suitable identities:
    (i) (x + 2y + 4z)2                     (ii) (2x – y + z)2                    (iii) (–2x + 3y + 2z)2
    (iv) (3a – 7b – c)2                         (v) (–2x + 5y – 3z)2                   (vi) [1/4 a – 1/2 b + 1]2  

Answer

(i) (x + 2y + 4z)2
Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
Here, a = x, b = 2and c = 4z
(x + 2y + 4z)x2 + (2y)2 + (4z)2 + (2×x×2y) + (2×2y×4z) + (2×4z×x)
                      = x2 + 4y2 + 16z2 + 4xy + 16yz + 8xz

(ii)  (2x – y + z)2
Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
Here, a = 2x, b = –and c = z
(2x – y + z)= (2x)2 + (-y)2 + z2 + (2×2x×-y) + (2×-y×z) + (2×z×2x) 
                     = 4x2 + y2 + z2 – 4xy – 2yz + 4xz

(iii) (–2x + 3y + 2z)2 
Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
Here, a = -2x, b = 3and c = 2z
(–2x + 3y + 2z)(-2x)2 + (3y)2 + (2z)2 + (2×-2x×3y) + (2×3y×2z) + (2×2z×-2x) 
                     = 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8xz

(iv) (3a – 7b – c)2
Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
Here, a = 3a, b = -7b and c = -c
(3a – 7b – c)2 (3a)2 + (-7b)2 + (-c)2 + (2×3a×-7b) + (2×-7b×-c) + (2×-c×3a) 
                     = 9a2 + 49b2 + c2 – 42ab + 14bc – 6ac

(v) (–2x + 5y – 3z)2  
Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
Here, a = -2x, b = 5y and c = -3z
(–2x + 5y – 3z)2 (-2x)2 + (5y)2 + (-3z)2 + (2×-2x×5y) + (2×5y×-3z) + (2×-3z×-2x) 
                     = 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12xz

(vi) [1/4 a – 1/2 b + 1]2 
Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
Here, a = 1/4 a, b = -1/2 b and c = 1
[1/4 a – 1/2 b + 1]2 (1/4 a)2 + (-1/2 b)2 + 12 + (2×1/4 a×-1/2 b) + (2×-1/2 b×1) + (2×1×1/4 a) 
                                = 1/16 a2 + 1/4 b2 + 1 – 1/4 ab – b + 1/2 a

5. Factorise:
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
(ii) 2x2 + y2 + 8z2 – 2√2 xy + 4√2 yz – 8xz

Answer

(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca 
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
= (2x)2 + (3y)2 + (-4z)2 + (2×2x×3y) + (2×3y×-4z) + (2×-4z×2x)
= (2x + 3y – 4z)2
 (2x + 3y – 4z) (2x + 3y – 4z)

(ii) 2x2 + y2 + 8z2 – 2√2 xy + 4√2 yz – 8xz
Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca
2x2 + y2 + 8z2 – 2√2 xy + 4√2 yz – 8xz 
= (-√2x)2 + (y)2 + (2√2z)2 + (2×-√2x×y) + (2×y×2√2z) + (2×2√2z×-√2x)
(-√2x + y + 2√2z)2
 (-√2x + y + 2√2z) (-√2x + y + 2√2z)

6. Write the following cubes in expanded form:
    (i) (2x + 1)3                 (ii) (2a – 3b)3                (iii) [3/2 x + 1]3           (iv) [x – 2/3 y]3 

Answer

(i) (2x + 1)3
Using identity, (a + b)= a3 + b3 + 3ab(a + b)
(2x + 1)= (2x)3 + 13 + (3×2x×1)(2x + 1)
= 8x3 + 1 + 6x(2x + 1)
8x3 + 12x2 + 6x + 1

(ii) (2a – 3b)3
Using identity, (a – b)= a3 – b3 – 3ab(a – b) 
(2a – 3b)= (2a)3 – (3b)3 – (3×2a×3b)(2a – 3b)
= 8a3 – 27b3 – 18ab(2a – 3b)
8a3 – 27b3 – 36a2b + 54ab2

(iii) [3/2 x + 1]3 
Using identity, (a + b)= a3 + b3 + 3ab(a + b)
[3/2 x + 1]= (3/2 x)3 + 13 + (3×3/2 x×1)(3/2 x + 1)
= 27/8 x+ 1 + 9/2 x(3/2 x + 1)
27/8 x+ 1 + 27/4 x2 + 9/2 x
27/8 x+ 27/4 x2 + 9/2 x + 1

(iv) [x – 2/3 y]3
Using identity, (a – b)= a3 – b3 – 3ab(a – b)
[x – 2/3 y]3 = (x)3 – (2/3 y)3 – (3×x×2/3 y)(x – 2/3 y)
= x3 – 8/27y3 – 2xy(x – 2/3 y)
x3 – 8/27y3 – 2x2y + 4/3xy2

7. Evaluate the following using suitable identities: 
    (i) (99)3            (ii) (102)3             (iii) (998)3  

Answer

(i) (99)3 = (100 – 1)3
Using identity, (a – b)= a3 – b3 – 3ab(a – b) 
(100 – 1)= (100)3 – 13 – (3×100×1)(100 – 1)
= 1000000 – 1 – 300(100 – 1)
= 1000000 – 1 – 30000 + 300
= 970299

(ii) (102)3 = (100 + 2)3
Using identity, (a + b)= a3 + b3 + 3ab(a + b)
(100 + 2)= (100)3 + 23 + (3×100×2)(100 + 2)
= 1000000 + 8 + 600(100 + 2)
= 1000000 + 8 + 60000 + 1200
= 1061208

(iii) (998)3 
Using identity, (a – b)= a3 – b3 – 3ab(a – b) 
(1000 – 2)= (1000)3 – 23 – (3×1000×2)(1000 – 2)
= 100000000 – 8 – 6000(1000 – 2)
= 100000000 – 8- 600000 + 12000
= 994011992

8. Factorise each of the following: 
(i) 8a3 + b3 + 12a2b + 6ab2                           (ii) 8a3 – b3 – 12a2b + 6ab2
(iii) 27 – 125a3 – 135a + 225a2                      (iv) 64a3 – 27b3 – 144a2b + 108ab2
(v) 27p3 – 1/216 – 9/2 p2 + 1/4 p

Answer


(i) 8a3 + b3 + 12a2b + 6ab2
Using identity, (a + b)= a3 + b3 + 3a2b + 3ab2
8a3 + b3 + 12a2b + 6ab2 
= (2a)3 + b3 + 3(2a)2b + 3(2a)(b)2
= (2a + b)3
= (2a + b)(2a + b)(2a + b)

(ii) 8a3 – b3 – 12a2b + 6ab2
Using identity, (a – b)= a3 – b3 – 3a2b + 3ab2
8a3 – b3 – 12a2b + 6ab2= (2a)3 – b3 – 3(2a)2b + 3(2a)(b)2
= (2a – b)3
= (2a – b)(2a – b)(2a – b)

(iii) 27 – 125a3 – 135a + 225a2
Using identity, (a – b)= a3 – b3 – 3a2b + 3ab2
27 – 125a3 – 135a + 225a2= 33 – (5a)3 – 3(3)2(5a) + 3(3)(5a)2
= (3 – 5a)3
(3 – 5a)(3 – 5a)(3 – 5a)

(iv) 64a3 – 27b3 – 144a2b + 108ab2
Using identity, (a – b)= a3 – b3 – 3a2b + 3ab2
64a3 – 27b3 – 144a2b + 108ab2= (4a)3 – (3b)3 – 3(4a)2(3b) + 3(4a)(3b)2
= (4a – 3b)3
= (4a – 3b)(4a – 3b)(4a – 3b)

(v) 27p3 – 1/216 – 9/2 p2 + 1/4 p 

 Using identity, (a – b)= a3 – b3 – 3a2b + 3ab2
 27p3 – 1/216 – 9/2 p2 + 1/4 p
(3p)3 – (1/6)3 – 3(3p)2(1/6) + 3(3p)(1/6)2
= (3p – 1/6)3
= (3p – 1/6)(3p – 1/6)(3p – 1/6)

9. Verify : (i) x3 + y3 = (x + y) (x2 – xy + y2)             (ii) x3 – y3 = (x – y) (x2 + xy + y2)

Answer

(i) x3 + y3 = (x + y) (x2 – xy + y2)
We know that, 
(x + y)= x3 + y3 + 3xy(x + y) 
⇒ x3 + y= (x + y) 3xy(x + y)
⇒ x3 + y= (x + y)[(x + y)2 – 3xy]                  {Taking (x+y) common}
⇒ x3 + y= (x + y)[(x2 + y+ 2xy) – 3xy] 
⇒ x3 + y= (x + y)(x2 + y– xy) 

(ii) x3 – y3 = (x – y) (x2 + xy + y2 )
We know that, 
(x – y)= x3 – y3 – 3xy(x – y) 
⇒ x3 – y= (x – y)+ 3xy(x – y)
⇒ x3 + y= (x – y)[(x – y)2 + 3xy]                     {Taking (x-y) common}
⇒ x3 + y= (x – y)[(x2 + y– 2xy) + 3xy] 
⇒ x3 + y= (x + y)(x2 + y+ xy)

10. Factorise each of the following:
      (i) 27y3 + 125z3                     (ii) 64m3 – 343n3

Answer

(i) 27y3 + 125z3
Using identity, x3 + y3 = (x + y) (x2 – xy + y2)
27y3 + 125z3 = (3y)3 + (5z)3
(3y + 5z) {(3y)2 – (3y)(5z) + (5z)2}
= (3y + 5z) (9y2 – 15yz + 25z)2 

(ii) 64m3 – 343n3 
Using identity, x3 – y3 = (x – y) (x2 + xy + y2 ) 
64m3 – 343n3 = (4m)3 – (7n)3
(4m + 7n) {(4m)2 + (4m)(7n) + (7n)2}
= (4m + 7n) (16m2 + 28mn + 49n)2 

11. Factorise : 27x3 + y3 + z3 – 9xyz

Answer


27x3 + y3 + z3 – 9xyz = (3x)3 + y3 + z3 – 3×3xyz
Using identity, x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – xz)
27x3 + y3 + z3 – 9xyz
(3x + y + z) {(3x)2 + y2 + z2 – 3xy – yz – 3xz}
(3x + y + z) (9x2 + y2 + z2 – 3xy – yz – 3xz)

12. Verify that: x3 + y3 + z3 – 3xyz = 1/2(x + y + z) [(x – y)+ (y – z)+ (z – x)2]

Answer

We know that,
x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – xz)
 x3 + y3 + z3 – 3xyz = 1/2×(x + y + z) 2(x2 + y2 + z2 – xy – yz – xz)

= 1/2(x + y + z) (2x2 + 2y2 + 2z2 – 2xy – 2yz – 2xz) 
1/2(x + y + z) [(x2 + y2 -2xy) + (y+ z2 – 2yz) + (x2 + z– 2xz)] 
= 1/2(x + y + z) [(x – y)+ (y – z)+ (z – x)2]

13. If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.

Answer

We know that,
x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – xz)
Now put (x + y + z) = 0,  
x3 + y3 + z3 – 3xyz = (0)(x2 + y2 + z2 – xy – yz – xz) 
⇒ x3 + y3 + z3 – 3xyz = 0


14. Without actually calculating the cubes, find the value of each of the following:
     (i) (-12)3 + (7)3 + (5)3
     (ii) (28)3 + (–15)3 + (-13)3

Answer

(i) (-12)3 + (7)3 + (5)3
 Let x = -12, y = 7 and z = 5
We observed that, x + y + z = -12 + 7 + 5 = 0

We know that if,
x + y + z = 0, then x3 + y3 + z3 = 3xyz
(-12)3 + (7)3 + (5)3 = 3(-12)(7)(5) = -1260

(ii) (28)3 + (–15)3 + (-13)3
 Let x = 28, y = -15 and z = -13
We observed that, x + y + z = 28 – 15 – 13 = 0

We know that if,
x + y + z = 0, then x3 + y3 + z3 = 3xyz
(28)3 + (–15)3 + (-13)3 = 3(28)(-15)(-13) = 16380

15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given: 
(i) Area : 25a2 – 35a + 12
(ii) Area : 35 y2 + 13y – 12

Answer


(i) Area : 25a2 – 35a + 12

Since, area is product of length and breadth therefore by factorizing the given area, we can know the length and breadth of rectangle.
25a2 – 35a + 12
25a2 – 15a -20a + 12
= 5a(5a – 3) – 4(5a – 3)
(5a – 4)(5a – 3)
Possible expression for length = 5a – 4
Possible expression for breadth = 5a – 3

(ii) Area : 35 y2 + 13y – 12
35 y2 + 13y – 12
35y2 – 15y + 28y – 12
= 5y(7y – 3) + 4(7y – 3)
(5y + 4)(7y – 3)
Possible expression for length = (5y + 4)
Possible expression for breadth (7y – 3)

Page No: 50

16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below? (i) Volume : 3x2 – 12x
(ii) Volume : 12ky2 + 8ky – 20k

Answer

(i) Volume : 3x2 – 12
Since, volume is product of length, breadth and height therefore by factorizing the given volume, we can know the length, breadth and height of the cuboid. 
3x2 – 12x
= 3x(x – 4)
Possible expression for length = 3
Possible expression for breadth x
Possible expression for height = (x – 4)

(ii) Volume : 12ky2 + 8ky – 20k 
Since, volume is product of length, breadth and height therefore by factorizing the given volume, we can know the length, breadth and height of the cuboid. 
12ky2 + 8ky – 20k
= 4k(3y2 + 2y – 5)
= 4k(3y2 +5y – 3y – 5)
4k[y(3y +5) – 1(3y + 5)]
4k (3y +5) (y – 1)
Possible expression for length = 4k
Possible expression for breadth (3y +5)
Possible expression for height = (y – 1)
Read More

NCERT Solutions for Class 9 Maths Chapter 1 Number System | EduGrown

In This Post we are  providing Chapter 1 Number System NCERT Solutions for Class 9 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These Number system Class 9 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.

We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 9 Maths Number System NCERT Written Solutions  & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.

NCERT Solutions for Class 9 Maths Chapter 1 Number System

https://youtu.be/JRB8Nhg_OMY

Exercise 1.1

1. Is zero a rational number? Can you write it in the form p/q, where p and q are integers and q ≠ 0?

 
Answer
 

Yes. Zero is a rational number as it can be represented as 0/1 or 0/2.

2. Find six rational numbers between 3 and 4.

Answer

There are infinite rational numbers in between 3 and 4.
3 and 4 can be represented as 24/8 and 32/8 respectively.

Therefore, six rational numbers between 3 and 4 are
25/8, 26/8, 27/8, 28/8, 29/8, 30/8.

3. Find five rational numbers between 3/5 and 4/5.

Answer

There are infinite rational numbers in between 3/5 and 4/5
3/5 = 3×6/5×6 = 18/30
4/5 = 4×6/5×6 = 24/30
Therefore, five rational numbers between 3/5 and 4/5 are
19/30, 20/30, 21/30, 22/30, 23/30.

4. State whether the following statements are true or false. Give reasons for your answers.

(i) Every natural number is a whole number.
► True, since the collection of whole numbers contains all natural numbers.
 
(ii) Every integer is a whole number.
► False, as integers may be negative but whole numbers are always positive.

(iii) Every rational number is a whole number.
► False, as rational numbers may be fractional but whole numbers may not be.

https://youtu.be/WwvqdJvSWvg

Exercise 1.2

1. State whether the following statements are true or false. Justify your answers.

(i) Every irrational number is a real number.

► True, since the collection of real numbers is made up of rational and irrational numbers.

(ii) Every point on the number line is of the form√m, where m is a natural number.
► False, since positive number cannot be expressed as square roots.

(iii) Every real number is an irrational number.
► False, as real numbers include both rational and irrational numbers. Therefore, every real number cannot be an irrational number.

2. Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.


Answer

No, the square roots of all positive integers are not irrational. For example √4 = 2.

3. Show how √5 can be represented on the number line.

Answer

Step 1: Let AB be a line of length 2 unit on number line.
Step 2: At B, draw a perpendicular line BC of length 1 unit. Join CA.

Step 3: Now, ABC is a right angled triangle. Applying Pythagoras theorem,
AB2 + BC2 = CA2
⇒ 22 + 12 = CA2
⇒ CA2 = 5
⇒ CA = √5
Thus, CA is a line of length √5 unit.
Step 4: Taking CA as a radius and A as a centre draw an arc touching
the number line. The point at which number line get intersected by
arc is at √5 distance from 0 because it is a radius of the circle
whose centre was A.
Thus, √5 is represented on the number line as shown in the figure.
root 5 on the number line

https://youtu.be/15ZUeooo9x0

Exercise 1.3

1. Write the following in decimal form and say what kind of decimal expansion each has:
(i) 36/100
= 0.36 (Terminating)

(ii) 1/11
0.09090909… = 0.9 (Non terminating repeating)

(iii)
= 33/8 = 4.125 (Terminating)

(iv) 3/13
= 0.230769230769… = 0.230769 (Non terminating repeating)

(v) 2/11
= 0.181818181818… = 0.18 (Non terminating repeating)

(vi) 329/400
= 0.8225 (Terminating)

2. You know that 1/7 = 0.142857.Can you predict what the decimal expansion of 2/7, 3/7, 4/7, 5/7, 6/7 are without actually doing the long division? If so, how?
[Hint: Study the remainders while finding the value of 1/7 carefully.]

Answer

Yes. We can be done this by:


3. Express the following in the form p/q where p and q are integers and q ≠ 0.

(i) 0.6
(ii) 0.47
(iii) 0.001
 
Answer
 
(i) 0.6 = 0.666…
Let x = 0.666…
10x = 6.666…
10x = 6 + x
9x = 6
x = 2/3

(ii) 0.47 = 0.4777…
= 4/10 + 0.777/10
Let x = 0.777…
10x = 7.777…
10x = 7 + x
x = 7/9
4/10 + 0.777…/10 = 4/10 + 7/90
= 36/90 +7/90 = 43/90
 
(iii) 0.001 = 0.001001…
Let x = 0.001001…

1000x = 1.001001…
1000x = 1 + x
999x = 1

x = 1/999

4. Express 0.99999…in the form  p/q. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.

Answer

Let x = 0.9999…
10x = 9.9999…
10x = 9 + x
9x = 9
x = 1
The difference between 1 and 0.999999 is 0.000001 which is negligible. Thus, 0.999 is too much near 1, Therefore, the 1 as answer can be justified. 
 

5. What can the maximum number of digits be in the repeating block of digits in the decimal expansion of 1/17? Perform the division to check your answer.

Answer

1/17 = 0.0588235294117647
There are 16 digits in the repeating block of the decimal expansion of 1/17.
Division Check:

= 0.0588235294117647


6. Look at several examples of rational numbers in the form p/(≠ 0) where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?

Answer

We observe that when q is 2, 4, 5, 8, 10… then the decimal expansion is terminating. For example:
1/2 = 0.5, denominator q = 21
7/8 = 0.875, denominator q = 23
4/5 = 0.8, denominator q = 51

We can observed that terminating decimal may be obtained in the situation where prime factorisation of the denominator of the given fractions has the power of 2 only or 5 only or both.

 

7. Write three numbers whose decimal expansions are non-terminating non-recurring.


Answer
 
Three numbers whose decimal expansions are non-terminating non-recurring are:
0.303003000300003…
0.505005000500005…

0.7207200720007200007200000…

 

8. Find three different irrational numbers between the rational numbers 5/7 and 9/11.

 
Answer
 
5/7 = 0.714285
9/11 = 0.81
Three different irrational numbers are:

0.73073007300073000073…

0.75075007300075000075…
0.76076007600076000076…
 

9. Classify the following numbers as rational or irrational:

(i) √23

(ii) √225

(iii) 0.3796
(iv) 7.478478 
(v) 1.101001000100001…
 
Answer
 
(i) √23 = 4.79583152331…
Since the number is non-terminating non-recurring therefore, it is an irrational number.
 
(ii) √225 = 15 = 15/1
Since the number is rational number as it can represented in p/form.
 
(iii) 0.3796
Since the number is terminating therefore, it is an rational number.
 
(iv) 7.478478 = 7.478

Since the this number is non-terminating recurring, therefore, it is a rational number.

 
(v) 1.101001000100001…

Since the number is non-terminating non-repeating, therefore, it is an irrational number.

https://youtu.be/qla_5QAJgQ0

Exercises 1.4
 

1. Visualise 3.765 on the number line using successive magnification.

 
Answer
 
3.765 on number line
 
2. Visualize 4.26 on the number line, up to 4 decimal places.
 
Answer
 
4.26 = 4.2626
4.2626 on number line

https://youtu.be/YbI8J1SUzjs

Exercise 1.5
 
1. Classify the following numbers as rational or irrational:
(i) 2 – √5
(ii) (3 + √23) – √23
 
(iii) 2√7/7√7
(iv) 1/√2
(v) 2π
 
Answer
 
(i) 2 – √5 = 2 – 2.2360679… = – 0.2360679…
Since the number is is non-terminating non-recurring therefore, it is an irrational number.

(ii) (3 + √23) – √23 = 3 + √23 – √23 = 3 = 3/1
Since the number is rational number as it can represented in p/form.

(iii) 2√7/7√7 = 2/7
Since the number is rational number as it can represented in p/form.

(iv) 1/√2 = √2/2 = 0.7071067811…
Since the number is is non-terminating non-recurring therefore, it is an irrational number.

(v) 2π = 2 × 3.1415… = 6.2830…
Since the number is is non-terminating non-recurring therefore, it is an irrational number.

2. Simplify each of the following expressions:
 
(i) (3 + √3) (2 + √2)
(ii) (3 + √3) (3 – √3)
(iii) (√5 + √2)2
(iv) (√5 – √2) (√5 + √2)
 
Answer
 
(i) (3 + √3) (2 + √2)
⇒ 3 × 2 + 2 + √3 + 3√2+ √3 ×√2
⇒ 6 + 2√3 +3√2 + √6
 
(ii) (3 + √3) (3 – √3) [∵ (a + b) (a – b) = a2 – b2]
⇒ 32 – (√3)2
⇒ 9 – 3
⇒ 6
 
(iii) (√5 + √2)[∵ (a + b)2 = a2 + b2 + 2ab]
⇒ (√5)2 + (√2)2 + 2 ×√5 × √2
⇒ 5 + 2 + 2 × √5× 2 
⇒ 7 +2√10

(iv) (√5 – √2) (√5 + √2) [∵ (a + b) (a – b) = a2 – b2]
⇒ (√5)2 – (√2)2 
⇒ 5 – 2
⇒ 3
 
3. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, π = c/d. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
 
Answer
 
There is no contradiction. When we measure a value with a scale, we only obtain an approximate value. We never obtain an exact value. Therefore, we may not realise that either c or d is irrational. The value of π is almost equal to 22/7 or 3.142857…
 
4. Represent √9.3 on the number line.
 
Answer

Step 1: Draw a line segment of unit 9.3. Extend it to C so that BC is of 1 unit.
Step 2: Now, AC = 10.3 units. Find the centre of AC and name it as O.
Step 3: Draw a semi circle with radius OC and centre O.
Step 4: Draw a perpendicular line BD to AC at point B which intersect the semicircle at D. Also, Join OD.
Step 5: Now, OBD is a right angled triangle.
Here, OD = 10.3/2 (radius of semi circle), OC = 10.3/2, BC = 1
OB = OC – BC = (10.3/2) – 1 = 8.3/2
Using Pythagoras theorem,
OD2 = BD2 + OB2
⇒ (10.3/2)2 = BD2 + (8.3/2)2
⇒ BD2 = (10.3/2)2 – (8.3/2)2
⇒ BD2 = (10.3/2 – 8.3/2) (10.3/2 + 8.3/2)
⇒ BD2 = 9.3
⇒ BD2 =  √9.3
Thus, the length of BD is √9.3.
Step 6: Taking BD as radius and B as centre draw an arc which touches the line segment. The point where it touches the line segment is at a distance of √9.3 from O as shown in the figure.
root 9.3 on number line
5. Rationalise the denominators of the following:
(i) 1/√7
(ii) 1/√7-√6
(iii) 1/√5+√2
(iv) 1/√7-2
 
Answer

https://youtu.be/Zh_78OJEG38

Exercise 1.6

1. Find:
(i) 641/2
(ii) 321/5
(iii) 1251/3

Answer



2. Find:
(i) 93/2
(ii) 322/5
(iii) 163/4
(iv) 125-1/3
 
Answer



3. Simplify:
(i) 22/3.21/5
(ii) (1/33)7
(iii) 111/2/111/4
(iv) 71/2.81/2

Answer

Important Links

Number System – Quick Revision Notes

Number System- Most Important Questions

Number System – Important MCQs

For Free Video Lectures – Click here

Read More

NCERT Solutions for Class 10 Maths Chapter 15 Probability | EduGrown

In This Post we are  providing Chapter 15 Probability NCERT Solutions for Class 10 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These Probability Class 10 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.

We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 10 Maths Probability NCERT Written Solutions  & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Exercise 15.1

1. Complete the following statements:
(i) Probability of an event E + Probability of the event ‘not E’ = ___________ .
(ii) The probability of an event that cannot happen is __________. Such an event is called ________ .
(iii) The probability of an event that is certain to happen is _________ . Such an event is called _________ .
(iv) The sum of the probabilities of all the elementary events of an experiment is __________ .
(v) The probability of an event is greater than or equal to  and less than or equal to __________ .

Answer

(i) Probability of an event E + Probability of the event ‘not E’ = 1.
(ii) The probability of an event that cannot happen is 0. Such an event is called  impossible event.
(iii) The probability of an event that is certain to happen is 1. Such an event is called sure or certain event.
(iv) The sum of the probabilities of all the elementary events of an experiment is 1.
(v) The probability of an event is greater than or equal to 0 and less than or equal to 1.


2. Which of the following experiments have equally likely outcomes? Explain.
(i) A driver attempts to start a car. The car starts or does not start.
(ii) A player attempts to shoot a basketball. She/he shoots or misses the shot.
(iii) A trial is made to answer a true-false question. The answer is right or wrong.
(iv) A baby is born. It is a boy or a girl.

Answer

(i) It does not have equally likely outcomes as it depends on various reasons like mechanical problems, fuels etc.
(ii) It does not have equally likely outcomes as it depends on the player how he/she shoots.
(iii) It has equally likely outcomes.
(iv)It has equally likely outcomes.

3. Why is tossing a coin considered to be a fair way of deciding which team should get the ball at the beginning of a football game?

Answer

Yes, tossing of a coin is a fair way of deciding which team should get the ball at the beginning of a football game because it has only two outcomes either head or tail. A coin is always unbiased.

4. Which of the following cannot be the probability of an event?
(A) 2/3     (B) -1.5     (C) 15%       (D) 0.7

Answer

The probability of an event is always greater than or equal to 0 and less than or equal to 1.
Thus, (B) -1.5 cannot be the probability of an event.

5. If P(E) = 0.05, what is the probability of ‘not E’?

Answer

P(E) = 0.05
also, P(E) + P(not E) = 1
⇒ P(not E) = 1 – P(E)
⇒ P(not E) = 1 – 0.05
⇒ P(not E) = 0.95

6. A bag contains lemon flavoured candies only. Malini takes out one candy without looking into the bag. What is the probability that she takes out
(i) an orange flavoured candy?
(ii) a lemon flavoured candy?

Answer

(i) Since the bag contains only lemon flavoured.
Therefor, No. of orange flavoured candies = 0
Probability of taking out orange flavoured candies = 0/1 = 0

(ii) The bag only have lemon flavoured candies.
Probability of taking out lemon flavoured candies = 1/1 = 1

7. It is given that in a group of 3 students, the probability of 2 students not having the same birthday is 0.992. What is the probability that the 2 students have the same birthday?

Answer

Let E be the event of having the same birthday.
P(E) = 0.992
⇒ P(E) + P(not E) = 1
⇒ P(not E) = 1 – P(E)
⇒ 1 – 0.992 = 0.008
The probability that the 2 students have the same birthday is 0.008

8. A bag contains 3 red balls and 5 black balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is (i) red? (ii) not red?

Answer

No. of red balls = 3
No. of black balls = 5
Total no. of balls = 5+3 = 8
(i) Probability of drawing red balls = No. of red balls/Total no. of balls = 3/8

(ii) Probability of drawing black balls = No. of black balls/Total no. of balls = 5/8

9. A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will be (i) red ? (ii) white ? (iii) not green?

Answer

No. of red marbles = 5
No. of white marbles =8
No. of green marbles = 4
Total no. of balls = 5+8+4 = 17

(i) Favourable no. of elementary events = 5
Probability of taking out red marble = 5/17

(ii) Favourable no. of elementary events = 8
Probability of taking out red marble = 8/17

(iii) Favourable no. of elementary events = 4
Probability of taking out red marble = 4/17

Page No: 309

10. A piggy bank contains hundred 50p coins, fifty ₹1 coins, twenty ₹2 coins and ten ₹5 coins. If it is equally likely that one of the coins will fall out when the bank is turned upside down, what is the probability that the coin (i) will be a 50 p coin ? (ii) will not be a ₹5 coin?

Answer

No. of 50p coins = 100
No. of ₹1 coins = 50
No. of ₹2 coins = 20
No. of ₹5 coins = 10
Total no. of coins = 100 + 50 + 20 + 10 = 180

(i) Favourable no. of elementary events = 100
Probability that it will be 50p coins = 100/180 = 5/9

(ii) Favourable no. of elementary events = 100+50+20 = 170
Probability that it will be 50p coins = 170/180 = 17/18

11. Gopi buys a fish from a shop for his aquarium. The shopkeeper takes out one fish at random from a tank containing 5 male fish and 8 female fish (see Fig. 15.4). What is the probability that the fish taken out is a male fish?
Answer

No. of male fish in the tank = 5
no. of female fish in the tank = 8
Total number of fish in the tank = 5 + 8 = 13
Favourable number events = 5
Probability of taking out a male fish = 5/13

12. A game of chance consists of spinning an arrow which comes to rest pointing at one of the numbers 1, 2, 3, 4, 5, 6, 7, 8 (see Fig. 15.5), and these are equally likely outcomes. What is the probability that it will point at
(i) 8 ?
(ii) an odd number?
(iii) a number greater than 2?
(iv) a number less than 9?
Answer

Possible no. of events = 8
(i) Favourable number of events = 1
Probability that it will point at 8 = 1/8

(ii) Odd numbers = 1, 3, 5 and 7
Favourable number of events = 4
Probability that it will be an odd number = 4/8 = 1/2

(iii) Numbers greater than 2 = 3, 4, 5, 6, 7 and 8
Favourable number of events = 6
Probability that a number greater than 4 = 6/8 = 3/4

(iv) Numbers less than 9 = 1,2,3,4,5,6,7,8
Favourable number of events = 8
Probability that a number less than 9 = 8/8 = 1

13. A die is thrown once. Find the probability of getting
(i) a prime number; (ii) a number lying between 2 and 6; (iii) an odd number.

Answer

Possible numbers of events on throwing a dice = 6
Numbers on dice = 1,2,3,4,5 and 6

(i) Prime numbers = 2, 3 and 5
Favourable number of events = 3
Probability that it will be a prime number = 3/6 = 1/2

(ii) Numbers lying between 2 and 6 = 3, 4 and 5
Favourable number of events = 3
Probability that a number between 2 and 6 = 3/6 = 1/2

(iii) Odd numbers = 1, 3 and 5
Favourable number of events = 3
Probability that it will be an odd number = 3/6 = 1/2

14. One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting
(i) a king of red colour (ii) a face card (iii) a red face card (iv) the jack of hearts (v) a spade (vi) the queen of diamonds

Answer

Possible numbers of events = 52

(i) Numbers of king of red colour = 2
Probability of getting a king of red colour = 2/52 = 1/26

(ii) Numbers of face cards = 12
Probability of getting a face card = 12/52 = 3/13

(iii) Numbers of red face cards = 6
Probability of getting a king of red colour = 6/52 = 3/26

(iv) Numbers of jack of hearts =1
Probability of getting a king of red colour = 1/52

(v) Numbers of king of spade = 13
Probability of getting a king of red colour = 13/52 = 1/4

(vi) Numbers of queen of diamonds = 1
Probability of getting a king of red colour = 1/52

15. Five cards the ten, jack, queen, king and ace of diamonds, are well-shuffled with their face downwards. One card is then picked up at random.
(i) What is the probability that the card is the queen?
(ii) If the queen is drawn and put aside, what is the probability that the second card picked up is (a) an ace? (b) a queen?

Answer

Total numbers of cards = 5

(i) Numbers of queen = 1
Probability of picking a queen = 1/5

(ii) When queen is drawn and put aside then total numbers of cards left is 4
(a) Numbers of ace = 1
Probability of picking an ace = 1/4
(a) Numbers of queen = 0
Probability of picking a queen = 0/4 = 0

16. 12 defective pens are accidentally mixed with 132 good ones. It is not possible to just look at a pen and tell whether or not it is defective. One pen is taken out at random from this lot. Determine the probability that the pen taken out is a good one.

Answer

Numbers of defective pens = 12
Numbers of good pens = 132
Total numbers of pen = 132 + 12 = 144 pens
Favourable number of events = 132
Probability of getting a good pen = 132/144 = 11/12

17. (i) A lot of 20 bulbs contain 4 defective ones. One bulb is drawn at random from the lot. What is the probability that this bulb is defective?
(ii) Suppose the bulb drawn in (i) is not defective and is not replaced. Now one bulb is drawn at random from the rest. What is the probability that this bulb is not defective?

Answer

(i) Total numbers of bulbs = 20
Numbers of defective bulbs = 4
Probability of getting a defective bulb = 4/20 = 1/5

(ii) One non defective bulb is drawn in (i) then the total numbers of bulb left is 19
Total numbers of events = 19
Favourable numbers of events =  19 – 4 = 15
Probability that the bulb is not defective = 15/19

18. A box contains 90 discs which are numbered from 1 to 90. If one disc is drawn at random from the box, find the probability that it bears (i) a two-digit number (ii) a perfect square number (iii) a number divisible by 5.

Answer

Total numbers of discs = 50

(i) Total numbers of favourable events = 81
Probability that it bears a two-digit number = 81/90 = 9/10

(ii) Perfect square numbers = 1, 4, 9, 16, 25, 36, 49, 64 and 81
Favourable numbers of events = 9
Probability of getting a perfect square number = 9/90 = 1/10

(iii) Numbers which are divisible by 5 = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85 and 90
Favourable numbers of events = 18
Probability of getting a number divisible by 5 = 18/90 = 1/5

Page No: 310

19. A child has a die whose six faces show the letters as given below:
 
The die is thrown once. What is the probability of getting (i) A? (ii) D?
 
Answer
 
Total numbers of events = 6
 
(i) Total numbers of faces having A on it = 2
Probability of getting A = 2/6 = 1/3
 
(ii) Total numbers of faces having D on it = 1
Probability of getting A = 1/6
 
20. Suppose you drop a die at random on the rectangular region shown in Fig. 15.6. What is the probability that it will land inside the circle with diameter 1m?
Answer
 
Area of the rectangle = (3 × 2) m2 = 6m2
Area of the circle = πr2 = π(1/2)2 m2  = π/4 m2 
Probability that die will land inside the circle = (π/4) × 1/6 = π/24
 
21. A lot consists of 144 ball pens of which 20 are defective and the others are good. Nuri will buy a pen if it is good, but will not buy if it is defective. The shopkeeper draws one pen at random and gives it to her. What is the probability that
(i) She will buy it?
(ii) She will not buy it?

Answer

Total numbers of pens = 144
Numbers of defective pens = 20
Numbers of non defective pens = 144 – 20 = 124

(i) Numbers of favourable events = 124
Probability that she will buy it = 124/144 = 31/36

(ii) Numbers of favourable events = 20
Probability that she will not buy it = 20/144 = 5/36

22. Refer to Example 13. (i) Complete the following table:
 
(ii) A student argues that ‘there are 11 possible outcomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Therefore, each of them has a probability 1/11. Do you agree with this argument? Justify your answer.
 
Answer

Events that can happen on throwing two dices are:
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
Total numbers of events : 6 × 6 = 36

(i) To get sum as 2, possible outcomes = (1,1)
To get sum as 3, possible outcomes = (1,2) and (2,1)
To get sum as 4, possible outcomes = (1,3); (3,1);  and (2,2)
To get sum as 5, possible outcomes = (1,4); (4,1); (2,3);  and (3,2)
To get sum as 6, possible outcomes = (1,5); (5,1); (2,4); (4,2);  and (3,3)
To get sum as 7, possible outcomes = (1,6); (6,1); (5,2); (2,5); (4,3);  and (3,4)
To get sum as 8, possible outcomes = (2,6); (6,2); (3,5); (5,3);  and (4,4)
To get sum as 9, possible outcomes = (3,6); (6,3); (4,5);  and (5,4)
To get sum as 10, possible outcomes = (4,6); (6,4) and (5,5)
To get sum as 11, possible outcomes = (5,6) and (6,5)
To get sum as 12, possible outcomes = (6,6)

Event:
Sum on 2 dice
23456789101112
Probability  1/36   2/36   3/36   4/36   5/36   6/36   5/36   4/36   3/36   2/36   1/36 

(ii) No, i don’t agree with the argument. It is already justified in (i).

 23. A game consists of tossing a one rupee coin 3 times and noting its outcome each time. Hanif wins if all the tosses give the same result i.e., three heads or three tails, and loses otherwise. Calculate the probability that Hanif will lose the game.

Answer

Events that can happen in tossing 3 coins = HHH, HHT, HTH, THH, TTH, HTT, THT, TTT
Total number of events = 8
Hinif will lose the game if he gets HHT, HTH, THH, TTH, HTT, THT
Favourable number of elementary events = 6
Probability of losing the game = 6/8 = 3/4

24. A die is thrown twice. What is the probability that
(i) 5 will not come up either time? (ii) 5 will come up at least once?
[Hint : Throwing a die twice and throwing two dice simultaneously are treated as the same experiment]

Answer

 (i) Consider the following events.
A = first throw shows 5,
B = second throw shows 5
P(A) = 6/36, P(B) = 6/36 and P(notB) = 5/6
⇒ P(notA) = 1– 6/36 = 30/36 = 5/6
Required probability = 5/6 × 5/6 = 25/36

(ii) Number of events when 5 comes at least once = 11
Probability = 11/36

Page No: 311

25. Which of the following arguments are correct and which are not correct? Give reasons for your answer.
(i) If two coins are tossed simultaneously there are three possible outcomes—two heads, two tails or one of each. Therefore, for each of these outcomes, the probability is 1/3
(ii) If a die is thrown, there are two possible outcomes—an odd number or an even number. Therefore, the probability of getting an odd number is 1/2

Answer

(i) The statement is incorrect
Possible events = (H,H); (H,T); (T,H) and (T,T)
Probability of getting two heads = 1/4
Probability of getting one of the each = 2/4 = 1/2

(ii) Correct. The two outcomes considered are equally likely.

Important Links

Probability – Quick Revision Notes

Probability – Most Important Questions

Probaility – Important MCQs

For Free Video Lectures – Click here

Read More

NCERT Solutions for Class 10 Maths Chapter 14 Statistics | EduGrown

In This Post we are  providing Chapter 14 Statistics NCERT Solutions for Class 10 Maths which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These Statistics Class 10 solutions can be really helpful in the preparation of Board exams and will provide you with in depth detail of the chapter.

We have solved every question stepwise so you don’t have to face difficulty in understanding the solutions. It will also give you concepts that are important for overall development of students. Class 10 Maths Statistics NCERT Written Solutions  & Video Solution will be useful in higher classes as well because variety of questions related to these concepts can be asked so you must study and understand them properly.

NCERT Solutions for Class 10 Maths Chapter 14 Statistics

Exercise 14.1

1. A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.
Number of Plants   0-2       2-4       4-6      6-8       8-10       10-12       12-14   
Number of Houses    1215623
Which method did you use for finding the mean, and why?

Answer

No. of plants
   (Class interval)  
No. of houses (fi)Mid-point (xi)    fixi    
0-2111
2-4236
4-6155
6-85735
8-106954
10-1221122
12-1431339
 Sum f= 20
    Sum fixi = 162    

Mean = x̄ = ∑fixi /f= 162/20 = 8.1

We would use direct method because the numerical value of fi and xi are small.

2. Consider the following distribution of daily wages of 50 workers of a factory.
Daily wages (in Rs.)   100-120       120-140      140-160      160-180       180-200   
Number of workers    12148610
Find the mean daily wages of the workers of the factory by using an appropriate method.

Answer

Here, the value of mid-point (xi) is very large, so assumed mean A = 150 and class interval is h = 20.
So, u= (xi – A)/h = u= (xi – 150)/20

Daily wages
   (Class interval)  
Number of workers
frequency (fi)
Mid-point (xi)u= (xi – 150)/20    fiui    
100-12012110-2-24
120-14014130-1-14
140-160815000
160-180617016
180-20010190220
TotalSum f= 50
  Sum fiui = -12  
Mean = x̄ = A + h∑fiui /f=150 + (20 × -12/50) = 150 – 4.8 = 145.20
Thus, mean daily wage = Rs. 145.20

3. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs 18. Find the missing frequency f.

Answer

Here, the value of mid-point (xi)  mean  = 18

Class intervalNumber of children (fi)Mid-point (xi)    fixi    
11-1371284
13-1561484
15-17916144
17-191318 = A234
19-21f2020f
21-23522110
23-2542496
Totalfi = 44+f
 Sum fixi = 752+20f 

Mean = x̄ = ∑fixi /f= (752+20f)/(44+f)
⇒ 18 = (752+20f)/(44+f)
⇒ 18(44+f) = (752+20f)
⇒ 792+18f = 752+20f
⇒ 792+18f = 752+20f
⇒ 792 – 752 = 20f – 18f
⇒ 40 = 2f
⇒ f = 20

Page No: 271

4. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute were recorded and summarised as follows. Find the mean heart beats per minute for these women, choosing a suitable method.

Answer

x= (Upper limit + Lower limit)/2
Class size (h) = 3
Assumed mean (A) = 75.5

Class IntervalNumber of women (fi)Mid-point (xi)ui = (xi – 75.5)/hfiui
65-68266.5-3-6
68-71469.5-2-8
71-74372.5-1-3
74-77875.500
77-80778.517
80-83481.538
83-86284.536
 Sum fi= 30  Sum fiu= 4

Mean = x̄ = A + h∑fiui /f= 75.5 + 3×(4/30) = 75.5 + 4/10 = 75.5 + 0.4 = 75.9
The mean heart beats per minute for these women is 75.9

5. In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number of mangoes. The following was the distribution of mangoes according to the number of boxes.
 
Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?

Answer

Since, the given data is not continuous so we add 0.5 to the upper limit and subtract 0.45 from the lower limit.
Here, assumed mean (A) = 57
Class size (h) = 3

Class IntervalNumber of boxes (fi)Mid-point (xi)di = xi – Afidi
49.5-52.51551-690
52.5-55.511054-3-330
55.5-58.513557 = A00
58.5-61.5115603345
61.5-64.525636150
 Sum fi = 400  Sum fidi = 75

Mean = x̄ = A + ∑fidi /f= 57 + (75/400) = 57 + 0.1875 = 57.19

6. The table below shows the daily expenditure on food of 25 households in a locality.
 
Find the mean daily expenditure on food by a suitable method.
 
Answer

Here, assumed mean (A) = 225

Class IntervalNumber of households (fi)Mid-point (xi)di = xi – Afidi
100-1504125-100-400
150-2005175-50-250
200-2501222500
250-300227550100
300-3502325100200
 Sum fi = 25  Sum fidi = -350

Mean = x̄ = A + ∑fidi /f= 225 + (-350/25) = 225 – 14 = 211
The mean daily expenditure on food is 211

7. To find out the concentration of SO2 in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:
Find the mean concentration of SO2 in the air.

Answer
Concentration of SO(in ppm)Frequency (fi)Mid-point (xi)
fixi
0.00-0.0440.020.08
0.04-0.0890.060.54
0.08-0.1290.100.90
0.12-0.1620.140.28
0.16-0.2040.180.72
0.20-0.2420.200.40
TotalSum fi = 30 Sum (fixi) = 2.96

Mean = x̄ = ∑fixi /fi
= 2.96/30 = 0.099 ppm

Page No. 272

8. A class teacher has the following absentee record of 40 students of a class for the whole
term. Find the mean number of days a student was absent.
 

 
Number of days
0-66-1010-1414-2020-2828-3838-40
Number of students111074431

Answer

Class intervalFrequency (fi)
Mid-point (xi)
fixi
0-611333
6-1010880
10-1471284
14-2041768
20-2842496
28-3833399
38-4013939
 Sum fi = 40 Sum fixi = 499

Mean = x̄ = ∑fixi /fi
= 499/40 = 12.48 days

9. The following table gives the literacy rate (in percentage) of 35 cities. Find the mean
literacy rate.


Literacy rate (in %)45-5555-6565-7575-8585-98
Number of cities3101183

Answer

Class IntervalFrequency (fi)(xi)di = xi – aui = di/h
fiui
45-55350-20-2-6
55-651060-10-1-10
65-751170000
75-858801018
85-953902026
 Sum fi  = 35   Sum fiui  = -2

Mean = x̄ = a + (∑fiui /fi) х h
= 70 + (-2/35) х 10 = 69.42

Exercise 14.2

1. The following table shows the ages of the patients admitted in a hospital during a year:


Age (in years)5-1515-2525-3535-4545-5555-65
Number of patients6112123145
 


Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.

Answer

Modal class = 35 – 45, l = 35, class width (h) = 10, fm = 23, f1 = 21 and f2 = 14

 
Calculation of Mean:
 
Class IntervalFrequency (fi)Mid-point (xi)fixi
5-1561060
15-251120220
25-352130630
35-452340920
45-551450700
55-65560300
 Sum fi = 80 Sum fixi = 2830


Mean = x̄ = ∑fixi /fi
= 2830/80 = 35.37 yr

2. The following data gives the information on the observed lifetimes (in hours) of 225
electrical components :


Lifetime (in hours)0-2020-4040-6060-8080-100100-120
Frequency103552613829


Determine the modal lifetimes of the components.

Answer

Modal class of the given data is 60–80.
Modal class = 60-80, l = 60, fm = 61, f1 = 52, f2 = 38 and h = 20


3. The following data gives the distribution of total monthly household expenditure of 200
families of a village. Find the modal monthly expenditure of the families. Also, find the
mean monthly expenditure :


ExpenditureNumber of families
1000-150024
1500-200040
2000-250033
2500-300028
3000-350030
3500-400022
4000-450016
4500-50007


Answer

Modal class = 1500-2000, l = 1500, fm = 40, f1 = 24, f2 = 33 and h = 500

 
Calculation for mean:

 

Class Intervalfixidi = xi – aui = di/hfiui
1000-1500241250-1500-3-72
1500-2000401750-1000-2-80
2000-2500332250-500-1-33
2500-3000282750000
3000-3500303250500130
3500-40002237501000244
4000-45001642501500348
4500-5000747502000428
 fi = 200   fiui = -35


Mean = x̄ = a + (∑fiui /fi) х h
= 2750 + (35/200) х 500
= 2750 – 87.50 = 2662.50

 

 Question 4.
The following distribution gives the state-wise teacher- student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.2 Q4
Solution:
Chapter 14 Maths Class 10 NCERT Solutions Ex 14.2 PDF Download Q4
Chapter 14 Maths Class 10 NCERT Solutions Ex 14.2 PDF Download Q4.1

 

 Question 5.
The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.2 Q5
Find the mode of the data.
Solution:
Statistics Class 10 Maths NCERT Solutions Ex 14.2 PDF Download Q5

 

Question 6.
A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data:
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.2 Q6
Solution:
Exercise 14.2 Class 10 Maths NCERT Solutions PDF Download Q6

 Question 1.
The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.3 Q1
Solution:
Statistics Class 10 Maths NCERT Solutions Ex 14.3 pdf download Q1
Statistics Class 10 Maths NCERT Solutions Ex 14.3 pdf download Q1.1

 

 Question 2.
If the median of the distribution given below is 28.5, find the values of x and y.
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.3 Q2
Solution:
Ex 14.3 Class 10 Maths NCERT Solutions pdf download Q2
Ex 14.3 Class 10 Maths NCERT Solutions pdf download Q2.1

 

 Question 3.
A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 years.
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.3 Q3
Solution:
Exercise 14.3 Class 10 Maths NCERT Solutions pdf download Q3

 

 Question 4.
The lengths of 40 leaves of a plant are measured correct to nearest millimetre, and the data obtained is represented in the following table:
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.3 Q4
Find the median length of the leaves.
Solution:
Exercise 14.3 Class 10 Maths NCERT Solutions pdf download Q4
Exercise 14.3 Class 10 Maths NCERT Solutions pdf download Q4.1

 

 Question 5.
The following table gives the distribution of the lifetime of 400 neon lamps:
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.3 Q5
Find the median lifetime of a lamp.
Solution:
Chapter 14 Maths Class 10 NCERT Solutions Ex 14.3 pdf download Q5

 

 Question 6.
100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabet in the surnames was obtained as follows:
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.3 Q6
Determine the median number of letters in the surnames. Find the mean number of letters in the surnames. Also, find the modal size of the surnames.
Solution:
Statistics Class 10 Maths NCERT Solutions Ex 14.3 pdf download Q6
Statistics Class 10 Maths NCERT Solutions Ex 14.3 pdf download Q6.1
Statistics Class 10 Maths NCERT Solutions Ex 14.3 pdf download Q6.2

 

Ex 14.3 Class 10 Maths Question 7.
The distribution below gives the weight of 30 students of a class. Find the median weight of the students.
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.3 Q7
Solution:
Statistics Class 10 Maths NCERT Solutions Ex 14.3 pdf download Q7

 Question 1.
The following distribution gives the daily income of 50 workers of a factory.
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.4 Q1
Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive.
Solution:
Statistics Class 10 Maths NCERT Solutions Ex 14.4 pdf download Q1
Statistics Class 10 Maths NCERT Solutions Ex 14.4 pdf download Q1.1

 

Ex 14.4 Class 10 Maths Question 2.
During the medical check-up of 35 students of a class, their weights were recorded as follows:
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.4 Q2
Draw a less than type ogive for the given data. Hence obtain the median weight from the graph and verify the result by using the formula.
Solution:
Ex 14.4 Class 10 Maths NCERT Solutions pdf download
Ex 14.4 Class 10 Maths NCERT Solutions pdf download Q2.1

 

Question 3.
The following table gives production yield per hectare of wheat of 100 farms of a village.
NCERT Solutions For Class 10 Maths Chapter 14 Statistics Ex 14.4 Q3
Change the distribution to a more than type distribution, and draw its ogive.
Solution:
Exercise 14.4 Class 10 Maths NCERT Solutions pdf download Q3
Exercise 14.4 Class 10 Maths NCERT Solutions pdf download Q3.1

Important Links

Statistics – Quick Revision Notes

Statistics – Most Important Questions

Statistics – Important MCQs

For Free Video Lectures – Click here

Read More