NCERT MCQ CLASS-12 CHAPTER-9 | CHEMISTRY NCERT MCQ | COORDINATION COMPOUNDS | EDUGROWN

In This Post we are  providing Chapter-9 Coordination Compounds NCERT MCQ for Class 12 Chemistry which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These MCQS  can be really helpful in the preparation of Board exams and will provide you with a brief knowledge of the chapter.

NCERT MCQ ON COORDINATION COMPOUNDS

1. The sum of coordination number of oxidation number of the metal M in the complex [M(en)2 C204] Cl are
(a) 7
(b) 8
(c) 9
(d) 6

Answer: c

2. Which of the following will not give test for Cl with AgNO3(aq) at 25°C?
(a) COCl3.5NH3
(b) COCl3.6NH3
(c) COCl3.3NH3
(d) COCl3.4NH3

Answer: c

3. Which of these statements about [Co(CN)6]3- is true?
(a) It has 4 unpaired electron, high spin
(b) No unpaired electron, high spin
(c) No unpaired electron, low spin
(d) 4 unpaired electron, low spin

Answer: c

4. The correct order of the stoichiometry’s of AgCl formed when AgNO3 in excess is treated with complexes: COCl3.6NH3, C0Cl3.5NH3, C0Cl3.4NH3 respectively is
(a) 3AgCl, lAgCl, 2AgCl
(b) 3AgCl, 2AgCl, 1AgCl
(c) 2AgCl, 3AgCl, 2AgCl
(d) lAgCl, 3AgCl, 2AgCl

Answer: b

5. Correct increasing order of wavelength of absorption in visible region for complex of Co3+ is
Chemistry MCQs for Class 12 with Answers Chapter 9 Coordination Compounds 1

Answer: d

6. Pick out the correct statement with respect to [Mn(CN)J2-
(a) It is sp²d² hybridized, tetrahedral
(b) It is d²sp3 hybridized, octahedral
(c) It is dsp² hybridized, square planar
(d) It is sp3d² hybridized octahedral

Answer: b

7. Facial and meridional isomerism will be shown by
(a) [Co(NH3)3Cl3]
(b) [Co(NH3)4Cl2] Cl
(c) [Co(en)3] Cl3
(d) [Co(NH3)5Cl] Cl2

Answer: a

8. Which one has highest molar conductivity?
(a) [Pt(NH3)2 Cl2]
(b) [CO(NH3)4 Cl2] Cl
(c) K4[Fe(CN)6]
(d) [Cr(H2O)6] Cl3

Answer: c

9. Which one will show optical isomerism?
(a) [Co(NH3)3Cl3]
(b) cis-[Co(en)2 Cl2] Cl
(c) trans-[Co(en)2 Cl2] Cl
(d) [Co(NH3)4 Cl2] Cl

Answer: b

10. The pair having the same magnetic moment is (At No. Cr = 24, Mn = 25, Fe = 26, Co = 27)
(а) [Cr(H2O)6]2+ and [CoCl4]2-
(b) [Cr(H2O)6]2+ and [Fe (H2O)6]2+
(c) [Mn(H2O)6]2+ and[Cr(H2O)6]2+
(d) [COCl4]2- and [Fe(H2O)6]2+

Answer: b

11. On treatment of 100 mL of 0.1 MCOCl3.6H2O with excess of AgNO3, 1.2 × 1022 ions are precipitated. The complex is
(a) [Co(H2O)4Cl2]Cl.2H2O
(b) [Co(H2O)3Cl3]3H2O
(c) [Co(H2O)6] Cl3
(d) [Co(H2O)5 Cl] Cl2.H2O

Answer: d

12. Among the ligands NH3, en, CN and CO, the correct order of field strength is
(a) NH3 < en < CN < CO
(b) CN < NH3 < CO < en
(c) en < CN< NH3 < CO
(d) CO < NH3 < en < CN

Answer: a

13. Which of the following complexes formed by Cu2+ ions is most stable?
Chemistry MCQs for Class 12 with Answers Chapter 9 Coordination Compounds 2

Answer: b

14. The stabilization of coordination compounds due to chelation is called the chelate effect. Which of the following is the most stable complex species?
(a) [Fe(CO)5]
(b) [Fe(CN)6]3-
(c) [Fe(C2O4)3]3-
(d) [Fe(H2O)6]3+

Answer: c

15. Indicate the complex ion which shows geometrical isomerism.
(a) [Cr(H2O)4Cl2]+
(b) [Pt(NH3)3 Cl]
(c) [Co(NH3)6]3+
(d) [Co(CN)5(NC)]3-

Answer: a


Read More

NCERT MCQ CLASS-12 CHAPTER-8 | CHEMISTRY NCERT MCQ | THE d AND f-BLOCK ELEMENTS | EDUGROWN

In This Post we are  providing Chapter-8 The d and f-Block Elements NCERT MCQ for Class 12 Chemistry which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These MCQS  can be really helpful in the preparation of Board exams and will provide you with a brief knowledge of the chapter.

NCERT MCQ ON THE d AND f-BLOCK ELEMENTS

Question 1.
Oxidation number of gold metal is

(a) +1
(b) 0
(c) -1
(d) all of these

Answer: (a) +1

Question 2.
Shape of d-orbital is

(a) spherical
(b) dumb bell
(c) double dumb bell
(d) none of these

Answer: (c) double dumb bell

Question 3.
Electronic configuration of alkaline earth element is

(a) ns2
(b) ns1
(c) np6
(d) ns0

Answer: (a) ns2

Question 4.
Lanthanoid contraction is due to increase in

(a) atomic number
(b) effective nuclear charge
(c) atomic radius
(d) valence electrons

Answer: (b) effective nuclear charge

Question 5.
Which one of the following is called green vitriol?

(a) FeSO4 7H2O
(b) CuSO4 5H2O
(c) CaSO4 2H2O
(d) None of these

Answer: (a) FeSO4 7H2O

Question 6.
Which block of elements are known as transition elements?

(a) p-block
(b) s-block
(c) d-block
(d) f-block

Answer: (c) d-block

Question 7.
Most abundant element in earth’s crust is

(a) Si
(b) Al
(c) Zn
(d) Fe

Answer: (a) Si

Question 8.
Which one of the following is diamagnetic ion?

(a) Co2+
(b) Ni2+
(c) Cu2+
(d) Zn2+

Answer: (d) Zn2+

Question 9.
Which of the following is not an element of first transition series?

(a) Iron
(b) Chromium
(c) Magnesium
(d) Nickel

Answer: (c) Magnesium

Question 10.
The correct order of EM2+/M0 values with negative sign for the four successive elements Cr, Mn, Fe and Co is

(a) Fe > Mn > Cr > Co
(b) Cr > Mn > Fe > Co
(c) Mn > Cr > Fe > Co
(d) Cr > Fe > Mn > Co

Answer: (c) Mn > Cr > Fe > Co

Question 11.
The number of unpaired electrons in gaseous species of Mn3+, Cl3+ and V3+ respectively are and the most stable species is

(a) 4, 3 and 2; V3+
(b) 3, 3 and 2; Cr3+
(c) 4, 3 and 2; Cr3+
(d) 3, 3 and 3; Mn3+

Answer: (c) 4, 3 and 2; Cr3+

Question 12.
Fe3+ ion is more stable than Fe2+ ion because

(a) more the charge on the atom, more is its stability
(b) configuration of Fe2+ is 3d5 while Fe3+ is 3d5
(c) Fe2+ has a larger size than Fe3+
(d) Fe3+ ions are colored hence more stable

Answer: (b) configuration of Fe2+ is 3d5 while Fe3+ is 3d5

Question 13.
Color of transition metal ions are due to absorption of some wavelength. This results in

(a) d-s transition
(b) s-s transition
(c) s-t/transition
(d) d-d transition

Answer: (d) d-d transition

Question 14.
Which group contains colored ions out of the following?

1. Cu. 2. Ti4- 3. Co2+ 4. Fe2-
(a) 1, 2, 3, 4
(b) 3, 4
(c) 2, 3
(4) 1, 2

Answer: (b) 3, 4

Question 15.
The melting points of Cu, Ag and Au follow the order

(a) Cu > Ag > Au
(b) Cu >Au > Ag
(c) Au > Ag > Cu
(d) Ag > Au > Cu

Answer: (b) Cu >Au > Ag



Read More

Class 12th Chapter -5 Continuity and Differentiability | NCERT Maths Solution | NCERT Solution | Edugrown

It is important that you have a strong foundation in Maths Solutions. This can help you immensely in exams. Because there is no paper pattern set for the board exams. Every year there are different twists and turns in questions asked in board exams. While preparing for maths it becomes to go through every bit of detail. Thus, NCERT Solutions Class 12 Maths can help you lay a strong foundation. There solutions of each and every question given in the NCERT 12 Textbook in this article. There are crucial chapters like integration, algebra, and calculus which you can solve easily using these Class 12 Maths solutions. Using these NCERT Maths Class 12 Solutions can give you an edge over the other students.

NCERT Solutions for Class 12 Maths Chapter : 5 Continuity and Differentiability

Ex 5.1 Class 12 Maths Question 1.
Prove that the function f (x) = 5x – 3 is continuous at x = 0, at x = – 3 and at x = 5.
Solution:
(i) At x = 0. limx–>0 f (x) = limx–>0 (5x – 3) = – 3 and
f(0) = – 3
∴f is continuous at x = 0
(ii) At x = – 3, limx–>3 f(x)= limx–>-3 (5x – 3) = – 18
and f( – 3) = – 18
∴ f is continuous at x = – 3
(iii) At x = 5, limx–>5 f(x) = limx–>5 (5x – 3) = 22 and
f(5) = 22
∴ f is continuous at x = 5

Ex 5.1 Class 12 Maths Question 2.
Examine the continuity of the function f(x) = 2x² – 1 at x = 3.
Solution:
limx–>3 f(x) = limx–>3 (2x² – 1) = 17 and f(3)= 17
∴ f is continuous at x = 3

Ex 5.1 Class 12 Maths Question 3.
Examine the following functions for continuity.
(a) f(x) = x – 5
(b) f(x) = \\ \frac { 1 }{ x-5 } , x≠5
(c) f(x) = \frac { { x }^{ 2 }-25 }{ x+5 } ,x≠5
(d) f(x) = |x – 5|
Solution:
(a) f(x) = (x-5) => (x-5) is a polynomial
∴it is continuous at each x ∈ R.
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q3.1

Ex 5.1 Class 12 Maths Question 4.
Prove that the function f (x) = xn is continuous at x = n, where n is a positive integer.
Solution:
f (x) = xn is a polynomial which is continuous for all x ∈ R.
Hence f is continuous at x = n, n ∈ N.

Ex 5.1 Class 12 Maths Question 5.
Is the function f defined by f(x)=\begin{cases} x,ifx\le 1 \\ 5,ifx>1 \end{cases} continuous at x = 0? At x = 1? At x = 2?
Solution:
(i) At x = 0
limx–>0- f(x) = limx–>0- x = 0 and
limx–>0+ f(x) = limx–>0+ x = 0 => f(0) = 0
∴ f is continuous at x = 0
(ii) At x = 1
limx–>1- f(x) = limx–>1- (x) = 1 and
limx–>1+ f(x) = limx–>1+(x) = 5
∴ limx–>1- f(x) ≠ limx–>1+ f(x)
∴ f is discontinuous at x = 1
(iii) At x = 2
limx–>2 f(x) = 5, f(2) = 5
∴ f is continuous at x = 2

Find all points of discontinuity off, where f is defined by

Ex 5.1 Class 12 Maths Question 6.
f(x)=\begin{cases} 2x+3,if\quad x\le 2 \\ 2x-3,if\quad x>2 \end{cases}
Solution:
f(x)=\begin{cases} 2x+3,if\quad x\le 2 \\ 2x-3,if\quad x>2 \end{cases} at x≠2
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q6.1

Ex 5.1 Class 12 Maths Question 7.
f(x)=\begin{cases} |x|+3,if\quad x\le -3 \\ -2x,if\quad -3<x<3 \\ 6x+2,if\quad x\ge 3 \end{cases}
Solution:
f(x)=\begin{cases} |x|+3,if\quad x\le -3 \\ -2x,if\quad -3<x<3 \\ 6x+2,if\quad x\ge 3 \end{cases}
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q7.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q7.2

Ex 5.1 Class 12 Maths Question 8.
Test the continuity of the function f (x) at x = 0
f(x)=\begin{cases} \frac { |x| }{ x } ;x\neq 0 \\ 0;x=0 \end{cases}
Solution:
We have;
(LHL at x=0)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q8.1

Ex 5.1 Class 12 Maths Question 9.
f(x)=\begin{cases} \frac { x }{ |x| } ;if\quad x<0 \\ -1,if\quad x\ge 0 \end{cases}
Solution:
f(x)=\begin{cases} \frac { x }{ |x| } ;if\quad x<0 \\ -1,if\quad x\ge 0 \end{cases}
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q9.1

Ex 5.1 Class 12 Maths Question 10.
f(x)=\begin{cases} x+1,if\quad x\ge 1 \\ { x }^{ 2 }+1,if\quad x<1 \end{cases}
Solution:
f(x)=\begin{cases} x+1,if\quad x\ge 1 \\ { x }^{ 2 }+1,if\quad x<1 \end{cases}
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q10.1

Ex 5.1 Class 12 Maths Question 11.
f(x)=\begin{cases} { x }^{ 3 }-3,if\quad x\le 2 \\ { x }^{ 2 }+1,if\quad x>2 \end{cases}
Solution:
f(x)=\begin{cases} { x }^{ 3 }-3,if\quad x\le 2 \\ { x }^{ 2 }+1,if\quad x>2 \end{cases}
At x = 2, L.H.L. limx–>2- (x³ – 3) = 8 – 3 = 5
R.H.L. = limx–>2+ (x² + 1) = 4 + 1 = 5
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q11.1

Ex 5.1 Class 12 Maths Question 12.
f(x)=\begin{cases} { x }^{ 10 }-1,if\quad x\le 1 \\ { x }^{ 2 },if\quad x>1 \end{cases}
Solution:
f(x)=\begin{cases} { x }^{ 10 }-1,if\quad x\le 1 \\ { x }^{ 2 },if\quad x>1 \end{cases}
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q12.1

Ex 5.1 Class 12 Maths Question 13.
Is the function defined by f(x)=\begin{cases} x+5,if\quad x\le 1 \\ x-5,if\quad x>1 \end{cases}  a continuous function?
Solution:
At x = 1,L.H.L.= limx–>1- f(x) = limx–>1- (x + 5) = 6,
R.HL. = limx–>1+ f(x) = limx–>1+ (x – 5) = – 4
f(1) = 1 + 5 = 6,
f(1) = L.H.L. ≠ R.H.L.
=> f is not continuous at x = 1
At x = c < 1, limx–>c (x + 5) = c + 5 = f(c)
At x = c > 1, limx–>c (x – 5) = c – 5 = f(c)
∴ f is continuous at all points x ∈ R except x = 1.

Discuss the continuity of the function f, where f is defined by

Ex 5.1 Class 12 Maths Question 14.
f(x)=\begin{cases} 3,if\quad 0\le x\le 1 \\ 4,if\quad 1<x<3 \\ 5,if\quad 3\le x\le 10 \end{cases}
Solution:
f(x)=\begin{cases} 3,if\quad 0\le x\le 1 \\ 4,if\quad 1<x<3 \\ 5,if\quad 3\le x\le 10 \end{cases}
In the interval 0 ≤ x ≤ 1,f(x) = 3; f is continuous in this interval.
At x = 1,L.H.L. = lim f(x) = 3,
R.H.L. = limx–>1+ f(x) = 4 => f is discontinuous at
x = 1
At x = 3, L.H.L. = limx–>3- f(x)=4,
R.H.L. = limx–>3+ f(x) = 5 => f is discontinuous at
x = 3
=> f is not continuous at x = 1 and x = 3.

Ex 5.1 Class 12 Maths Question 15.
f(x)=\begin{cases} 2x,if\quad x<0 \\ 0,if\quad 0\le x\le 1 \\ 4x,if\quad x>1 \end{cases}
Solution:
f(x)=\begin{cases} 2x,if\quad x<0 \\ 0,if\quad 0\le x\le 1 \\ 4x,if\quad x>1 \end{cases}
At x = 0, L.H.L. = limx–>0- 2x = 0 ,
R.H.L. = limx–>0+ (0)= 0 , f(0) = 0
=> f is continuous at x = 0
At x = 1, L.H.L. = limx–>1- (0) = 0,
R.H.L. = limx–>1+ 4x = 4
f(1) = 0, f(1) = L.H.L.≠R.H.L.
∴ f is not continuous at x = 1
when x < 0 f (x) = 2x, being a polynomial, it is
continuous at all points x < 0. when x > 1. f (x) = 4x being a polynomial, it is
continuous at all points x > 1.
when 0 ≤ x ≤ 1, f (x) = 0 is a continuous function
the point of discontinuity is x = 1.

Ex 5.1 Class 12 Maths Question 16.
f(x)=\begin{cases} -2,if\quad x\le -1 \\ 2x,if\quad -1<x\le 1 \\ 2,if\quad x>1 \end{cases}
Solution:
f(x)=\begin{cases} -2,if\quad x\le -1 \\ 2x,if\quad -1<x\le 1 \\ 2,if\quad x>1 \end{cases}
At x = – 1,L.H.L. = limx–>1- f(x) = – 2, f(-1) = – 2,
R.H.L. = limx–>1+ f(x) = – 2
=> f is continuous at x = – 1
At x= 1, L.H.L. = limx–>1- f(x) = 2,f(1) = 2
∴ f is continuous at x = 1,
R.H.L. = limx–>1+ f(x) = 2
Hence, f is continuous function.

Ex 5.1 Class 12 Maths Question 17.
Find the relationship between a and b so that the function f defined by
f(x)=\begin{cases} ax+1,if\quad x\le 3 \\ bx+3,if\quad x>3 \end{cases}
is continuous at x = 3
Solution:
At x = 3, L.H.L. = limx–>3- (ax+1) = 3a+1 ,
f(3) = 3a + 1, R.H.L. = limx–>3+ (bx+3) = 3b+3
f is continuous ifL.H.L. = R.H.L. = f(3)
3a + 1 = 3b + 3 or 3(a – b) = 2
a – b = \\ \frac { 2 }{ 3 }  or a = b + \\ \frac { 2 }{ 3 } , for any arbitrary value of b.
Therefore the value of a corresponding to the value of b.

Ex 5.1 Class 12 Maths Question 18.
For what value of λ is the function defined by
f(x)=\begin{cases} \lambda ({ x }^{ 2 }-2x),if\quad x\le 0 \\ 4x+1,if\quad x>0 \end{cases}
continuous at x = 0? What about continuity at x = 1?
Solution:
At x = 0, L.H.L. = limx–>0- λ (x² – 2x) = 0 ,
R.H.L. = limx–>0+ (4x+ 1) = 1, f(0)=0
f (0) = L.H.L. ≠ R.H.L.
=> f is not continuous at x = 0,
whatever value of λ ∈ R may be
At x = 1, limx–>1 f(x) = limx–>1 (4x + l) = f(1)
=> f is not continuous at x = 0 for any value of λ but f is continuous at x = 1 for all values of λ.

Ex 5.1 Class 12 Maths Question 19.
Show that the function defined by g (x) = x – [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.
Solution:
Let c be an integer, [c – h] = c – 1, [c + h] = c, [c] = c, g(x) = x – [x].
At x = c, limx–>c- (x – [x]) = limh–>0 [(c – h) – (c – 1)]
= limh–>0 (c – h – (c – 1)) = 1[∵ [c – h] = c – 1]
R.H.L. = limx–>c+ (x – [x])= limh–>0 (c + h – [c + h])
= limh–>0 [c + h – c] = 0
f(c) = c – [c] = 0,
Thus L.H.L. ≠ R.H.L. = f (c) => f is not continuous at integral points.

Ex 5.1 Class 12 Maths Question 20.
Is the function defined by f (x) = x² – sin x + 5 continuous at x = π?
Solution:
Let f(x) = x² – sinx + 5,
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q20.1

Ex 5.1 Class 12 Maths Question 21.
Discuss the continuity of the following functions:
(a) f (x) = sin x + cos x
(b) f (x) = sin x – cos x
(c) f (x) = sin x · cos x
Solution:
(a) f(x) = sinx + cosx
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q21.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q21.2
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q21.3

Ex 5.1 Class 12 Maths Question 22.
Discuss the continuity of the cosine, cosecant, secant and cotangent functions.
Solution:
(a) Let f(x) = cosx
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q22.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q22.2

Ex 5.1 Class 12 Maths Question 23.
Find all points of discontinuity of f, where
f(x)=\begin{cases} \frac { sinx }{ x } ,if\quad x<0 \\ x+1,if\quad x\ge 0 \end{cases}
Solution:
At x = 0
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q23.1

Ex 5.1 Class 12 Maths Question 24.
Determine if f defined by f(x)=\begin{cases} { x }^{ 2 }sin\frac { 1 }{ x } ,if\quad x\neq 0 \\ 0,if\quad x=0 \end{cases} is a continuous function?
Solution:
At x = 0
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q24.1

Ex 5.1 Class 12 Maths Question 25.
Examine the continuity of f, where f is defined by f(x)=\begin{cases} sinx-cosx,if\quad x\neq 0 \\ -1,if\quad x=0 \end{cases}
Solution:
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q25.1

Find the values of k so that the function is continuous at the indicated point in Questions 26 to 29.

Ex 5.1 Class 12 Maths Question 26.
f(x)=\begin{cases} \frac { k\quad cosx }{ \pi -2x } ,\quad if\quad x\neq \frac { \pi }{ 2 } \quad at\quad x=\frac { \pi }{ 2 } \qquad \\ 3,if\quad x=\frac { \pi }{ 2 } \quad at\quad x=\frac { \pi }{ 2 } \end{cases}
Solution:
At x = \frac { \pi }{ 2 }
L.H.L = \underset { x\rightarrow { \left( \frac { \pi }{ 2 } \right) }^{ - } }{ lim } \frac { k\quad cosx }{ \pi -2x }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q26.1

Ex 5.1 Class 12 Maths Question 27.
f(x)=\begin{cases} { kx }^{ 2 },if\quad x\le 2\quad at\quad x=2 \\ 3,if\quad x>2\quad at\quad x=2 \end{cases}
Solution:
f(x)=\begin{cases} { kx }^{ 2 },if\quad x\le 2\quad at\quad x=2 \\ 3,if\quad x>2\quad at\quad x=2 \end{cases}
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q27.1

Ex 5.1 Class 12 Maths Question 28.
f(x)=\begin{cases} kx+1,if\quad x\le \pi \quad at\quad x=\pi \\ cosx,if\quad x>\pi \quad at\quad x=\pi \end{cases}
Solution:
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q28.1

Ex 5.1 Class 12 Maths Question 29.
f(x)=\begin{cases} kx+1,if\quad x\le 5\quad at\quad x=5 \\ 3x-5,if\quad x>5\quad at\quad x=5 \end{cases}
Solution:
f(x)=\begin{cases} kx+1,if\quad x\le 5\quad at\quad x=5 \\ 3x-5,if\quad x>5\quad at\quad x=5 \end{cases}
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q29.1

Ex 5.1 Class 12 Maths Question 30.
Find the values of a and b such that the function defined by
f(x)=\begin{cases} 5,if\quad x\le 2 \\ ax+b,if\quad 2<x<10 \\ 21,if\quad x\ge 10 \end{cases}
to is a continuous function.
Solution:
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q30.1

Ex 5.1 Class 12 Maths Question 31.
Show that the function defined by f(x)=cos (x²) is a continuous function.
Solution:
Now, f (x) = cosx², let g (x)=cosx and h (x) x²
∴ goh(x) = g (h (x)) = cos x²
Now g and h both are continuous ∀ x ∈ R.
f (x) = goh (x) = cos x² is also continuous at all x ∈ R.

Ex 5.1 Class 12 Maths Question 32.
Show that the function defined by f (x) = |cos x| is a continuous function.
Solution:
Let g(x) =|x|and h (x) = cos x, f(x) = goh(x) = g (h (x)) = g (cosx) = |cos x |
Now g (x) = |x| and h (x) = cos x both are continuous for all values of x ∈ R.
∴ (goh) (x) is also continuous.
Hence, f (x) = goh (x) = |cos x| is continuous for all values of x ∈ R.

Ex 5.1 Class 12 Maths Question 33.
Examine that sin |x| is a continuous function.
Solution:
Let g (x) = sin x, h (x) = |x|, goh (x) = g (h(x))
= g(|x|) = sin|x| = f(x)
Now g (x) = sin x and h (x) = |x| both are continuous for all x ∈ R.
∴f (x) = goh (x) = sin |x| is continuous at all x ∈ R.

Ex 5.1 Class 12 Maths Question 34.
Find all the points of discontinuity of f defined by f(x) = |x|-|x+1|.
Solution:
f(x) = |x|-|x+1|, when x< – 1,
f(x) = -x-[-(x+1)] = – x + x + 1 = 1
when -1 ≤ x < 0, f(x) = – x – (x + 1) = – 2x – 1,
when x ≥ 0, f(x) = x – (x + 1) = – 1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.1 Q34.1

Differentiate the functions with respect to x in Questions 1 to 8.

Ex 5.2 Class 12 Maths Question 1.
sin(x² + 5)
Solution:
Let y = sin(x2 + 5),
put x² + 5 = t
y = sint
t = x²+5
\frac { dy }{ dx } =\frac { dy }{ dt } .\frac { dt }{ dx }
\frac { dy }{ dx } =cost.\frac { dt }{ dx } =cos({ x }^{ 2 }+5)\frac { d }{ dx } ({ x }^{ 2 }+5)
= cos (x² + 5) × 2x
= 2x cos (x² + 5)

Ex 5.2 Class 12 Maths Question 2.
cos (sin x)
Solution:
let y = cos (sin x)
put sinx = t
∴ y = cost,
t = sinx
\frac { dy }{ dx } =-sin\quad t,\frac { dt }{ dx } =cos\quad x
\frac { dy }{ dx } =\frac { dy }{ dt } .\frac { dt }{ dx } =(-sint)\times cosx
Putting the value of t, \frac { dy }{ dx } =-sin(sinx)\times cosx
\frac { dy }{ dx } =-[sin(sinx)]cosx

Ex 5.2 Class 12 Maths Question 3.
sin(ax+b)
Solution:
let = sin(ax+b)
put ax+bx = t
∴ y = sint
t = ax+b
\frac { dy }{ dt } =cost,\frac { dt }{ dx } =\frac { d }{ dx } (ax+b)=a
Now\frac { dy }{ dx } =\frac { dy }{ dt } .\frac { dt }{ dx } =cost\times a=acos\quad t
\frac { dy }{ dx } =acos(ax+b)

Ex 5.2 Class 12 Maths Question 4.
sec(tan(√x))
Solution:
let y = sec(tan(√x))
by chain rule
\frac { dy }{ dx } =sec(tan\sqrt { x } )tan(tan\sqrt { x } )\frac { d }{ dx } (tan\sqrt { x } )
\frac { dy }{ dx } =sec(tan\sqrt { x } ).tan(tan\sqrt { x } ){ sec }^{ 2 }\sqrt { x } .\frac { 1 }{ 2\sqrt { x } }

Ex 5.2 Class 12 Maths Question 5.
\\ \frac { sin(ax+b) }{ cos(cx+d) }
Solution:
y = \\ \frac { sin(ax+b) }{ cos(cx+d) }  = \\ \frac { v }{ u }
u = sin(ax+b)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2 Q5.1

Ex 5.2 Class 12 Maths Question 6.
cos x³ . sin²(x5) = y(say)
Solution:
Let u = cos x³ and v = sin² x5,
put x³ = t
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2 Q6.1

Ex 5.2 Class 12 Maths Question 7.
2\sqrt { cot({ x }^{ 2 }) } =y(say)
Solution:
2\sqrt { cot({ x }^{ 2 }) } =y(say)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2 Q7.1

Ex 5.2 Class 12 Maths Question 8.
cos(√x) = y(say)
Solution:
cos(√x) = y(say)
\frac { dy }{ dx } =\frac { d }{ dx } cos\left( \sqrt { x } \right) =-sin\sqrt { x } .\frac { d\sqrt { x } }{ dx }
=-sin\sqrt { x } .\frac { 1 }{ 2 } { (x) }^{ -\frac { 1 }{ 2 } }=\frac { -sin\sqrt { x } }{ 2\sqrt { x } }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2 Q8.1

Ex 5.2 Class 12 Maths Question 9.
Prove that the function f given by f (x) = |x – 1|,x ∈ R is not differential at x = 1.
Solution:
The given function may be written as
f(x)=\begin{cases} x-1,\quad if\quad x\ge 1 \\ 1-x,\quad if\quad x<1 \end{cases}
R.H.D\quad at\quad x=1\quad =\underset { h\rightarrow 0 }{ lim } \frac { f(1+h)-f(1) }{ h }

Ex 5.2 Class 12 Maths Question 10.
Prove that the greatest integer function defined by f (x)=[x], 0 < x < 3 is not differential at x = 1 and x = 2.
Solution:
(i) At x = 1
R.H.D=\underset { h\rightarrow 0 }{ lim } \frac { f(1+h)-f(1) }{ h }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2 Q10.1

Find \\ \frac { dy }{ dx }  in the following

Ex 5.3 Class 12 Maths Question 1.
2x + 3y = sinx
Solution:
2x + 3y = sinx
Differentiating w.r.t x,
2+3\frac { dy }{ dx } =cosx
=>\frac { dy }{ dx } =\frac { 1 }{ 3 } (cosx-2)

Ex 5.3 Class 12 Maths Question 2.
2x + 3y = siny
Solution:
2x + 3y = siny
Differentiating w.r.t x,
2+3.\frac { dy }{ dx } =cosy\frac { dy }{ dx }
=>\frac { dy }{ dx } =\frac { 2 }{ cosy-3 }

Ex 5.3 Class 12 Maths Question 3.
ax + by² = cosy
Solution:
ax + by² = cosy
Differentiate w.r.t. x,
a+2\quad by\quad \frac { dy }{ dx } =-siny\frac { dy }{ dx }
=>or\quad (2b+siny)\frac { dy }{ dx } =-a=>\frac { dy }{ dx } =-\frac { a }{ 2b+siny }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 Q3.1Ex 5.3 Class 12 Maths Question 4.
xy + y² = tan x + y
Solution:
xy + y² = tanx + y
Differentiating w.r.t. x,
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 Q4.1

Ex 5.3 Class 12 Maths Question 5.
x² + xy + y² = 100
Solution:
x² + xy + xy = 100
Differentiating w.r.t. x,
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 Q5.1

Ex 5.3 Class 12 Maths Question 6.
x³ + x²y + xy² + y³ = 81
Solution:
Given that
x³ + x²y + xy² + y³ = 81
Differentiating both sides we get
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 Q6.1

Ex 5.3 Class 12 Maths Question 7.
sin² y + cos xy = π
Solution:
Given that
sin² y + cos xy = π
Differentiating both sides we get
2\quad sin\quad y\frac { d\quad siny }{ dx } +(-sinxy)\frac { d(xy) }{ dx } =0
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 Q7.1

Ex 5.3 Class 12 Maths Question 8.
sin²x + cos²y = 1
Solution:
Given that
sin²x + cos²y = 1
Differentiating both sides, we get
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 Q8.1

Ex 5.3 Class 12 Maths Question 9.
y={ sin }^{ -1 }\left( \frac { 2x }{ { 1+x }^{ 2 } } \right)
Solution:
y={ sin }^{ -1 }\left( \frac { 2x }{ { 1+x }^{ 2 } } \right)
put x = tanθ
y={ sin }^{ -1 }\left( \frac { 2tan\theta }{ { 1+tan }^{ 2 }\theta } \right) ={ sin }^{ -1 }(sin2\theta )=2\theta
y={ 2sin }^{ -1 }x\quad \therefore \frac { dy }{ dx } =\frac { 2 }{ 1+{ x }^{ 2 } }

Ex 5.3 Class 12 Maths Question 10.
y={ tan }^{ -1 }\left( \frac { { 3x-x }^{ 3 } }{ { 1-3x }^{ 2 } } \right) ,-\frac { 1 }{ \sqrt { 3 } } <x<\frac { 1 }{ \sqrt { 3 } }
Solution:
y={ tan }^{ -1 }\left( \frac { { 3x-x }^{ 3 } }{ { 1-3x }^{ 2 } } \right)
put x = tanθ
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 Q10.1

Ex 5.3 Class 12 Maths Question 11.
y={ cos }^{ -1 }\left( \frac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \right) ,0<x<1
Solution:
y={ cos }^{ -1 }\left( \frac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \right) ,0<x<1
put x = tanθ
y={ cos }^{ -1 }\left( \frac { 1-tan^{ 2 }\quad \theta }{ 1+{ tan }^{ 2 }\quad \theta } \right) ={ cos }^{ -1 }(cos2\theta )=2\theta
y={ 2tan }^{ -1 }x\quad \therefore \frac { dy }{ dx } =\frac { 2 }{ 1+{ x }^{ 2 } }

Ex 5.3 Class 12 Maths Question 12.
y={ sin }^{ -1 }\left( \frac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \right) ,0<x<1
Solution:
y={ sin }^{ -1 }\left( \frac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \right) ,0<x<1
put x = tanθ
we get
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 Q12.1

Ex 5.3 Class 12 Maths Question 13.
y={ cos }^{ -1 }\left( \frac { 2x }{ 1+{ x }^{ 2 } } \right) ,-1<x<1
Solution:
y={ cos }^{ -1 }\left( \frac { 2x }{ 1+{ x }^{ 2 } } \right) ,-1<x<1
put x = tanθ
we get
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.3 Q13.1

Ex 5.3 Class 12 Maths Question 14.
y=sin^{ -1 }\left( 2x\sqrt { 1-{ x }^{ 2 } } \right) ,-\frac { 1 }{ \sqrt { 2 } } <x<\frac { 1 }{ \sqrt { 2 } }
Solution:
y=sin^{ -1 }\left( 2x\sqrt { 1-{ x }^{ 2 } } \right) ,-\frac { 1 }{ \sqrt { 2 } } <x<\frac { 1 }{ \sqrt { 2 } }
put x = tanθ
we get
y=sin^{ -1 }\left( 2sin\quad \theta \sqrt { 1-{ x }^{ 2 } } \right)
y=sin^{ -1 }\left( 2sin\theta \quad cos\theta \right) \quad ={ sin }^{ -1 }(sin2\theta )\quad =2\theta
y=2sin^{ -1 }x\quad \therefore \frac { dy }{ dx } =\frac { 2 }{ \sqrt { { 1-x }^{ 2 } } }

Ex 5.3 Class 12 Maths Question 15.
y=sin^{ -1 }\left( \frac { 1 }{ { 2x }^{ 2 }-1 } \right) ,0<x<\frac { 1 }{ \sqrt { 2 } }
Solution:
y=sin^{ -1 }\left( \frac { 1 }{ { 2x }^{ 2 }-1 } \right) ,0<x<\frac { 1 }{ \sqrt { 2 } }
put x = tanθ
we get
y=sec^{ -1 }\left( \frac { 1 }{ { 2cos }^{ 2 }\theta -1 } \right) ={ sec }^{ -1 }\left( \frac { 1 }{ cos2\theta } \right)
y=sec^{ -1 }(sec2\theta )=2\theta ,\quad y=2{ cos }^{ -1 }x
\therefore \frac { dy }{ dx } =\frac { -2 }{ \sqrt { { 1-x }^{ 2 } } }

Differentiate the following w.r.t.x:

Ex 5.4 Class 12 Maths Question 1.
\frac { { e }^{ x } }{ sinx }
Solution:
y=\frac { { e }^{ x } }{ sinx }
for\quad y=\frac { u }{ v } ,
\frac { dy }{ dx } =\frac { { e }^{ x }{ sin }x-{ e }^{ x }cosx }{ { sin }^{ 2 }x }
or\frac { dy }{ dx } =\frac { { e }^{ x }{ sin }x-{ e }^{ x }cosx }{ { sin }^{ 2 }x } ,where\quad x\neq n\pi ,x\in z

Ex 5.4 Class 12 Maths Question 2.
{ e }^{ { sin }^{ -1 }x }
Solution:
{ e }^{ { sin }^{ -1 }x }
y={ e }^{ { sin }^{ -1 }x }
x=sint
\therefore y={ e }^{ t },\frac { dt }{ dx } =\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } ,\frac { dy }{ dt } ={ e }^{ t }
\therefore \frac { dy }{ dx } =\frac { dy }{ dt } .\frac { dt }{ dx } ={ e }^{ t }.\frac { 1 }{ \sqrt { { 1- }x^{ 2 } } } =\frac { { e }^{ { sin }^{ -1 }x } }{ \sqrt { 1-{ x }^{ 2 } } }

Ex 5.4 Class 12 Maths Question 3.
{ e }^{ { x }^{ 3 } }=y
Solution:
{ e }^{ { x }^{ 3 } }=y
Put\quad { x }^{ 3 }=t\quad \therefore \quad y={ e }^{ t },\frac { dy }{ dt } ={ e }^{ t },\frac { dt }{ dx } ={ 3x }^{ 2 }
\therefore \frac { dy }{ dx } =\frac { dy }{ dt } \times \frac { dt }{ dx } ={ e }^{ t }\times { 3x }^{ 2 }={ 3x }^{ 2 }{ e }^{ { x }^{ 3 } }

Ex 5.4 Class 12 Maths Question 4.
sin\left( { tan }^{ -1 }{ e }^{ -x } \right) =y
Solution:
sin\left( { tan }^{ -1 }{ e }^{ -x } \right) =y
\frac { dy }{ dx } =cos\left( { tan }^{ -1 }{ e }^{ -x } \right) \frac { d }{ dx } \left( { tan }^{ -1 }{ e }^{ -x } \right)
=cos\left( { tan }^{ -1 }{ e }^{ -x } \right) \frac { 1 }{ 1+{ e }^{ -2x } } \frac { d }{ dx } \left( { e }^{ -x } \right)
=-cos\left( { tan }^{ -1 }{ e }^{ -x } \right) \frac { 1 }{ 1+{ e }^{ -2x } } .\left( { e }^{ -x } \right)

Ex 5.4 Class 12 Maths Question 5.
log(cos\quad { e }^{ x })=y
Solution:
\frac { dy }{ dx } =\frac { 1 }{ cos\quad { e }^{ x } } \left( -sin{ e }^{ x } \right) .{ e }^{ x }\quad =-tan\left( { e }^{ x } \right)

Ex 5.4 Class 12 Maths Question 6.
{ e }^{ x }+{ e }^{ { x }^{ 2 } }++{ e }^{ { x }^{ 5 } }=y(say)
Solution:
let\quad u={ e }^{ { x }^{ n } },put\quad { x }^{ n }=t,u={ e }^{ t },t={ x }^{ n }
{ e }^{ x }+{ e }^{ { x }^{ 2 } }++{ e }^{ { x }^{ 5 } }=y(say)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.4 Q6.1

Ex 5.4 Class 12 Maths Question 7.
\sqrt { { e }^{ \sqrt { x } } } ,x>0
Solution:
y = \sqrt { { e }^{ \sqrt { x } } } ,x>0
y=\sqrt { { e }^{ \sqrt { x } } } ,let\quad y=\sqrt { s } ,s={ e }^{ t },t=\sqrt { x }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.4 Q7.1

Ex 5.4 Class 12 Maths Question 8.
log(log x),x>1
Solution:
y = log(log x),
put y = log t, t = log x,
differentiating
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.4 Q8.1

Ex 5.4 Class 12 Maths Question 9.
\frac { cosx }{ logx } =y(say),x>0
Solution:
let y=\frac { cosx }{ logx }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.4 Q9.1

Ex 5.4 Class 12 Maths Question 10.
cos(log x+ex),x>0
Solution:
y = cos(log x+ex),x>0
put y = cos t,t = log x+ex
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.4 Q10.1

Differentiate the functions given in Questions 1 to 11 w.r.to x

Ex 5.5 Class 12 Maths Question 1.
cos x. cos 2x. cos 3x
Solution:
Let y = cos x. cos 2x . cos 3x,
Taking log on both sides,
log y = log (cos x. cos 2x. cos 3x)
log y = log cos x + log cos 2x + log cos 3x,
Differentiating w.r.t. x, we get
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q1.1

Ex 5.5 Class 12 Maths Question 2.
\sqrt { \frac { (x-1)(x-2) }{ (x-3)(x-4)(x-5) } }
Solution:
y=\sqrt { \frac { (x-1)(x-2) }{ (x-3)(x-4)(x-5) } }
taking log on both sides
log y = log \sqrt { \frac { (x-1)(x-2) }{ (x-3)(x-4)(x-5) } }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q2.1

Ex 5.5 Class 12 Maths Question 3.
(log x)cosx
Solution:
let y = (log x)cosx
Taking log on both sides,
log y = log (log x)cosx
log y = cos x log (log x),
Differentiating w.r.t. x,
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q3.1Ex 5.5 Class 12 Maths Question 4.
x – 2sinx
Solution:
let y = x – 2sinx,
y = u – v
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q4.1

Ex 5.5 Class 12 Maths Question 5.
(x+3)2.(x + 4)3.(x + 5)4
Solution:
let y = (x + 3)2.(x + 4)3.(x + 5)4
Taking log on both side,
logy = log [(x + 3)2 • (x + 4)3 • (x + 5)4]
= log (x + 3)2 + log (x + 4)3 + log (x + 5)4
log y = 2 log (x + 3) + 3 log (x + 4) + 4 log (x + 5)
Differentiating w.r.t. x, we get
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q5.1

Ex 5.5 Class 12 Maths Question 6.
{ \left( x+\frac { 1 }{ x } \right) }^{ x }+{ x }^{ \left( 1+\frac { 1 }{ x } \right) }
Solution:
let y={ \left( x+\frac { 1 }{ x } \right) }^{ x }+{ x }^{ \left( 1+\frac { 1 }{ x } \right) }
let u={ \left( x+\frac { 1 }{ x } \right) }^{ x }and\quad v={ x }^{ \left( 1+\frac { 1 }{ x } \right) }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q6.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q6.2
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q6.3

Ex 5.5 Class 12 Maths Question 7.
(log x)x + xlogx
Solution:
let y = (log x)x + xlogx = u+v
where u = (log x)x
∴ log u = x log(log x)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q7.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q7.2

Ex 5.5 Class 12 Maths Question 8.
(sin x)x+sin-1 √x
Solution:
Let y = (sin x)+ sin-1 √x
let u = (sin x)x, v = sin-1 √x
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q8.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q8.2

Ex 5.5 Class 12 Maths Question 9.
xsinx + (sin x)cosx
Solution:
let y = xsinx + (sin x)cosx = u+v
where u = xsinx
log u = sin x log x
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q9.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q9.2

Ex 5.5 Class 12 Maths Question 10.
{ x }^{ x\quad cosx }+\frac { { x }^{ 2 }+1 }{ { x }^{ 2 }-1 }
Solution:
y={ x }^{ x\quad cosx }+\frac { { x }^{ 2 }+1 }{ { x }^{ 2 }-1 }
y = u + v
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q10.1

Ex 5.5 Class 12 Maths Question 11.
{ (x\quad cosx) }^{ x }+{ (x\quad sinx) }^{ \frac { 1 }{ x } }
Solution:
y={ (x\quad cosx) }^{ x }+{ (x\quad sinx) }^{ \frac { 1 }{ x } }
Let u = (x cosx)x
logu = x log(x cosx)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q11.1
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q11.2

Find \\ \frac { dy }{ dx }  of the functions given in Questions 12 to 15.

Ex 5.5 Class 12 Maths Question 12.
xy + yx = 1
Solution:
xy + yx = 1
let u = xy and v = yx
∴ u + v = 1,
\frac { du }{ dx } +\frac { dv }{ dx }=0
Now u = x
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q12.1

Ex 5.5 Class 12 Maths Question 13.
y= xy
Solution:
y = x
x logy = y logx
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q13.1

Ex 5.5 Class 12 Maths Question 14.
(cos x)y = (cos y)x
Solution:
We have
(cos x)y = (cos y)x
=> y log (cosx) = x log (cosy)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q14.1

Ex 5.5 Class 12 Maths Question 15.
xy = e(x-y)
Solution:
log(xy) = log e(x-y)
=> log(xy) = x – y
=> logx + logy = x – y
=>\frac { 1 }{ x } +\frac { 1 }{ y } \frac { dy }{ dx } =1-\frac { dy }{ dx } =>\frac { dy }{ dx } =\frac { y(x-1) }{ x(y+1) }

Ex 5.5 Class 12 Maths Question 16.
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f'(1).
Solution:
Let f(x) = y = (1 + x)(1 + x2)(1 + x4)(1 + x8)
Taking log both sides, we get
logy = log [(1 + x)(1 + x2)(1 + x4)(1 + x8)]
logy = log(1 + x) + log (1 + x2) + log(1 + x4) + log(1 + x8)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q16.1

Ex 5.5 Class 12 Maths Question 17.
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
(i) by using product rule
(ii) by expanding the product to obtain a single polynomial.
(iii) by logarithmic differentiation.
Do they all give the same answer?
Solution:
(i) By using product rule
f’ = (x2 – 5x + 8) (3x2 + 7) + (x3 + 7x + 9) (2x – 5)
f = 5x4 – 20x3 + 45x2 – 52x + 11.
(ii) By expanding the product to obtain a single polynomial, we get
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q17.1

Ex 5.5 Class 12 Maths Question 18.
If u, v and w are functions of w then show that
\frac { d }{ dx } (u.v.w)=\frac { du }{ dx } v.w+u.\frac { dv }{ dx } .w+u.v\frac { dw }{ dx }
in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Solution:
Let y = u.v.w
=> y = u. (vw)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.5 Q18.1

If x and y are connected parametrically by the equations given in Questions 1 to 10, without eliminating the parameter. Find \\ \frac { dy }{ dx } .

Ex 5.6 Class 12 Maths Question 1.
x = 2at², y = at4
Solution:
\frac { dx }{ dt } =4at,\frac { dy }{ dt } ={ 4at }^{ 3 }\quad \therefore \frac { dy }{ dx } =\frac { \frac { dy }{ dt } }{ \frac { dx }{ dt } } =\frac { { 4at }^{ 3 } }{ { 4at } } ={ t }^{ 2 }

Ex 5.6 Class 12 Maths Question 2.
x = a cosθ,y = b cosθ
Solution:
\frac { dx }{ d\theta } =-asin\theta ,\frac { dy }{ d\theta } =-sinb\quad sin\theta =>\frac { dy }{ dx } =\frac { b }{ a }

Ex 5.6 Class 12 Maths Question 3.
x = sin t, y = cos 2t
Solution:
\therefore \frac { dx }{ dt } =cos\quad t\quad and\frac { dy }{ dt } =-sin2t.2=-2sin2t
\frac { dy }{ dx } =\frac { -2sin2t }{ cost } =\frac { -2.2sintcost }{ cost } =-4sint

Ex 5.6 Class 12 Maths Question 4.
x=4t,y=\frac { 4 }{ t }
Solution:
\frac { dx }{ dt } =4;\frac { dy }{ dt } =\frac { -4 }{ { t }^{ 2 } } =>\frac { dy }{ dx } =\frac { -4 }{ { t }^{ 2 } } \times \frac { 1 }{ 4 } =\frac { -1 }{ { t }^{ 2 } }

Ex 5.6 Class 12 Maths Question 5.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
Solution:
\frac { dx }{ d\theta } =-sin\theta -(-sin2\theta ).2=2sin2\theta -sin\theta
\frac { dy }{ d\theta } =cos\theta -2cos2\theta \quad \therefore \frac { dy }{ dx } =\frac { cos\theta -2cos2\theta }{ 2sin2\theta -sin\theta }

Ex 5.6 Class 12 Maths Question 6.
x = a(θ – sinθ), y = a(1 + cosθ)
Solution:
\frac { dx }{ d\theta } =a\left[ 1-cos\theta \right] \& \frac { dy }{ d\theta } =-asin\theta
\frac { dy }{ dx } =\frac { -asin\theta }{ a(1-cos\theta ) } =\frac { -2sin\frac { \theta }{ 2 } .cos\frac { \theta }{ 2 } }{ 2{ sin }^{ 2 }\frac { \theta }{ 2 } } =-cot\frac { \theta }{ 2 }

Ex 5.6 Class 12 Maths Question 7.
x=\frac { { sin }^{ 3 }t }{ \sqrt { cos2t } } \& y=\frac { { cos }^{ 3 }t }{ \sqrt { cos2t } }
Solution:
x=\frac { { sin }^{ 3 }t }{ \sqrt { cos2t } } \& y=\frac { { cos }^{ 3 }t }{ \sqrt { cos2t } }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.6 Q7.1

Ex 5.6 Class 12 Maths Question 8.
x=a\left( cost+log\quad tan\frac { t }{ 2 } \right) ,y=a\quad sint
Solution:
x=a\left( cost+log\quad tan\frac { t }{ 2 } \right) ,y=a\quad sint
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.6 Q8.1

Ex 5.6 Class 12 Maths Question 9.
x = a sec θ,y = b tan θ
Solution:
x = a sec θ,y = b tan θ
\frac { dx }{ d\theta } =a\quad sec\theta \quad tan\theta \quad and\frac { dy }{ d\theta } =b{ sec }^{ 2 }\theta
\frac { dy }{ dx } =\frac { { bsec }^{ 2 }\theta }{ asec\theta tan\theta } \frac { b }{ a } cosec\theta

Ex 5.6 Class 12 Maths Question 10.
x = a(cosθ+θsinθ), y = a(sinθ-θcosθ)
Solution:
x = a(cosθ+θsinθ), y = a(sinθ-θcosθ)
\frac { dx }{ d\theta } =a\left[ -sin\theta +\theta .cos\theta +sin\theta \right] =a\theta cos\theta
\frac { dy }{ d\theta } =a\theta sin\theta =>\frac { dy }{ dx } =\frac { a\theta sin\theta }{ a\theta cos\theta } =tan\theta

Ex 5.6 Class 12 Maths Question 11.
If x=\sqrt { { a }^{ { sin }^{ -1 }t } } ,y=\sqrt { { a }^{ { cos }^{ -1 }t } }  show that \frac { dy }{ dx } =-\frac { y }{ x }
Solution:
Given that
x=\sqrt { { a }^{ { sin }^{ -1 }t } } ,y=\sqrt { { a }^{ { cos }^{ -1 }t } }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.6 Q11.1

Find the second order derivatives of the functions given in Questions 1 to 10.

Ex 5.7 Class 12 Maths Question 1.
x² + 3x + 2 = y(say)
Solution:
\frac { dy }{ dx } =2x+3\quad and\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =2

Ex 5.7 Class 12 Maths Question 2.
x20 = y(say)
Solution:
\frac { dy }{ dx } ={ 20 }x^{ 19 }\quad =>\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =20\times { 19x }^{ 18 }={ 380 }x^{ 18 }\qquad

Ex 5.7 Class 12 Maths Question 3.
x.cos x = y(say)
Solution:
\frac { dy }{ dx } =x(-sinx)+cosx.1,=-xsinx+cosx
\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =-xcosx-sinx-sinx=-xcosx-2sinx

Ex 5.7 Class 12 Maths Question 4.
log x = y (say)
Solution:
\frac { dy }{ dx } =\frac { 1 }{ x } =>\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =-\frac { 1 }{ { x }^{ 2 } }

Ex 5.7 Class 12 Maths Question 5.
x3 log x = y (say)
Solution:
x3 log x = y
=>\frac { dy }{ dx } ={ x }^{ 3 }.\frac { 1 }{ x } +logx\times { 3x }^{ 2 }={ x }^{ 2 }+{ 3x }^{ 2 }logx
\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =2x+{ 3x }^{ 2 }.\frac { 1 }{ x } +logx.6x=x(5+6logx)

Ex 5.7 Class 12 Maths Question 6.
ex sin5x = y
Solution:
ex sin5x = y
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.7 Q6.1

Ex 5.7 Class 12 Maths Question 7.
e6x cos3x = y
Solution:
e6x cos3x = y
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.7 Q7.1

Ex 5.7 Class 12 Maths Question 8.
tan-1 x = y
Solution:
\frac { dy }{ dx } =\frac { 1 }{ 1+{ x }^{ 2 } } =>\frac { { d }^{ 2y } }{ { dx }^{ 2 } } =\frac { -2x }{ { ({ 1+x }^{ 2 }) }^{ 2 } }

Ex 5.7 Class 12 Maths Question 9.
log(logx) = y
Solution:
log(logx) = y
\frac { dy }{ dx } =\frac { 1 }{ logx } .\frac { 1 }{ x }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.7 Q9.1

Ex 5.7 Class 12 Maths Question 10.
sin(log x) = y
Solution:
sin(log x) = y
\frac { dy }{ dx } =\frac { cos(logx) }{ x }
and\quad \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =\frac { x.\left[ -sin(logx) \right] .\frac { 1 }{ x } -cos(logx).1 }{ { x }^{ 2 } }
=\frac { \left[ sin(logx)+cos(logx) \right] }{ { x }^{ 2 } }

Ex 5.7 Class 12 Maths Question 11.
If y = 5 cosx – 3 sin x, prove that \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } +y=0
Solution:
\frac { dy }{ dx } =-5sinx-3cosx
\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =-5cosx+3sinx=-y
\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } +y=0
Hence proved

Ex 5.7 Class 12 Maths Question 12.
If y = cos-1 x, Find \frac { { d }^{ 2 }y }{ { dx }^{ 2 } }  in terms of y alone.
Solution:
\frac { dy }{ dx } =-{ \left( { 1-x }^{ 2 } \right) }^{ -\frac { 1 }{ 2 } }
\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =\frac { -cosy }{ { \left( { sin }^{ 2 }y \right) }^{ \frac { 3 }{ 2 } } } =-coty\quad { cosec }^{ 2 }y

Ex 5.7 Class 12 Maths Question 13.
If y = 3 cos (log x) + 4 sin (log x), show that
{ x }^{ 2 }{ y }_{ 2 }+{ xy }_{ 1 }+y=0
Solution:
Given that
y = 3 cos (log x) + 4 sin (log x)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.7 Q13.1

Ex 5.7 Class 12 Maths Question 14.
If\quad y=A{ e }^{ mx }+B{ e }^{ nx },\quad show\quad that\quad \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } -(m+n)\frac { dy }{ dx } +mny=0
Solution:
Given that
\quad y=A{ e }^{ mx }+B{ e }^{ nx },\quad
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.7 Q14.1

Ex 5.7 Class 12 Maths Question 15.
If y = 500e7x + 600e-7x, show that \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =49y.
Solution:
we have
y = 500e7x + 600e-7x
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.7 Q15.1

Ex 5.7 Class 12 Maths Question 16.
If ey(x+1) = 1,show that \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } ={ \left( \frac { dy }{ dx } \right) }^{ 2 }
Solution:
{ e }^{ y }(x+1)=1=>{ e }^{ y }=\frac { 1 }{ x+1 }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.7 Q16.1

Ex 5.7 Class 12 Maths Question 17.
If y=(tan-1 x)² show that (x²+1)²y2+2x(x²+1)y1=2
Solution:
we have
y=(tan-1 x)²
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.7 Q17.1

Ex 5.8 Class 12 Maths Question 1.
Verify Rolle’s theorem for the function
f(x) = x² + 2x – 8,x∈ [-4,2]
Solution:
Now f(x) = x² + 2x – 8 is a polynomial
∴ it is continuous and derivable in its domain x∈R.
Hence it is continuous in the interval [-4,2] and derivable in the interval (- 4,2)
f(-4) = (-4)² + 2(-4) – 8 = 16 – 8 – 8 = 0,
f(2) = 2² + 4 – 8 = 8 – 8 = 0
Conditions of Rolle’s theorem are satisfied.
f'(x) = 2x + 2
∴ f’ (c) = 2c + 2 = 0
or c = – 1, c = – 1 ∈ [-4,2]
Thus f’ (c) = 0 at c = – 1.

Ex 5.8 Class 12 Maths Question 2.
Examine if Rolle’s theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s theorem from these example?
(i) f(x) = [x] for x ∈ [5,9]
(ii) f (x) = [x] for x ∈ [-2,2]
(iii) f (x) = x² – 1 for x ∈ [1,2]
Solution:
(i) In the interval [5, 9], f (x) = [x] is neither continuous nor derivable at x = 6,7,8 Hence Rolle’s theorem is not applicable
(ii) f (x) = [x] is not continuous and derivable at -1, 0, 1. Hence Rolle’s theorem is not applicable.
(iii) f(x) = (x² – 1),f(1) = 1 – 1 = 0,
f(2) = 22 – 1 = 3
f(a)≠f(b)
Though it is continous and derivable in the interval [1,2].
Rolle’s theorem is not applicable.
In case of converse if f (c)=0, c ∈ [a, b] then conditions of rolle’s theorem are not true.
(i) f (x) = [x] is the greatest integer less than or equal to x.
∴f(x) = 0, But fis neither continuous nor differentiable in the interval [5,9].
(ii) Here also, theough f (x) = 0, but f is neither continuous nor differentiable in the interval [-2,2].
(iii) f (x)=x² – 1, f'(x)=2x. Here f'(x) is not zero in the [1,2], So f (2) ≠ f’ (2).

Ex 5.8 Class 12 Maths Question 3.
If f: [-5,5] –>R is a differentiable function and if f (x) does not vanish anywhere then prove that f (- 5) ≠ f (5).
Solution:
For Rolle’s theorem
If (i) f is continuous in [a, b]
(ii) f is derivable in [a, b]
(iii) f (a) = f (b)
then f’ (c)=0, c e (a, b)
∴ f is continuous and derivable
but f (c) ≠ 0 =>f(a) ≠ f(b) i.e., f(-5)≠f(5)

Ex 5.8 Class 12 Maths Question 4.
Verify Mean Value Theorem, if
f (x) = x² – 4x – 3 in the interval [a, b], where a = 1 and b = 4.
Solution:
f (x) = x² – 4x – 3. It being a polynomial it is continuous in the interval [1,4] and derivable in (1,4), So all the condition of mean value theorem hold.
then f’ (x) = 2x – 4,
f’ (c) = 2c – 4
f(4)= 16 – 16 – 3 = – 3,
f(1)= 1 – 4 – 3 = – 6
Then there exist a value c such that
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.8 Q4.1

Ex 5.8 Class 12 Maths Question 5.
Verify Mean Value Theorem, if f (x)=x3 – 5x2 – 3x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1,3) for which f’ (c) = 0.
Solution:
f (x)=x3 – 5x2 – 3x,
It is a polynomial. Therefore it is continuous in the interval [1,3] and derivable in the interval (1,3)
Also, f'(x)=3x²-10x-3
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.8 Q5.1

Ex 5.8 Class 12 Maths Question 6.
Examine the applicability of Mean Value theroem for all three functions given in the above Question 2.
Solution:
(i) F (x)= [x] for x ∈ [5,9], f (x) = [x] in the interval [5, 9] is neither continuous, nor differentiable.
(ii) f (x) = [x], for x ∈ [-2,2],
Again f (x) = [x] in the interval [-2,2] is neither continous, nor differentiable.
(iii) f(x) = x²-1 for x ∈ [1,2], It is a polynomial. Therefore it is continuous in the interval [1,2] and differentiable in the interval (1,2)
f (x) = 2x, f(1) = 1 – 1 = 0 ,
f(2) = 4 – 1 = 3, f'(c) = 2c
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.8 Q6.1

Read More

Class 12th Chapter -4 Determinants | NCERT Maths Solution | NCERT Solution | Edugrown

It is important that you have a strong foundation in Maths Solutions. This can help you immensely in exams. Because there is no paper pattern set for the board exams. Every year there are different twists and turns in questions asked in board exams. While preparing for maths it becomes to go through every bit of detail. Thus, NCERT Solutions Class 12 Maths can help you lay a strong foundation. There solutions of each and every question given in the NCERT 12 Textbook in this article. There are crucial chapters like integration, algebra, and calculus which you can solve easily using these Class 12 Maths solutions. Using these NCERT Maths Class 12 Solutions can give you an edge over the other students.

NCERT Solutions for Class 12 Maths Chapter : 4 Determinants

Ex 4.1 Class 12 Maths Question 1.
Evaluate the following determinant:
\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}
Solution:
\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}
= 2x(-1)-(-5)x(4)
=-2+20
=18

Ex 4.1 Class 12 Maths Question 2.
(i) \begin{vmatrix} cos\theta & \quad -sin\theta \\ sin\theta & \quad cos\theta \end{vmatrix}
(ii) \begin{vmatrix} { x }^{ 2 }-x+1 & x-1 \\ x+1 & x+1 \end{vmatrix}
Solution:
(i) \begin{vmatrix} cos\theta & \quad -sin\theta \\ sin\theta & \quad cos\theta \end{vmatrix}
= cosθ cosθ – (sinθ)(-sinθ)
= cos²θ + sin²θ
= 1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1 Q2.1

Ex 4.1 Class 12 Maths Question 3.
If A=\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} then show that |2A|=|4A|
Solution:
A=\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}
=> 2A=\begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix}
L.H.S = |2A|
2A=\begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix}
= – 24
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1 Q3.1

Ex 4.1 Class 12 Maths Question 4.
A=\left[ \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{matrix} \right]  , then show that |3A| = 27|A|
Solution:
3A = 3\left[ \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{matrix} \right]
3\left[ \begin{matrix} 3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1 Q4.1

Ex 4.1 Class 12 Maths Question 5.
Evaluate the following determinant:
(i) \left| \begin{matrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{matrix} \right|
(ii) \left| \begin{matrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{matrix} \right|
(iii) \left| \begin{matrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{matrix} \right|
(iv) \left| \begin{matrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{matrix} \right|
Solution:
(i) \left| \begin{matrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{matrix} \right|
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1 Q5.1>

Ex 4.1 Class 12 Maths Question 6.
If \left[ \begin{matrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{matrix} \right] , find |A|
Solution:
|A| = \left[ \begin{matrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{matrix} \right]
= 1(-9+12)-1(-18+15)-2(8-5)
= 0

Ex 4.1 Class 12 Maths Question 7.
Find the values of x, if
(i) \begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix}=\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}
(ii)\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix}=\begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}
Solution:
(i) \begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix}=\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}
=> 2 – 20 = 2x² – 24
=> x² = 3
=> x = ±√3
(ii)\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix}=\begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}
or
2 × 5 – 4 × 3 = 5 × x – 2x × 3
=>x = 2

Ex 4.1 Class 12 Maths Question 8.
If \begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix}=\begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}, then x is equal to
(a) 6
(b) +6
(c) -6
(d) 0
Solution:
(b) \begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix}=\begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}
=> x² – 36 = 36 – 36
=> x² = 36
=> x = ± 6

Ex 4.2 Class 12 Maths Question 1.
\left| \begin{matrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{matrix} \right| =0
Solution:
L.H.S = \left| \begin{matrix} x & a & x \\ y & b & y \\ z & c & z \end{matrix} \right| +\left| \begin{matrix} x & a & a \\ y & b & b \\ z & c & c \end{matrix} \right|
(C1 = C3 and C2 = C3)
= 0 + 0
= 0
= R.H.S

Ex 4.2 Class 12 Maths Question 2.
\left| \begin{matrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{matrix} \right| =0
Solution:
L.H.S = \left| \begin{matrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{matrix} \right| =0
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q2.1

Ex 4.2 Class 12 Maths Question 3.
\left| \begin{matrix} 2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86 \end{matrix} \right| =0
Solution:
\left| \begin{matrix} 2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86 \end{matrix} \right| =\left| \begin{matrix} 2 & 7 & 0 \\ 3 & 8 & 0 \\ 5 & 9 & 0 \end{matrix} \right|
{ C }_{ 3 }\rightarrow { C }_{ 3 }-{ C }_{ 1 }-{ 9C }_{ 2 }=0

Ex 4.2 Class 12 Maths Question 4.
\left| \begin{matrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{matrix} \right| =0
Solution:
L.H.S = \left| \begin{matrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{matrix} \right|
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q4.1

Ex 4.2 Class 12 Maths Question 5.
\left| \begin{matrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{matrix} \right| =2\left| \begin{matrix} a & p & x \\ b & q & y \\ c & r & z \end{matrix} \right|
Solution:
L.H.S = ∆ = \left| \begin{matrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{matrix} \right|
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q5.1

By using properties of determinants in Q 6 to 14, show that

Ex 4.2 Class 12 Maths Question 6.
\left| \begin{matrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{matrix} \right| =0
Solution:
L.H.S = ∆ = \left| \begin{matrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{matrix} \right|  …(i)
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q6.1

Ex 4.2 Class 12 Maths Question 7.
\left| \begin{matrix} { -a }^{ 2 } & ab & ac \\ ba & { -b }^{ 2 } & bc \\ ac & cb & { -c }^{ 2 } \end{matrix} \right| ={ 4a }^{ 2 }{ b }^{ 2 }{ c }^{ 2 }
Solution:
L.H.S = \left| \begin{matrix} { -a }^{ 2 } & ab & ac \\ ba & { -b }^{ 2 } & bc \\ ac & cb & { -c }^{ 2 } \end{matrix} \right|
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q7.1

Ex 4.2 Class 12 Maths Question 8.
(a) \left| \begin{matrix} 1 & a & { a }^{ 2 } \\ 1 & b & { b }^{ 2 } \\ 1 & c & { c }^{ 2 } \end{matrix} \right| =(a-b)(b-c)(c-a)
(b) \left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ { a }^{ 3 } & { b }^{ 3 } & { c }^{ 3 } \end{matrix} \right| =(a-b)(b-c)(c-a)(a+b+c)
Solution:
(a) L.H.S = \left| \begin{matrix} 1 & a & { a }^{ 2 } \\ 1 & b & { b }^{ 2 } \\ 1 & c & { c }^{ 2 } \end{matrix} \right|
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q8.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q8.2

Ex 4.2 Class 12 Maths Question 9.
\left| \begin{matrix} x & x^{ 2 } & yx \\ y & { y }^{ 2 } & zx \\ z & { z }^{ 2 } & xy \end{matrix} \right| =(x-y)(y-z)(z-x)(xy+yz+zx)
Solution:
Let ∆ = \left| \begin{matrix} x & x^{ 2 } & yx \\ y & { y }^{ 2 } & zx \\ z & { z }^{ 2 } & xy \end{matrix} \right|
Applying R1–>R1 – R2, R2–>R2 – R3
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q9.1

Ex 4.2 Class 12 Maths Question 10.
(a) \left| \begin{matrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{matrix} \right| =(5x+4){ (4-x) }^{ 2 }
(b) \left| \begin{matrix} y+x & y & y \\ y & y+k & y \\ y & y & y+k \end{matrix} \right| ={ k }^{ 2 }(3y+k)
Solution:
(a) L.H.S = \left| \begin{matrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{matrix} \right|<br />
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q10.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q10.2

Ex 4.2 Class 12 Maths Question 11.
(a) \left| \begin{matrix} a-b-c & \quad 2a & \quad 2a \\ 2b & \quad b-c-a & \quad 2b \\ 2c & 2c & \quad c-a-b \end{matrix} \right| ={ (a+b+c) }^{ 3 }
(b) \left| \begin{matrix} x+y+2z & \quad z & \quad z \\ x & \quad y+z+2x & \quad x \\ y & y & \quad z+x+2y \end{matrix} \right| ={ 2(x+y+z) }^{ 3 }
Solution:
(a) L.H.S = \left| \begin{matrix} a-b-c & \quad 2a & \quad 2a \\ 2b & \quad b-c-a & \quad 2b \\ 2c & 2c & \quad c-a-b \end{matrix} \right|
\left( a+b+c \right) \left| \begin{matrix} 1 & \quad 1 & \quad 1 \\ 2b & \quad b-c-a & \quad 2b \\ 2c & \quad 2c & \quad c-a-b \end{matrix} \right|
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q11.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q11.2

Ex 4.2 Class 12 Maths Question 12.
\left| \begin{matrix} 1 & \quad x & { \quad x }^{ 2 } \\ { x }^{ 2 } & \quad 1 & x \\ x & { \quad x }^{ 2 } & 1 \end{matrix} \right| ={ { (1-x }^{ 3 }) }^{ 2 }
Solution:
L.H.S = \left| \begin{matrix} 1 & \quad x & { \quad x }^{ 2 } \\ { x }^{ 2 } & \quad 1 & x \\ x & { \quad x }^{ 2 } & 1 \end{matrix} \right|
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q12.1

Ex 4.2 Class 12 Maths Question 13.
\left| \begin{matrix} 1+{ a }^{ 2 }-{ b }^{ 2 } & \quad 2ab & \quad -2b \\ 2ab & \quad 1-{ a }^{ 2 }+{ b }^{ 2 } & \quad 2a \\ 2b & \quad -2a & \quad 1-{ a }^{ 2 }+{ b }^{ 2 } \end{matrix} \right| ={ (1+{ a }^{ 2 }+{ b }^{ 2 }) }^{ 3 }
Solution:
L.H.S = \left| \begin{matrix} 1+{ a }^{ 2 }-{ b }^{ 2 } & \quad 2ab & \quad -2b \\ 2ab & \quad 1-{ a }^{ 2 }+{ b }^{ 2 } & \quad 2a \\ 2b & \quad -2a & \quad 1-{ a }^{ 2 }+{ b }^{ 2 } \end{matrix} \right|
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q13.1

Ex 4.2 Class 12 Maths Question 14.
\left| \begin{matrix} { a }^{ 2 }+1 & \quad ab & \quad ac \\ ab\quad & \quad b^{ 2 }+1 & \quad bc \\ ca\quad & \quad cb & \quad { c }^{ 2 }+1 \end{matrix} \right| =1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }
Solution:
Let ∆ = \left| \begin{matrix} { a }^{ 2 }+1 & \quad ab & \quad ac \\ ab\quad & \quad b^{ 2 }+1 & \quad bc \\ ca\quad & \quad cb & \quad { c }^{ 2 }+1 \end{matrix} \right|
\left| \begin{matrix} { a }^{ 2 }+1 & \quad ab+0 & \quad ac+0 \\ ab+0\quad & \quad b^{ 2 }+1 & \quad bc+0 \\ ca+0\quad & \quad cb+0 & \quad { c }^{ 2 }+1 \end{matrix} \right|
This may be expressed as the sum of 8 determinants
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 Q14.1

Ex 4.2 Class 12 Maths Question 15.
If A be a square matrix of order 3×3, then | kA | is equal to
(a) k|A|
(b) k² |A|
(c) k³ |A|
(d) 3k|A|
Solution:
Option (c) is correct.

Ex 4.2 Class 12 Maths Question 16.
Which of the following is correct:
(a) Determinant is a square matrix
(b) Determinant is a number associated to a matrix
(c) Determinant is a number associated to a square matrix
(d) None of these
Solution:
Option (c) is correct

Ex 4.3 Class 12 Maths Question 1.
Find the area of the triangle with vertices at the point given in each of the following:
(i) (1,0), (6,0) (4,3)
(ii) (2,7), (1,1), (10,8)
(iii) (-2,-3), (3,2), (-1,-8)
Solution:
(i) Area of triangle = \frac { 1 }{ 2 } \left| \begin{matrix} 1\quad & 0 & \quad 1 \\ 6\quad & 0 & \quad 1 \\ 4\quad & 3 & \quad 1 \end{matrix} \right|
\\ \frac { 1 }{ 2 }  [1(0-3)+1(18-0)]
= 7.5 sq units
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.3 Q1.1

Ex 4.3 Class 12 Maths Question 2.
Show that the points A (a, b + c), B (b, c + a) C (c, a+b) are collinear.
Solution:
The vertices of ∆ABC are A (a, b + c), B (b, c + a) and C (c, a + b)
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.3 Q2.1

Ex 4.3 Class 12 Maths Question 3.
Find the value of k if area of triangle is 4 square units and vertices are
(i) (k, 0), (4,0), (0,2)
(ii) (-2,0), (0,4), (0, k).
Solution:
(i) Area of ∆ = 4 (Given)
\frac { 1 }{ 2 } \left| \begin{matrix} k\quad & 0 & \quad 1 \\ 4\quad & 0 & \quad 1 \\ 0\quad & 2 & \quad 1 \end{matrix} \right|
\\ \frac { 1 }{ 2 }  [-2k+8]
= -k+4
Case (a): -k + 4 = 4 ==> k = 0
Case(b): -k + 4 = -4 ==> k = 8
Hence, k = 0,8
(ii) The area of the triangle whose vertices are (-2,0), (0,4), (0, k)
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.3 Q3.1

Ex 4.3 Class 12 Maths Question 4.
(i) Find the equation of line joining (1, 2) and (3,6) using determinants.
(ii) Find the equation of line joining (3,1), (9,3) using determinants.
Solution:
(i) Given: Points (1,2), (3,6)
Equation of the line is
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.3 Q4.1

Ex 4.3 Class 12 Maths Question 5.
If area of triangle is 35 sq. units with vertices (2, – 6), (5,4) and (k, 4). Then k is
(a) 12
(b) – 2
(c) -12,-2
(d) 12,-2
Solution:
(d) Area of ∆ = \frac { 1 }{ 2 } \left| \begin{matrix} 2\quad & -6 & \quad 1 \\ 5\quad & 4 & \quad 1 \\ k\quad & 4 & \quad 1 \end{matrix} \right|
\\ \frac { 1 }{ 2 }  [50 – 10k] = 25 – 5k
∴ 25-5k = 35 or 25-5k = -35
-5k = 10 or 5k = 60
=> k = -2 or k = 12

Ex 4.4 Class 12 Maths Question 1.
Write the minors and cofactors of the elements of following determinants:
(i) \begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}
(ii) \begin{vmatrix} a & c \\ b & d \end{vmatrix}
Solution:
(i) Let A = \begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}
M11 = 3, M12 = 0, M21 = – 4, M22 = 2
For cofactors
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.4 Q1.1

Ex 4.4 Class 12 Maths Question 2.
Write Minors and Cofactor of elements of following determinant
(i) \left| \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right|
(ii) \left| \begin{matrix} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{matrix} \right|
Solution:
(i) Minors M11 = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.4 Q2.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.4 Q2.2
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.4 Q2.3

Ex 4.4 Class 12 Maths Question 3.
Using cofactors of elements of second row, evaluate
\Delta =\left| \begin{matrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{matrix} \right|
Solution:
Given
\Delta =\left| \begin{matrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{matrix} \right|
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.4 Q3.1

Ex 4.4 Class 12 Maths Question 4.
Using Cofactors of elements of third column, evaluate
\Delta =\left| \begin{matrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{matrix} \right|
Solution:
Elements of third column are yz, zx, xy
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.4 Q4.1

Ex 4.4 Class 12 Maths Question 5.
If \Delta =\left| \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right|  and Aij is the cofactors of aij? then value of ∆ is given by
(a) a11A31+a12A32+a13A33
(b) a11A11+a12A21+a13A31
(c) a21A11+a22A12+a23A13
(d) a11A11+a21A21+a31A31
Solution:
Option (d) is correct.

Find the adjoint of each of the matrices in Questions 1 and 2.

Ex 4.5 Class 12 Maths Question 1.
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}=A(say)
Solution:
Let Cij be cofactor of aij in A. Then, the cofactors of elements of A are given by
C11 = (-1)1+1 (4) = 4; C12 = (-1)1+2 (3) = -3
C21 = (-1)2+1 (2)= – 2; C22 = (-1)2+2 (1) = -1
Adj A = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}
\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}

Ex 4.5 Class 12 Maths Question 2.
\left[ \begin{matrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{matrix} \right] =A(say)
Solution:
{ A }_{ 11 }={ (-1) }^{ 1+1 }M_{ 11 }=\begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix}=3
Similarly,
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q2.1

Verify A (adjA) = (adjA) •A = |A| I in Qs. 3 and 4.
Ex 4.5 Class 12 Maths Question 3.
\begin{bmatrix} 2 & 3 \\ -4 & 6 \end{bmatrix}=A(say)
Solution:
|A| = 24
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q3.1

Ex 4.5 Class 12 Maths Question 4.
\left[ \begin{matrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{matrix} \right] =A(say)
Solution:
A11 = 0, A12 = – 11, A13 = 0,
A21 = – 3, A22 = 1, A23 = 1, A31 = – 2
A32 = 8, A33 = – 3
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q4.1

Find the inverse of each of the matrices (if it exists) given in Questions 5 to 11:

Ex 4.5 Class 12 Maths Question 5.
\begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}=A(say)
Solution:
\left| A \right| =\begin{vmatrix} 2 & -2 \\ 4 & 3 \end{vmatrix}=6+8=14\neq 0
So, A is a non-singular matrix and therefore it is invertible. Let cij be cofactor of aij in A. Then, the cofactors of elements of A are given by
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q5.1

Ex 4.5 Class 12 Maths Question 6.
\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}=A(say)
Solution:
\left| A \right| =\begin{vmatrix} -1 & 5 \\ -3 & 2 \end{vmatrix}=-2+15=13\neq 0
So, A is a non-singular matrix and therefore it is invertible. Let cij be cofactor of aij in A. Then, the cofactors of elements of A are given by
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q6.1

Ex 4.5 Class 12 Maths Question 7.
\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{matrix} \right] =A
Solution:
|A| = 10
\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{matrix} \right] =A
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q7.1

Ex 4.5 Class 12 Maths Question 8.
\left[ \begin{matrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{matrix} \right] =A
Solution:
\left| A \right| =\left| \begin{matrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{matrix} \right| =1\left| \begin{matrix} 3 & 0 \\ 2 & -1 \end{matrix} \right| =-3\neq 0
So, A is a non-singular matrix and therefore it is invertible. Let cij be cofactor of aij in A. Then, the cofactors of elements of A are given by
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q8.1

Ex 4.5 Class 12 Maths Question 9.
\left[ \begin{matrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{matrix} \right] =A
Solution:
|A| = \left[ \begin{matrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{matrix} \right] =A
= 2(-1-0)-1(4-0)+3(8-3)
So, A is non-singular matrix and therefore, it is invertible.
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q9.1

Ex 4.5 Class 12 Maths Question 10.
\left[ \begin{matrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{matrix} \right] =A
Solution:
|A| = \left[ \begin{matrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{matrix} \right] =A
= 1(8-6)+1(0+9)+2(0-6)
= 2+9-12
= -1≠0
∴A is invertible and
{ A }^{ -1 }=\frac { Adj\quad A }{ |A| }
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q10.1

Ex 4.5 Class 12 Maths Question 11.
\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & cos\alpha & sin\alpha \\ 0 & sin\alpha & -cos\alpha \end{matrix} \right]
Solution:
A = \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & cos\alpha & sin\alpha \\ 0 & sin\alpha & -cos\alpha \end{matrix} \right]
adj A = \left[ \begin{matrix} -1 & 0 & 0 \\ 0 & -cos\alpha & -sin\alpha \\ 0 & -sin\alpha & cos\alpha \end{matrix} \right]
First find |A| = -cos²α-sin²α
=-1≠0
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q11.1

Ex 4.5 Class 12 Maths Question 12.
Let A=\begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix},B=\begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}, verify that (AB)-1 = B-1A-1
Solution:
Here |A| = A=\begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}
= 15-14
= 1≠0
Adj A=\begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q12.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q12.2

Ex 4.5 Class 12 Maths Question 13.
If A=\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}  show that A² – 5A + 7I = 0,hence find A-1
Solution:
A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}
A² = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q13.1

Ex 4.5 Class 12 Maths Question 14.
For the matrix A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}  find file numbers a and b such that A²+aA+bI²=0. Hence, find A-1.
Solution:
A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}
A²+aA+bI²=0
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q14.1

Ex 4.5 Class 12 Maths Question 15.
For the matrix A=\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{matrix} \right]  Show that A³-6A²+5A+11I3=0.Hence find A-1
Solution:
A² =  \left[ \begin{matrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q15.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q15.2

Ex 4.5 Class 12 Maths Question 16.
If A=\left[ \begin{matrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{matrix} \right]  show that A³-6A²+9A-4I=0 and hence, find A-1
Solution:
We have
A=\left[ \begin{matrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q16.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q16.2

Ex 4.5 Class 12 Maths Question 17.
Let A be a non-singular square matrix of order 3×3. Then | Adj A | is equal to:
(a) | A |
(b) | A |²
(c) | A |³
(d) 3 | A |
Solution:
Let A = \left[ \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Q17.1
Dividing by | A |, |Adj. A| = | A |²
Hence, Part (b) is the correct answer.

Ex 4.5 Class 12 Maths Question 18.
If A is an invertible matrix of order 2, then det. (A-1) is equal to:
(a) det. (A)
(b) \\ \frac { 1 }{ det.(A) }
(c) 1
(d) 0
Solution:
|A|≠0
=> A-1 exists => AA-1 = I
|AA-1| = |I| = I
=> |A||A-1| = I
|{ A }^{ -1 }|=\frac { 1 }{ |A| }
Hence option (b) is correct.

 

Examine the consistency of the system of equations in Questions 1 to 6Ex 4.6 Class 12 Maths Question 1.
x + 2y = 2
2x + 3y = 3
Solution:
x + 2y = 2,
2x + 3y = 3
=> \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}\left[ \begin{matrix} x \\ y \end{matrix} \right] =\left[ \begin{matrix} 2 \\ 3 \end{matrix} \right]
=> AX = B
Now |A| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}= 3 – 4
= – 1 ≠ 0.
Hence, equations are consistent.

Ex 4.6 Class 12 Maths Question 2.
2x – y = 5
x + y = 4
Solution:
2x – y = 5,
x + y = 4
=> \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}\left[ \begin{matrix} x \\ y \end{matrix} \right] =\left[ \begin{matrix} 5 \\ 4 \end{matrix} \right]
=> AX = B
Now |A| = \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix}
= 2 + 1
= 3 ≠ 0.
Hence, equations are consistent.

Ex 4.6 Class 12 Maths Question 3.
x + 3y = 5,
2x + 6y = 8
Solution:
x + 3y = 5,
2x + 6y = 8
=> \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}\left[ \begin{matrix} x \\ y \end{matrix} \right] =\left[ \begin{matrix} 5 \\ 8 \end{matrix} \right]
=> AX = B
Now |A| = \begin{vmatrix} 1 & 3 \\ 2 & 6 \end{vmatrix}
= 6 – 6
= 0.
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q3.1
Hence, equations are consistent with no solution

Ex 4.6 Class 12 Maths Question 4.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Solution:
x + y + z = 1
2x + 3y + 2z = 2
x + y + z = \\ \frac { 4 }{ a }
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q4.1Ex 4.6 Class 12 Maths Question 5.
3x – y – 2z = 2
2y – z = – 1
3x – 5y = 3
Solution:
\left[ \begin{matrix} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] =\left[ \begin{matrix} 2 \\ -1 \\ 3 \end{matrix} \right]
=> AX = B
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q5.1

 

Ex 4.6 Class 12 Maths Question 6.
5x – y + 4z = 5
2x + 3y + 5z = 2
5x – 2y + 6z = -1
Solution:
Given
5x – y + 4z = 5
2x + 3y + 5z = 2
5x – 2y + 6z = -1
\left[ \begin{matrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] =\left[ \begin{matrix} 5 \\ 2 \\ -1 \end{matrix} \right]
AX=B|A|=\left[ \begin{matrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{matrix} \right]
= 5(18 + 10)+1(12 – 25)+4(-4-15)
= 140-13-76
= 51 ≠ 0
Hence equations are consistent with a unique
solution.

Solve system of linear equations using matrix method in Questions 7 to 14:

Ex 4.6 Class 12 Maths Question 7.
5x + 2y = 4
7x + 3y = 5
Solution:
The given system of equations can be written as
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q7.1

Ex 4.6 Class 12 Maths Question 8.
2x – y = – 2
3x + 3y = 3
Solution:
The given system of equations can be written
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q8.1

Ex 4.6 Class 12 Maths Question 9.
4x – 3y = 3
3x – 5y = 7
Solution:
The given system of equations can be written as
\begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix}\left[ \begin{matrix} x \\ y \end{matrix} \right] =\left[ \begin{matrix} 3 \\ 7 \end{matrix} \right] i.e,,AX=B
where A=\begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q9.1

Ex 4.6 Class 12 Maths Question 10.
5x + 2y = 3
3x + 2y = 5
Solution:
The given system of equations can be written as
\begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix}\left[ \begin{matrix} x \\ y \end{matrix} \right] =\left[ \begin{matrix} 3 \\ 5 \end{matrix} \right] i.e,,AX=B
where A=\begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q10.1

Ex 4.6 Class 12 Maths Question 11.
2x + y + z = 1,
x – 2y – z = 3/2
3y – 5z = 9
Solution:
The given system of equations are
2x + y + z = 1,
x – 2y – z = 3/2,
3y – 5z = 9
We know AX = B => X = A-1B
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q11.1

Ex 4.6 Class 12 Maths Question 12.
x – y + z = 4
2x + y – 3z = 0
x + y + z = 2.
Solution:
The given system of equations can be written
\left[ \begin{matrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] =\left[ \begin{matrix} 4 \\ 0 \\ 2 \end{matrix} \right] i.e,,AX=B
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q12.1

Ex 4.6 Class 12 Maths Question 13.
2x + 3y + 3z = 5
x – 2y + z = – 4
3x – y – 2z = 3
Solution:
The given system of equations can be written as:
\left[ \begin{matrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] =\left[ \begin{matrix} 5 \\ -4 \\ 3 \end{matrix} \right] i.e,,AX=B
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q13.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q13.2

Ex 4.6 Class 12 Maths Question 14.
x – y + 2z = 7
3x + 4y – 5z = – 5
2x – y + 3z = 12.
Solution:
The given system of equations can be written
\left[ \begin{matrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] =\left[ \begin{matrix} 7 \\ -5 \\ 12 \end{matrix} \right] i.e,,AX=B
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q14.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q14.2

Ex 4.6 Class 12 Maths Question 15.
If A = \left[ \begin{matrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{matrix} \right]  Find A-1. Using A-1Solve the following system of linear equations 2x – 3y + 5z = 11,3x + 2y – 4z = – 5, x + y – 2z = – 3
Solution:
We have AX = B
where A=\left[ \begin{matrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{matrix} \right] ,X=\left[ \begin{matrix} x \\ y \\ z \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q15.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q15.2

Ex 4.6 Class 12 Maths Question 16.
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs. 69. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs. 90. The cost of 6 kg onion, 2 kg wheat and 3 kg rice is Rs. 70. Find the cost of each item per kg by matrix method
Solution:
Let cost of 1 kg onion = Rs x
and cost of 1 kg wheat = Rs y
and cost of 1 kg rice = Rs z
4x+3y+2z=60
2x+4y+6z=90
6x+2y+3z=70
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q16.1
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.6 Q16.2

Read More

Class 12th Chapter -3 Matrices | NCERT Maths Solution | NCERT Solution | Edugrown

It is important that you have a strong foundation in Maths Solutions. This can help you immensely in exams. Because there is no paper pattern set for the board exams. Every year there are different twists and turns in questions asked in board exams. While preparing for maths it becomes to go through every bit of detail. Thus, NCERT Solutions Class 12 Maths can help you lay a strong foundation. There solutions of each and every question given in the NCERT 12 Textbook in this article. There are crucial chapters like integration, algebra, and calculus which you can solve easily using these Class 12 Maths solutions. Using these NCERT Maths Class 12 Solutions can give you an edge over the other students.

NCERT Solutions for Class 12 Maths Chapter : 3 Matrices

Ex 3.1 Class 12 Maths Question 1.
In the matrix A=\left[ \begin{matrix} 2 \\ 35 \\ \sqrt { 3 } \end{matrix}\begin{matrix} 5 \\ -2 \\ 1 \end{matrix}\begin{matrix} 19 \\ 5/2 \\ -5 \end{matrix}\begin{matrix} -7 \\ 12 \\ 17 \end{matrix} \right]
(i) The order of the matrix
(ii) The number of elements
(iii) Write the elements a13, a21, a33, a24, a23
Solution:
(i) The matrix A has three rows and 4 columns.
The order of the matrix is 3 x 4.
(ii) There are 3 x 4 = 12 elements in the matrix A
(iii) a13 = 19, a21 = 35, a33 = – 5, a24 = 12, a23 = \\ \frac { 5 }{ 2 }

Ex 3.1 Class 12 Maths Question 2.
If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?
Solution:
(i) 24 = 1 x 24 = 2 x 12 = 3 x 8 = 4 x 6
Thus there are 8 matrices having 24 elements their order are (1 x 24), (24 x 1), (2 x 12), (12 x 2),(3 x 8), (8 x 3), (4 x 6), (6 x 4).
(ii) 13 = 1 x 13,
There are 2 matrices of 13 elements of order (1 x 13) and (13 x 1).

Ex 3.1 Class 12 Maths Question 3.
If a matrix has 18 elements, what are the possible orders it can have ? What, if it has 5 elements.
Solution:
We know that if a matrix is of order m × n, it has mn elements.
=> 18 = 1 x 18 = 2 x 9 = 3 x 6
Thus, all possible ordered pairs of the matrix
having 18 elements are:
(1,18), (18,1), (2,9), (9,2), (3,6), (6,3)
If it has 5 elements, then possible order are: (1,5), (5,1)

Ex 3.1 Class 12 Maths Question 4.
Construct a 2 x 2 matrix, A= [aij] whose elements are given by:
(i)\quad { a }_{ ij }=\frac { { (i+j) }^{ 2 } }{ 2 }
(ii)\quad { a }_{ ij }=\frac { i }{ j }
(iii)\quad { a }_{ ij }=\frac { { (i+2j) }^{ 2 } }{ 2 }
Solution:
A={ \left[ { a }_{ ij } \right] }_{ 2\times 2 }=\begin{bmatrix} { a }_{ 11 } & { a }_{ 12 } \\ { a }_{ 21 } & { a }_{ 22 } \end{bmatrix}
(i)\quad { a }_{ ij }=\frac { { (i+j) }^{ 2 } }{ 2 }
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.1 Q4.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.1 Q4.2

Ex 3.1 Class 12 Maths Question 5.
Construct a 3 x 4 matrix , whose elements are given by:
(i){ a }_{ ij }=\frac { 1 }{ 2 } \left| -3i+j \right|
(ii){ a }_{ ij }=2i-j
Solution:
A={ \left[ { a }_{ ij } \right] }_{ 3\times 4 }=\left[ \begin{matrix} { a }_{ 11 } \\ { a }_{ 21 } \\ { a }_{ 31 } \end{matrix}\begin{matrix} { a }_{ 12 } \\ { a }_{ 22 } \\ { a }_{ 32 } \end{matrix}\begin{matrix} { a }_{ 13 } \\ { a }_{ 23 } \\ { a }_{ 33 } \end{matrix}\begin{matrix} { a }_{ 14 } \\ { a }_{ 24 } \\ { a }_{ 34 } \end{matrix} \right]
(i){ a }_{ ij }=\frac { 1 }{ 2 } \left| -3i+j \right|
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.1 Q5.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.1 Q5.2

Ex 3.1 Class 12 Maths Question 6.
Find the values of x, y, z from the following equations:
(i)\begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix}=\begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix}
(ii)\begin{bmatrix} x+y & 2 \\ 5+z & xy \end{bmatrix}=\begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}
(iii)\left[ \begin{matrix} \begin{matrix} x+ & y+ & z \end{matrix} \\ \begin{matrix} x & +y \end{matrix} \\ \begin{matrix} y & +z \end{matrix} \end{matrix} \right] =\left[ \begin{matrix} 9 \\ 5 \\ 7 \end{matrix} \right]
Solution:
(i)\begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix}=\begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix}
Clearly x = 1,y = 4,z = 3
(ii)\begin{bmatrix} x+y & 2 \\ 5+z & xy \end{bmatrix}=\begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}
Now 5 + z = 5 => z = 0
Now x + y = 6 and xy = 8
∴ y = 6 – x and x(6 – x) = 8
6x – x² = 8
x² – 6x + 8 = 0
(x – 4)(x – 2) = 0
=>x = 2,4
When x = 2, y = 6 – 2 = 4
and when x = 4,y = 6 – 4 = 2
Hence x = 2,y = 4,z = 0 or x = 4,y = 2,z = 0.
(iii) Equating the corresponding elements.
=> x+y+z=9 …..(i)
x+z = 5 …(ii)
y+ z = 7 …(iii)
Adding eqs. (ii) & (iii)
x + y + 2z = 12
=> (x+y+z) + z = 12,
9+z = 12 (from equ (i))
z = 3
x + z = 5
=>x + 3 = 5 => x = 2
and y+z = 7
=>y+3 = 7
=> y = 4
=> x = 2, y = 4 and z = 3

Ex 3.1 Class 12 Maths Question 7.
Find the values of a,b,c and d from the equation:
\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix}=\begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}
Solution:
\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix}=\begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.1 Q7.1

Ex 3.1 Class 12 Maths Question 8.
A = [aij]m×n is a square matrix, if
(a) m < n (b) n > n
(c) m = n
(d) none of these
Solution:
For a square matrix m=n.
Thus option (c) m = n, is correct.

Ex 3.1 Class 12 Maths Question 9.
Which of the given values of x and y make the following pairs of matrices equal:
\begin{bmatrix} 3x+7 & 5 \\ y+1 & 2-3x \end{bmatrix},\begin{bmatrix} 0 & y-2 \\ 8 & 4 \end{bmatrix}
(a) x=\frac { -1 }{ 3 } ,y=7
(b) Not possible to find
(c) y=7,x=\frac { -2 }{ 3 }
(d) x=\frac { -1 }{ 3 } ,y=\frac { -2 }{ 3 }
Solution:
\begin{bmatrix} 3x+7 & 5 \\ y+1 & 2-3x \end{bmatrix},\begin{bmatrix} 0 & y-2 \\ 8 & 4 \end{bmatrix}
(a) x=\frac { -1 }{ 3 } ,y=7
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.1 Q9.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.1 Q9.2

Ex 3.1 Class 12 Maths Question 10.
The number of all possible matrices of order 3×3 with each entry 0 or 1 is
(a) 27
(b) 18
(c) 81
(d) 512
Solution:
There are 3 x 3 matrix or 9 entries in matrix each place can be filled with 0 or 1
∴ 9 Places can be filled in 29 = 512 ways
Number of such matrices = 512
Option (d) is correct.

 

Ex 3.2 Class 12 Maths Question 1.
Let A=\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix},B=\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix},C=\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}\qquad
Find each of the following:
(i) A + B
(ii) A – B
(iii) 3A – C
(iv) AB
(v) BA
Solution:
Let A=\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix},B=\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix},C=\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}\qquad
(i) A + B
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q1.1

Ex 3.2 Class 12 Maths Question 2.
Compute the following:
(i)\begin{bmatrix} a & \quad b \\ -b & \quad a \end{bmatrix}+\begin{bmatrix} a & \quad b \\ b & \quad a \end{bmatrix}
(ii)\begin{bmatrix} { a }^{ 2 }+{ b }^{ 2 } & \quad { b }^{ 2 }+{ c }^{ 2 } \\ { a }^{ 2 }+{ c }^{ 2 } & \quad { a }^{ 2 }+{ b }^{ 2 } \end{bmatrix}+\begin{bmatrix} 2ab & \quad 2bc \\ -2ac & \quad -2ab \end{bmatrix}
(iii)\left[ \begin{matrix} \begin{matrix} -1 \\ 8 \\ 2 \end{matrix} & \begin{matrix} 4 \\ 5 \\ 8 \end{matrix} & \begin{matrix} -6 \\ 16 \\ 5 \end{matrix} \end{matrix} \right] +\left[ \begin{matrix} \begin{matrix} 12 \\ 8 \\ 3 \end{matrix} & \begin{matrix} 7 \\ 0 \\ 2 \end{matrix} & \begin{matrix} 6 \\ 5 \\ 4 \end{matrix} \end{matrix} \right]
(iv)\begin{bmatrix} { cos }^{ 2 }x & \quad { sin }^{ 2 }x \\ { sin }^{ 2 }x & { \quad cos }^{ 2 }x \end{bmatrix}+\begin{bmatrix} { sin }^{ 2 }x & \quad { cos }^{ 2 }x \\ { cos }^{ 2 }x & { \quad sin }^{ 2 }x \end{bmatrix}
Solution:
(i)\begin{bmatrix} a & \quad b \\ -b & \quad a \end{bmatrix}+\begin{bmatrix} a & \quad b \\ b & \quad a \end{bmatrix}
=\begin{bmatrix} 2a & \quad 2b \\ 0 & \quad 2a \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q2.1

Ex 3.2 Class 12 Maths Question 3.
Compute the indicated products.
(i) \begin{bmatrix} a & \quad b \\ -b & \quad a \end{bmatrix}\begin{bmatrix} a & \quad -b \\ b & \quad \quad a \end{bmatrix}
(ii) \left[ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right] \left[ \begin{matrix} 2 & 3 & 4 \end{matrix} \right]
(iii) \begin{bmatrix} 1 & -2 \\ 2 & \quad 3 \end{bmatrix}\left[ \begin{matrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{matrix} \right]
(iv) \left[ \begin{matrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{matrix} \right] \left[ \begin{matrix} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{matrix} \right]
(v) \left[ \begin{matrix} 2 \\ 3 \\ -1 \end{matrix}\begin{matrix} 1 \\ 2 \\ 1 \end{matrix} \right] \left[ \begin{matrix} \begin{matrix} 1 & 0 & 1 \end{matrix} \\ \begin{matrix} -1 & 2 & 1 \end{matrix} \end{matrix} \right]
(vi) \left[ \begin{matrix} \begin{matrix} 3 & -1 & 3 \end{matrix} \\ \begin{matrix} -1 & 0 & 2 \end{matrix} \end{matrix} \right] \left[ \begin{matrix} \begin{matrix} 2 \\ 1 \\ 3 \end{matrix} & \begin{matrix} -3 \\ 0 \\ 1 \end{matrix} \end{matrix} \right]
Solution:
(i) \begin{bmatrix} a & \quad b \\ -b & \quad a \end{bmatrix}\begin{bmatrix} a & \quad -b \\ b & \quad \quad a \end{bmatrix}
\begin{bmatrix} { a }^{ 2 }+{ b }^{ 2 } & 0 \\ 0 & { b }^{ 2 }+{ a }^{ 2 } \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q3.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q3.2

Ex 3.2 Class 12 Maths Question 4.
If A=\left[ \begin{matrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{matrix} \right] ,B=\left[ \begin{matrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{matrix} \right] ,C=\left[ \begin{matrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{matrix} \right]
then compute (A + B) and (B – C). Also verify that A + (B – C) = (A + B) – C.
Solution:
Given
A=\left[ \begin{matrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{matrix} \right] ,B=\left[ \begin{matrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{matrix} \right] ,C=\left[ \begin{matrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q4.1

Ex 3.2 Class 12 Maths Question 5.
If A=\left[ \begin{matrix} \frac { 2 }{ 3 } & 1 & \frac { 5 }{ 3 } \\ \frac { 1 }{ 3 } & \frac { 2 }{ 3 } & \frac { 4 }{ 3 } \\ \frac { 7 }{ 3 } & 2 & \frac { 2 }{ 3 } \end{matrix} \right] and\quad B=\left[ \begin{matrix} \frac { 2 }{ 5 } & \frac { 3 }{ 5 } & 1 \\ \frac { 1 }{ 5 } & \frac { 2 }{ 5 } & \frac { 4 }{ 5 } \\ \frac { 7 }{ 5 } & \frac { 6 }{ 5 } & \frac { 2 }{ 5 } \end{matrix} \right] ,
then compute 3A – 5B.
Solution:
3A-5B=3\left[ \begin{matrix} \frac { 2 }{ 3 } & 1 & \frac { 5 }{ 3 } \\ \frac { 1 }{ 3 } & \frac { 2 }{ 3 } & \frac { 4 }{ 3 } \\ \frac { 7 }{ 3 } & 2 & \frac { 2 }{ 3 } \end{matrix} \right] -5\left[ \begin{matrix} \frac { 2 }{ 5 } & \frac { 3 }{ 5 } & 1 \\ \frac { 1 }{ 5 } & \frac { 2 }{ 5 } & \frac { 4 }{ 5 } \\ \frac { 7 }{ 5 } & \frac { 6 }{ 5 } & \frac { 2 }{ 5 } \end{matrix} \right] ,
\left[ \begin{matrix} 2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2 \end{matrix} \right] -\left[ \begin{matrix} 2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2 \end{matrix} \right] =\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix} \right]

Ex 3.2 Class 12 Maths Question 6.
Simplify:
cos\theta \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}+sin\theta \begin{bmatrix} sin\theta & -cos\theta \\ cos\theta & sin\theta \end{bmatrix}
Solution:
cos\theta \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}+sin\theta \begin{bmatrix} sin\theta & -cos\theta \\ cos\theta & sin\theta \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q6.1

Ex 3.2 Class 12 Maths Question 7.
Find X and Y if
(i)\quad X+Y=\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}and\quad X-Y=\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}
(ii)\quad 2X+3Y=\begin{bmatrix} 2 & 0 \\ 4 & 0 \end{bmatrix}and\quad 3X+2Y=\begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix}
Solution:
(i)\quad X+Y=\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}and\quad X-Y=\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q7.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q7.2

Ex 3.2 Class 12 Maths Question 8.
Find
X\quad if\quad Y=\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}and\quad 2X+Y=\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}
Solution:
Y=\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}
We are given that
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q8.1

Ex 3.2 Class 12 Maths Question 9.
Find x and y, if 2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix}+\begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix}=\begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}
Solution:
2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix}+\begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix}=\begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}
=> \begin{bmatrix} 2+y & \quad 6 \\ 1 & \quad 2x+2 \end{bmatrix}=\begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}
=> 2+y = 5 and 2x+2 = 8
=> y=3 and x=3
Hence x=3 and y=3

Ex 3.2 Class 12 Maths Question 10.
Solve the equation for x,y,z and t, if
2\begin{bmatrix} x & z \\ y & t \end{bmatrix}+3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}=3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}
Solution:
2\begin{bmatrix} x & z \\ y & t \end{bmatrix}+3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}=3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q10.1

Ex 3.2 Class 12 Maths Question 11.
If x\left[ \begin{matrix} 2 \\ 3 \end{matrix} \right] +y\left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] =\left[ \begin{matrix} 10 \\ 5 \end{matrix} \right]  then find the values of x and y
Solution:
x\left[ \begin{matrix} 2 \\ 3 \end{matrix} \right] +y\left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] =\left[ \begin{matrix} 10 \\ 5 \end{matrix} \right]
=> \left[ \begin{matrix} 2x-y \\ 3x+y \end{matrix} \right] =\left[ \begin{matrix} 10 \\ 5 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q11.1

Ex 3.2 Class 12 Maths Question 12.
Given
3\begin{bmatrix} x & \quad y \\ z & \quad w \end{bmatrix}=\begin{bmatrix} x & \quad 6 \\ -1 & \quad 2w \end{bmatrix}+\begin{bmatrix} 4 & \quad x+y \\ z+w & 3 \end{bmatrix}
find the values of x,y,z and w.
Solution:
3\begin{bmatrix} x & \quad y \\ z & \quad w \end{bmatrix}=\begin{bmatrix} x & \quad 6 \\ -1 & \quad 2w \end{bmatrix}+\begin{bmatrix} 4 & \quad x+y \\ z+w & 3 \end{bmatrix}
=> \begin{bmatrix} 3x & \quad 3y \\ 3z & \quad 3w \end{bmatrix}=\begin{bmatrix} x+4 & \quad 6+x+y \\ -1+z+w & \quad 2w+3 \end{bmatrix}
=> 3x = x + 4 => x = 2
and 3y = 6 + x + y => y = 4
Also, 3w = 2w + 3 => w = 3
Again, 3z = – 1 + z + w
=> 2z = – 1 + 3
=> 2z = 2
=> z = 1
Hence x = 2 ,y = 4, z = 1, w = 3.

Ex 3.2 Class 12 Maths Question 13.
If F(x) = \left[ \begin{matrix} cosx & -sinx & 0 \\ sinx & cosx & 0 \\ 0 & 0 & 1 \end{matrix} \right]
then show that F(x).F(y) = F(x+y)
Solution:
F(x) = \left[ \begin{matrix} cosx & -sinx & 0 \\ sinx & cosx & 0 \\ 0 & 0 & 1 \end{matrix} \right]
∴ F(y) = \left[ \begin{matrix} cosy & -siny & 0 \\ siny & cosy & 0 \\ 0 & 0 & 1 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q13.1

Ex 3.2 Class 12 Maths Question 14.
Show that
(i)\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}
(ii)\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{matrix} \right] \left[ \begin{matrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{matrix} \right] \neq \left[ \begin{matrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{matrix} \right] \left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{matrix} \right]
Solution:
(i)L.H.S=\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}=\begin{bmatrix} 7 & 1 \\ 33 & 34 \end{bmatrix}
R.H.S=\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}\begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}=\begin{bmatrix} 16 & 5 \\ 39 & 25 \end{bmatrix}
L.H.S≠R.H.S
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q14.1

Ex 3.2 Class 12 Maths Question 15.
Find A² – 5A + 6I, if A = \left[ \begin{matrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{matrix} \right]
Solution:
A² – 5A + 6I = \left[ \begin{matrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{matrix} \right] \left[ \begin{matrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{matrix} \right] -5\left[ \begin{matrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{matrix} \right] +6\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q15.1

Ex 3.2 Class 12 Maths Question 16.
If A = \left[ \begin{matrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{matrix} \right]  Prove that A³-6A²+7A+2I = 0
Solution:
We have
A² = A x A
\left[ \begin{matrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{matrix} \right] \times \left[ \begin{matrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{matrix} \right] =\left[ \begin{matrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q16.1

Ex 3.2 Class 12 Maths Question 17.
If A=\begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix},I=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} then find k so that A²=kA-2I
Solution:
Given
A=\begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix},I=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
Required: To find the value of k
Now A²=kA-2I
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q17.1

Ex 3.2 Class 12 Maths Question 18.
If A=\begin{bmatrix} 0 & -tan\frac { \alpha }{ 2 } \\ tan\frac { \alpha }{ 2 } & 0 \end{bmatrix} and I is the identity matrix of order 2,show that
I+A=I-A\begin{bmatrix} cos\alpha & \quad -sin\alpha \\ sin\alpha & \quad cos\alpha \end{bmatrix}
Solution:
L.H.S=I+A=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}+\begin{bmatrix} 0 & -tan\frac { \alpha }{ 2 } \\ tan\frac { \alpha }{ 2 } & 0 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q18.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q18.2
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q18.3

Ex 3.2 Class 12 Maths Question 19.
A trust has Rs 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year and second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bond if the trust fund obtains an annual total interest of
(a) Rs 1800
(b) Rs 2000
Solution:
Let Rs 30,000 be divided into two parts and Rs x and Rs (30,000-x)
Let it be represented by 1 x 2 matrix [x (30,000-x)]
Rate of interest is 005 and 007 per rupee.
It is denoted by the matrix R of order 2 x 1.
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q19.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q19.2

Ex 3.2 Class 12 Maths Question 20.
The book-shop of a particular school has 10 dozen Chemistry books, 8 dozen Physics books, 10 dozen Economics books. Their selling price are Rs 80, Rs 60 and Rs 40 each respectively. Find die total amount the book-shop will receive from selling all the books using matrix algebra.
Solution:
Number of Chemistry books = 10 dozen books
= 120 books
Number of Physics books = 8 dozen books = 96 books
Number of Economics books = 10 dozen books
= 120 books
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Q20.1

Assuming X, Y, Z, W and P are the matrices of order 2 x n, 3 x k, 2 x p, n x 3 and p x k respectively. Choose the correct answer in Question 21 and 22.

Ex 3.2 Class 12 Maths Question 21.
The restrictions on n, k and p so that PY + WY will be defined are
(a) k = 3 ,p = n
(b) k is arbitrary,p = 2
(c) pis arbitrary, k = 3
(d) k = 2,p = 3
Solution:
Given : x2xn, y3xn, z2xp, wnx3, Ppxk
Now py +wy = Ppxk x y3+k x wnx3  x y3xk
Clearly, k = 3 and p = n
Hence, option (a) is correct p x 2.

Ex 3.2 Class 12 Maths Question 22.
If n = p, then the order of the matrix 7X – 5Z is:
(a) p x 2
(b) 2 x n
(c) n x 3
(d) p x n.
Solution:
7X – 5Z = 7X2xn – 5X2xp
∴ We can add two matrices if their order is same n = P
∴ Order of 7X – 5Z is 2 x n.
Hence, option (b) is correct 2 x n.

Ex 3.3 Class 12 Maths Question 1.
Find the transpose of each of the following matrices:
(i) \left[ \begin{matrix} 5 \\ \frac { 1 }{ 2 } \\ -1 \end{matrix} \right]
(ii) \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}
(iii) \left[ \begin{matrix} -1 & 5 & 6 \\ \sqrt { 3 } & 5 & 6 \\ 2 & 3 & -1 \end{matrix} \right]
Solution:
(i) let A = \left[ \begin{matrix} 5 \\ \frac { 1 }{ 2 } \\ -1 \end{matrix} \right]
∴ transpose of A = A’ = \left[ \begin{matrix} 5 & \frac { 1 }{ 2 } & -1 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q1.1

Ex 3.3 Class 12 Maths Question 2.
If A=\left[ \begin{matrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{matrix} \right] ,B=\left[ \begin{matrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{matrix} \right]
then verify that:
(i) (A+B)’=A’+B’
(ii) (A-B)’=A’-B’
Solution:
A=\left[ \begin{matrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{matrix} \right] ,B=\left[ \begin{matrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q2.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q2.2

Ex 3.3 Class 12 Maths Question 3.
If A'=\left[ \begin{matrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{matrix} \right] ,B=\left[ \begin{matrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{matrix} \right]
then verify that:
(i) (A+B)’ = A’+B’
(ii) (A-B)’ = A’-B’
Solution:
A'=\left[ \begin{matrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{matrix} \right] ,B=\left[ \begin{matrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q3.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q3.2

Ex 3.3 Class 12 Maths Question 4.
If A'=\begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix},B=\begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}
then find (A+2B)’
Solution:
A'=\begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix},B=\begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q4.1

Ex 3.3 Class 12 Maths Question 5.
For the matrices A and B, verify that (AB)’ = B’A’, where
(i)\quad A=\left[ \begin{matrix} 1 \\ -4 \\ 3 \end{matrix} \right] ,B=\left[ \begin{matrix} -1 & 2 & 1 \end{matrix} \right]
(ii)\quad A=\left[ \begin{matrix} 0 \\ 1 \\ 2 \end{matrix} \right] ,B=\left[ \begin{matrix} 1 & 5 & 7 \end{matrix} \right]
Solution:
(i)\quad A=\left[ \begin{matrix} 1 \\ -4 \\ 3 \end{matrix} \right]
A'=\left[ \begin{matrix} 1 & -4 & 3 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q5.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q5.2
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q5.3

Ex 3.3 Class 12 Maths Question 6.
If (i) A=\begin{bmatrix} cos\alpha & \quad sin\alpha \\ -sin\alpha & \quad cos\alpha \end{bmatrix}  ,the verify that A’A=I
If (ii) A=\begin{bmatrix} sin\alpha & \quad cos\alpha \\ -cos\alpha & \quad sin\alpha \end{bmatrix} ,the verify that A’A=I
Solution:
(i) A=\begin{bmatrix} sin\alpha & \quad cos\alpha \\ -sin\alpha & \quad cos\alpha \end{bmatrix}
A'=\begin{bmatrix} cos\alpha & \quad -sin\alpha \\ sin\alpha & \quad cos\alpha \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q6.1

Ex 3.3 Class 12 Maths Question 7.
(i) Show that the matrix A=\left[ \begin{matrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{matrix} \right]  is a symmetric matrix.
(ii) Show that the matrix A=\left[ \begin{matrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{matrix} \right]  is a skew-symmetric matrix.
Solution:
(i) For a symmetric matrix aij = aji
Now,
A=\left[ \begin{matrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q7.1

Ex 3.3 Class 12 Maths Question 8.
For the matrix, A=\begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}
(i) (A+A’) is a symmetric matrix.
(ii) (A-A’) is a skew-symmetric matrix.
Solution:
A=\begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}
=> A'=\begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q8.1

Ex 3.3 Class 12 Maths Question 9.
Find \\ \frac { 1 }{ 2 } (A+A') and \\ \frac { 1 }{ 2 } (A-A'),when
A=\left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{matrix} \right]
Solution:
A=\left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{matrix} \right]
A'=\left[ \begin{matrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q9.1

Ex 3.3 Class 12 Maths Question 10.
Express the following matrices as the sum of a symmetric and a skew-symmetric matrix.
(i)\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}
(ii)\left[ \begin{matrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{matrix} \right]
(iii)\left[ \begin{matrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{matrix} \right]
(iv)\begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}
Solution:
(i) let A=\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}
=> A'=\begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q10.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q10.2
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q10.3
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q10.4
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q10.5
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q10.6

Ex 3.3 Class 12 Maths Question 11.
Choose the correct answer in the following questions:
If A, B are symmetric matrices of same order then AB-BA is a
(a) Skew – symmetric matrix
(b) Symmetric matrix
(c) Zero matrix
(d) Identity matrix
Solution:
Now A’ = B, B’ = B
(AB-BA)’ = (AB)’-(BA)’
= B’A’ – A’B’
= BA-AB
= – (AB – BA)
AB – BA is a skew-symmetric matrix Hence, option (a) is correct.

Ex 3.3 Class 12 Maths Question 12.
If A=\begin{bmatrix} cos\alpha & \quad -sin\alpha \\ sin\alpha & \quad cos\alpha \end{bmatrix} then A+A’ = I, if the
value of α is
(a) \frac { \pi }{ 6 }
(b) \frac { \pi }{ 3 }
(c) π
(d) \frac { 3\pi }{ 2 }
Solution:
Now
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Q12.1
Thus option (b) is correct.

Ex 3.4 Class 12 Maths Question 1.
\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q1.1

Ex 3.4 Class 12 Maths Question 2.
\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q2.1

Ex 3.4 Class 12 Maths Question 3.
\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q3.1

Ex 3.4 Class 12 Maths Question 4.
\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q4.1

Ex 3.4 Class 12 Maths Question 5.
\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q5.1

Ex 3.4 Class 12 Maths Question 6.
\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q6.1

Ex 3.4 Class 12 Maths Question 7.
\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q7.1

Ex 3.4 Class 12 Maths Question 8.
\begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q8.1

Ex 3.4 Class 12 Maths Question 9.
\begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q9.1

Ex 3.4 Class 12 Maths Ex 3.4 Class 12 Maths Question 10.
\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q10.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q10.2

Ex 3.4 Class 12 Maths Question 11.
\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q11.1

Ex 3.4 Class 12 Maths Question 12.
\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q12.1

Ex 3.4 Class 12 Maths Question 13.
\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q13.1

Ex 3.4 Class 12 Maths Question 14.
\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}
Solution:
Let A=\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q14.1

Ex 3.4 Class 12 Maths Question 15.
\left[ \begin{matrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{matrix} \right]
Solution:
Let A=\left[ \begin{matrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{matrix} \right]
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q15.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q15.2
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q15.3
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q15.4

Ex 3.4 Class 12 Maths Question 16.
\left[ \begin{matrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 2 \end{matrix} \right]
Solution:
Let A=\left[ \begin{matrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 2 \end{matrix} \right]
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q16.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q16.2
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q16.3

Ex 3.4 Class 12 Maths Question 17.
\left[ \begin{matrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{matrix} \right]
Solution:
Let A=\left[ \begin{matrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{matrix} \right]
We know that
A = IA
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q17.1
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.4 Q17.2

Ex 3.4 Class 12 Maths Question 18.
Choose the correct answer in the following question:
Matrices A and B will be inverse of each other only if
(a) AB = BA
(b) AB = BA = 0
(c) AB = 0,BA = 1
(d) AB = BA = I
Solution:
Choice (d) is correct
i.e., AB = BA = I

Read More

Class 12th Chapter -2 Inverse Trigonometric Functions | NCERT Maths Solution | NCERT Solution | Edugrown

It is important that you have a strong foundation in Maths Solutions. This can help you immensely in exams. Because there is no paper pattern set for the board exams. Every year there are different twists and turns in questions asked in board exams. While preparing for maths it becomes to go through every bit of detail. Thus, NCERT Solutions Class 12 Maths can help you lay a strong foundation. There solutions of each and every question given in the NCERT 12 Textbook in this article. There are crucial chapters like integration, algebra, and calculus which you can solve easily using these Class 12 Maths solutions. Using these NCERT Maths Class 12 Solutions can give you an edge over the other students.

NCERT Solutions for Class 12 Maths Chapter : 2 Inverse Trigonometric

Ex 2.1 Class 12 Maths Question 1-10.
Find the principal values of the following:
(1) \sin ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) }
(2) \cos ^{ -1 }{ \left( \frac { \sqrt { 3 } }{ 2 } \right) }
(3) \csc ^{ -1 }{ (2) }
(4) \tan ^{ -1 }{ \left( -\sqrt { 3 } \right) }
(5) \cos ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) }
(6) \tan ^{ -1 }{ (-1) }
(7) \sec ^{ -1 }{ \left( \frac { 2 }{ \sqrt { 3 } } \right) }
(8)\cot ^{ -1 }{ \left( \sqrt { 3 } \right) }
(9) \cos ^{ -1 }{ \left( -\frac { 1 }{ \sqrt { 2 } } \right) }
(10) \csc ^{ -1 }{ \left( -\sqrt { 2 } \right) }
Solution:
(1) Let \sin ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) }  = y
∴ sin\quad y=-\frac { 1 }{ 2 } =-sin\frac { \pi }{ 6 } =sin\left( -\frac { \pi }{ 6 } \right)
the range of principal value of sin-1 is
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 Q1.1
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 Q1.2
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 Q1.3
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 Q1.4

Ex 2.1 Class 12 Maths Question 11-12.
Find the principal values of the following:
(11) \tan ^{ -1 }{ (1) } +\cos ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) } +\sin ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) }
(12) \cos ^{ -1 }{ \left( \frac { 1 }{ 2 } \right) } +2\sin ^{ -1 }{ \left( \frac { 1 }{ 2 } \right) }
Solution:
(11) \tan ^{ -1 }{ (1) } +\cos ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) } +\sin ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) }
Now tan-1 (1) = \frac { \pi }{ 4 }
∴the range of principal value branch of
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 Q2.1

Ex 2.1 Class 12 Maths Question 13.
If sin-1 x = y, then
(a) 0 ≤ y ≤ π
(b) -\frac { \pi }{ 2 } \le y\le \frac { \pi }{ 2 }
(c) 0 < y < π
(d) -\frac { \pi }{ 2 } <y<\frac { \pi }{ 2 }
Solution:
The range of principal value of sin is \left[ -\frac { \pi }{ 2 } ,\frac { \pi }{ 2 } \right]
∴ if sin-1 x = y then
-\frac { \pi }{ 2 } \le y\le \frac { \pi }{ 2 }
Option (b) is correct

Ex 2.1 Class 12 Maths Question 14.
\tan ^{ -1 }{ \sqrt { 3 } -\sec ^{ -1 }{ (-2) } }  is equal to
(a) π
(b) -\frac { \pi }{ 3 }
(c) \frac { \pi }{ 3 }
(d) \frac { 2\pi }{ 3 }
Solution:
\tan ^{ -1 }{ \sqrt { 3 } =\frac { \pi }{ 3 } ,\sec ^{ -1 }{ (-2) } } =\pi -\frac { \pi }{ 3 } =\frac { 2\pi }{ 3 }
∴ Principal values of sec-1 is [0,π] – \left\{ \frac { \pi }{ 2 } \right\}
\tan ^{ -1 }{ \sqrt { 3 } - } \sec ^{ -1 }{ (-2) } =\frac { \pi }{ 3 } -\frac { 2\pi }{ 3 } =-\frac { \pi }{ 3 }
Option (b) is correct

Ex 2.2 Class 12 Maths Question 1.
3\sin ^{ -1 }{ x=\sin ^{ -1 }{ (3x-4x^{ 3 });x\in \left[ -\frac { 1 }{ 2 } ,\frac { 1 }{ 2 } \right] } }
Solution:
Let sin-1 x = θ
sin θ = x sin 3θ = 3 sin θ – 4 sin³ θ
sin 3θ = 3x – 4x³
3θ = sin-1 (3x – 4x³)
or 3\sin ^{ -1 }{ x=\sin ^{ -1 }{ (3x-4x^{ 3 });x\in \left[ -\frac { 1 }{ 2 } ,\frac { 1 }{ 2 } \right] } }

Ex 2.2 Class 12 Maths Question 2.
3\cos ^{ -1 }{ x } =\cos ^{ -1 }{ \left( { 4x }^{ 3 }-3x \right) ,x\in \left[ \frac { 1 }{ 2 } ,1 \right] }
Solution:
Let cos-1 x = θ
x = cos θ
R.H.S= cos-1 (4x³ – 3cosx)
= cos-1 (4 cos³θ – 3 cosθ)
= cos-1 (cos 3θ) [∴ cos 3θ = 4 cos³ θ – 3 cos θ]
= 3θ
= 3 cos-1 x
= L.H.S.

Ex 2.2 Class 12 Maths Question 3.
\tan ^{ -1 }{ \frac { 2 }{ 11 } } +\tan ^{ -1 }{ \frac { 7 }{ 24 } } =\tan ^{ -1 }{ \frac { 1 }{ 2 } }
Solution:
L.H.S = \tan ^{ -1 }{ \frac { 2 }{ 11 } } +\tan ^{ -1 }{ \frac { 7 }{ 24 } }
\tan ^{ -1 }{ \left[ \frac { \frac { 2 }{ 11 } +\frac { 7 }{ 24 } }{ 1-\frac { 2 }{ 11 } \times \frac { 7 }{ 24 } } \right] }
\tan ^{ -1 }{ \left[ \frac { 1 }{ 2 } \right] }
= R.H.S

Ex 2.2 Class 12 Maths Question 4.
2\tan ^{ -1 }{ \frac { 1 }{ 2 } } +\tan ^{ -1 }{ \frac { 1 }{ 7 } } =\tan ^{ -1 }{ \frac { 31 }{ 17 } }
Solution:
L.H.S =
2\tan ^{ -1 }{ \frac { 1 }{ 2 } } +\tan ^{ -1 }{ \frac { 1 }{ 7 } }
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q4.1

Ex 2.2 Class 12 Maths Question 5.
Write the function in the simplest form
\tan ^{ -1 }{ \left( \frac { \sqrt { 1+{ x }^{ 2 }-1 } }{ x } \right) } ,x\neq 0
Solution:
Putting x = θ
∴ θ = tan-1 x
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q5.1

Ex 2.2 Class 12 Maths Question 6.
\tan ^{ -1 }{ \left( \frac { 1 }{ \sqrt { { x }^{ 2 }-1 } } \right) ,\left| x \right| } >1
Solution:
Given expression
\tan ^{ -1 }{ \left( \frac { 1 }{ \sqrt { { x }^{ 2 }-1 } } \right) ,\left| x \right| } >1
Let x = secθ
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q6.1

Ex 2.2 Class 12 Maths Question 7.
\tan ^{ -1 }{ \left( \sqrt { \frac { 1-cosx }{ 1+cosx } } \right) } ,0<x<\pi
Solution:
\tan ^{ -1 }{ \left( \sqrt { \frac { 1-cosx }{ 1+cosx } } \right) } ,0<x<\pi
\tan ^{ -1 }{ \left[ \sqrt { \frac { { 2sin }^{ 2 }\frac { x }{ 2 } }{ { 2cos }^{ 2 }\frac { x }{ 2 } } } \right] }
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q7.1

Ex 2.2 Class 12 Maths Question 8.
\tan ^{ -1 }{ \left( \frac { cosx-sinx }{ cosx+sinx } \right) ,0<x<\pi }
Solution:
\tan ^{ -1 }{ \left( \frac { cosx-sinx }{ cosx+sinx } \right) ,0<x<\pi }
Dividing numerator and denominator by cos x
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q8.1

Ex 2.2 Class 12 Maths Question 9.
\tan ^{ -1 }{ \left( \frac { x }{ \sqrt { { a }^{ 2 }-{ x }^{ 2 } } } \right) ,\left| x \right| } <a
Solution:
Let x = a sinθ
=> \\ \frac { x }{ a }  = sinθ
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q9.1

Ex 2.2 Class 12 Maths Question 10.
\tan ^{ -1 }{ \left[ \frac { { 3a }^{ 2 }-{ x }^{ 3 } }{ { a }^{ 3 }-{ 3ax }^{ 2 } } \right] ,a>0;\frac { -a }{ \sqrt { 3 } } <x,<\frac { a }{ \sqrt { 3 } } }
Solution:
Put x = a tanθ,
we get
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q10.1

Ex 2.2 Class 12 Maths Question 11.
Find the value of the following
\tan ^{ -1 }{ \left[ 2cos\left( 2\sin ^{ -1 }{ \frac { 1 }{ 2 } } \right) \right] }
Solution:
\tan ^{ -1 }{ \left[ 2cos\left( 2\sin ^{ -1 }{ \frac { 1 }{ 2 } } \right) \right] }
\tan ^{ -1 }{ \left[ 2cos2.\frac { \pi }{ 6 } \right] }
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q11.1

Ex 2.2 Class 12 Maths Question 12.
cot[tan-1 a + cot-1 a]
Solution:
Given
cot[tan-1 a + cot-1 a]
cot\left( \tan ^{ -1 }{ a } +\tan ^{ -1 }{ \frac { 1 }{ a } } \right)
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q12.1

Ex 2.2 Class 12 Maths Question 13.
tan\frac { 1 }{ 2 } \left[ \sin ^{ -1 }{ \frac { 2x }{ 1+{ x }^{ 2 } } +\cos ^{ -1 }{ \frac { 1-{ y }^{ 2 } }{ 1+{ y }^{ 2 } } } } \right] \left| x \right| <1,y>0\quad and\quad xy<1
Solution:
Putting x = tanθ
=> tan-1 x = θ
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q13.1

Ex 2.2 Class 12 Maths Question 14.
If sin\left( \sin ^{ -1 }{ \frac { 1 }{ 5 } } +\cos ^{ -1 }{ x } \right) =1 then find the value of x
Solution:
sin\left( \sin ^{ -1 }{ \frac { 1 }{ 5 } } +\cos ^{ -1 }{ x } \right) =sin\frac { \pi }{ 2 }
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q14.1

Ex 2.2 Class 12 Maths Question 15.
If \tan ^{ -1 }{ \frac { x-1 }{ x-2 } } +\tan ^{ -1 }{ \frac { x+1 }{ x+2 } } =\frac { \pi }{ 4 }  then find the value of x
Solution:
L.H.S
\tan ^{ -1 }{ \frac { x-1 }{ x-2 } } +\tan ^{ -1 }{ \frac { x+1 }{ x+2 } } =\frac { \pi }{ 4 }
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q15.1

Ex 2.2 Class 12 Maths Question 16.
\sin ^{ -1 }{ \left( sin\frac { 2\pi }{ 3 } \right) }
Solution:
\sin ^{ -1 }{ \left( sin\frac { 2\pi }{ 3 } \right) }
\sin ^{ -1 }{ \left( sin\left( \pi -\frac { \pi }{ 3 } \right) \right) }
\sin ^{ -1 }{ \left( sin\left( \frac { \pi }{ 3 } \right) \right) } =\frac { \pi }{ 3 }

Ex 2.2 Class 12 Maths Question 17.
\tan ^{ -1 }{ \left( tan\frac { 3\pi }{ 4 } \right) }
Solution:
\tan ^{ -1 }{ \left( tan\frac { 3\pi }{ 4 } \right) }
\tan ^{ -1 }{ \left( sin\frac { 3\pi }{ 4 } \right) }
\tan ^{ -1 }{ tan\left( \pi -\frac { \pi }{ 4 } \right) }
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q17.1

Ex 2.2 Class 12 Maths Question 18.
tan\left( \sin ^{ -1 }{ \frac { 3 }{ 5 } +\cot ^{ -1 }{ \frac { 3 }{ 2 } } } \right)
Solution:
tan\left( \sin ^{ -1 }{ \frac { 3 }{ 5 } +\cot ^{ -1 }{ \frac { 3 }{ 2 } } } \right)
Let \sin ^{ -1 }{ \frac { 3 }{ 5 } = } \theta
sinθ = \\ \frac { 3 }{ 5 }
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q18.1

Ex 2.2 Class 12 Maths Question 19.
\cos ^{ -1 }{ \left( cos\frac { 7\pi }{ 6 } \right) }  is equal to
(a) \frac { 7\pi }{ 6 }
(b) \frac { 5\pi }{ 6 }
(c) \frac { \pi }{ 5 }
(d) \frac { \pi }{ 6 }
Solution:
\cos ^{ -1 }{ \left( cos\frac { 7\pi }{ 6 } \right) }
\cos ^{ -1 }{ cos\left( \pi +\frac { \pi }{ 6 } \right) }
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q19.1

Ex 2.2 Class 12 Maths Question 20.
sin\left[ \frac { \pi }{ 3 } -\sin ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) } \right]  is equal to
(a) \\ \frac { 1 }{ 2 }
(b) \\ \frac { 1 }{ 3 }
(c) \\ \frac { 1 }{ 4 }
(d) 1
Solution:
sin\left[ \frac { \pi }{ 3 } -\sin ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) } \right]
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q20.1

Ex 2.2 Class 12 Maths Question 21.
\tan ^{ -1 }{ \sqrt { 3 } -\cot ^{ -1 }{ \left( -\sqrt { 3 } \right) } }  is equal to
(a) π
(b) -\frac { \pi }{ 2 }
(c) 0
(d) 2√3
Solution:
\tan ^{ -1 }{ \sqrt { 3 } -\cot ^{ -1 }{ \left( -\sqrt { 3 } \right) } }
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Q21.1

Page No: 51
 
Miscellaneous Exercise on Chapter 2

Find the value of the following:

Question: 1
 
 
Answer
 
 
Question: 2
 
Answer
 
 
Prove that
 
Question: 3
 
Answer
 
 
Question: 4
 
Answer
 
 
Question: 5
 
Answer
 
 
Question: 6
 
Answer
 
 
Question: 7
 
Answer
 
 
Question: 8
 
Answer
 
 
Page No. 52
 
Prove that
 
Question: 9
 
Answer
 
Question: 10
 
 
Answer
 
 
Question: 11
 
Answer
 
 
Question: 12
 
Answer
 
 
Solve the following equations:
 
Question: 13
 
Answer
 
 
Question: 14
 
Answer
 
 
Question: 15
 
Answer
 
The correct option is D.
 
Question: 16
sin–1(1 – x) – 2 sin–1x = π/2, then x is equal to
(A) 0, 1/2
(B) 1, 1/2
(C) 0 
(D) 1/2
 
Answer
 
Given that sin–1(1 − x) − 2sin–1x = π/2
Let x = sin y
∴ sin–1(1 − sin y) − 2y = π/2
⇒ sin–1(1 − sin y) = π/2 + 2y
⇒ 1 − sin y = sin (π/2 + 2y)
⇒ 1 − sin y = cos 2y
⇒ 1 − sin y = 1 − 2sin2y [as cos2y = 1−2sin2y]
⇒ 2sin2y − sin y = 0
⇒ 2x2 − x = 0 [as x = sin y]
⇒ x(2x − 1) = 0
⇒ x = 0 or,  x = 1/2
 
But x = 1/2 does not satisfy the given equation.
∴ x = 0 is the solution of the given equation.
The correct option is C.
 
Question: 17
tan–1(x/y) − tan–1(x-y/x+y) is equal to
(A) π/2
(B) π/3
(C) π/4
(D) -3π/4
 
Answer
The correct option is C.
Read More

Class 12th Chapter -1 Relations and Functions | NCERT Maths Solution | NCERT Solution | Edugrown

It is important that you have a strong foundation in Maths Solutions. This can help you immensely in exams. Because there is no paper pattern set for the board exams. Every year there are different twists and turns in questions asked in board exams. While preparing for maths it becomes to go through every bit of detail. Thus, NCERT Solutions Class 12 Maths can help you lay a strong foundation. There solutions of each and every question given in the NCERT 12 Textbook in this article. There are crucial chapters like integration, algebra, and calculus which you can solve easily using these Class 12 Maths solutions. Using these NCERT Maths Class 12 Solutions can give you an edge over the other students.

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions

Ex 1.1 Class 12 Maths Question 1.
Determine whether each of the following relations are reflexive, symmetric and transitive:
(i) Relation R in the set A= {1,2,3,….13,14} defined as R={(x,y):3x – y = 0}
(ii) Relation R in the set N of natural numbers defined as R= {(x, y): y = x + 5 and x < 4}
(iii) Relation R in the set A= {1,2,3,4,5,6} as R= {(x, y): y is divisible by x}
(iv) Relation R in the set Z of all integers defined as R = {(x, y): x – y is an integer}
(v) Relation R in the set A of human beings in a town at a particular time given by
(a) R = {(x, y): x and y work at the same place}
(b) R = {(x, y) : x and y live in the same locality}
(c) R = {(x, y) : x is exactly 7 cm taller than y}
(d) R={(x,y) : x is wife of y}
(e) R= {(x, y): x is father of y}
Solution:
(i) Relation R in the set A = {1, 2,….,14} defined as R= {(x,y): 3x  -y = 0}
(a) Put y = x, 3x – x ≠ 0 => R is not reflexive.
(b) If 3x – y = 0, then 3y – x ≠ 0, R is not symmetric
(c) If 3x – y = 0, 3y – z = 0,then 3x – z ≠ 0,R is not transitive.

(ii) Relations in the set N of natural numbers in defined by R = {(x, y): y = x + 5 and x < 4}
(a) Putting y = x, x ≠ x + 5, R is not reflexive
(b) Putting y = x + 5, then x ≠ y + 5,R is not symmetric.
(c) If y = x + 5, z = y + 5, then z ≠ x + 5 =>R is not transitive.

(iii) Relation R in the set A = {1,2,3,4,5,6} asR = {(x, y): y is divisible by x}
(a) Putting y = x, x is divisible by x => R is reflexive.
(b) If y is divisible by x, then x is not divisible by y when x ≠ y => R is not symmetric.
(c) If y is divisible by x and z is divisible by y then z is divisible by x e.g., 2 is divisible by 1,4 is divisible by 2.
=> 4 is divisible by 1 => R is transitive.

(iv) Relation R in Z of all integers defined as R = {(x, y): x – y is an integer}
(a) x – x=0 is an integer => R is reflexive
(b) x – y is an integer so is y – x => R is transitive.
(c) x – y is an integer, y- z is an integer and x – z is also an integer => R is transitive.

(v) R is a set of human beings in a town at a particular time.
(a) R = {(x, y)} : x and y work at the same place. It is reflexive as x works at the same place. It is symmetric since x and y or y and x work at same place.
It is transitive since X, y work at the same place and if y, z work at the same place,u then x and z also work at the same place.
(b) R : {(x, y) : x and y line in the same locality}
With similar reasoning as in part (a), R is reflexive, symmetrical and transitive.
(c) R: {(x, y)}: x is exactly 7 cm taller than y it is not reflexive: x cannot 7 cm taller than x. It is not symmetric: x is exactly 7 cm taller than y, y cannot be exactly 7 cm taller than x. It is not transitive: If x is exactly 7 cm taller than y and if y is exactly taller than z, then x is not exactly 7 cm taller than z.
(d) R = {(x, y): x is wife of y}
R is not reflexive: x cannot be wife of x. R is not symmetric: x is wife of y but y is not wife of x.
R is not transitive: if x is a wife of y then y cannot be the wife of anybody else.
(e) R= {(x, y): x is a father of y}
It is not reflexive: x cannot be father of himself. It is not symmetric: x is a father of y but y cannot be the father of x.
It is not transitive: x is a father of y and y is a father of z then x cannot be the father of z.

Ex 1.1 Class 12 Maths Question 2.
Show that the relation R in the set R of real numbers, defined as
R = {(a, b) : a ≤, b²} is neither reflexive nor symmetric nor transitive.
Solution:
(i) R is not reflexive, a is not less than or equal to a² for all a ∈ R, e.g., \\ \frac { 1 }{ 2 }  is not less than \\ \frac { 1 }{ 4 } .
(ii) R is not symmetric since if a ≤ b² then b is not less than or equal to a² e.g. 2 < 5² but 5 is not less than 2².
(iii) R is not transitive: If a ≤ b², b ≤ c², then a is not less than c², e.g. 2 < (-2)², -2 < (-1)², but 2 is not less than (-1)².

Ex 1.1 Class 12 Maths Question 3.
Check whether the relation R defined in the set {1,2,3,4,5,6} as
R={(a, b): b = a+1} is reflexive, symmetric or transitive.
Solution:
(i) R is not reflexive a ≠ a + 1.
(ii) R is not symmetric if b = a + 1, then a ≠ b+ 1
(iii) R is not transitive if b = a + 1, c = b + 1 then c ≠ a + 1.

Ex 1.1 Class 12 Maths Question 4.
Show that the relation R in R defined as R={(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
R = {(a,b):a≤b}
Solution:
(i) R is reflexive, replacing b by a, a ≤ a =>a = a is true.
(ii) R is not symmetric, a ≤ b, and b ≤ a which is not true 2 < 3, but 3 is not less than 2.
(iii) R is transitive, if a ≤ b and b ≤ c, then a ≤ c, e.g. 2 < 3, 3 < 4 => 2 < 4.

Ex 1.1 Class 12 Maths Question 5.
Check whether the relation R in R defined by R = {(a, b): a ≤ b³} is reflexive, symmetric or transitive.
Solution:
(i) R is not reflexive.
(ii) R is not symmetric.
(iii) R is not transitive.

Ex 1.1 Class 12 Maths Question 6.
Show that the relation R in the set {1,2,3} given by R = {(1, 2), (2,1)} is symmetric but neither reflexive nor transitive.
Solution:
(i) (1, 1),(2, 2),(3, 3) do not belong to relation R
∴ R is not reflexive.
(ii) It is symmetric (1,2) and (2,1) belong to R.
(iii) there are only two element 1 and 2 in this relation and there is no third element c in it =>R is not transitive

Ex 1.1 Class 12 Maths Question 7.
Show that the relation R in the set A of all the books in a library of a college, given by R= {(x, y): x and y have same number of pages} is an equivalence relation.
Solution:
(i) The number of pages in a book remain the same
=> Relation R is reflexive.
(ii) The book x has the same number of pages as the book y.
=> Book y has the same number of pages as the book x.
=> The relation R is symmetric.
(iii) Book x and y have the same number of pages. Also book y and z have the same number of pages.
=> Books x and z also have the same number of pages.
R is transitive also Thus, R is an equivalence relation.

Ex 1.1 Class 12 Maths Question 8.
Show that the relation R in the set A= {1,2,3,4,5} given by R = {(a, b) : |a – b| is even}, is an equivalence relation. Show that all the elements of {1,3,5} are related to each other and all the elements of {2,4} are related to each other. But no element of {1,3,5} is related to any element of {2,4}.
Solution:
A= {1,2,3,4,5} and R= {(a,b): |a – b| is even}
R= {(1,3), (1,5), (3,5), (2,4)}
(a) (i) Let us take any element of a set A. then |a – a| = 0 which is even.
=> R is reflexive.
(ii) If |a – b| is even, then |b – a| is also even, where,
R = {(a, b) : |a – b| is even} => R is symmetric.
(iii) Further a – c = a – b + b – c
If |a – b| and |b – c| are even, then their sum |a – b + b – c| is also even.
=> |a – c| is even,
∴ R is transitive. Hence R is an equivalence relation.

(b) Elements of {1,3,5} are related to each other.
Since|1 – 3| = 2, |3 – 5| = 2, |1 – 5| = 4. All are even numbers.
= Elements of {1, 3, 5} are related to each other. Similarly elements of {2,4} are related to each other. Since |2 – 4| = 2 an even number.
No element of set {1, 3, 5} is related to any element of {2,4}.

Ex 1.1 Class 12 Maths Question 9.
Show that each of the relation R in the set A = {x ∈ Z: 0 ≤ x ≤ 12}, given by
(i) R={(a,b) : |a – b|is a multiple of 4}
(ii) R={(a, b) : a = b}
is an equivalence relation. Find the set of all elements related to 1 in each case.
Solution:
The set A ∴ {x ∈ Z : 0 ≤ x ≤ 12} = {0, 1, 2,…..12}
(i) R= {(a, b): |a – b| is a multiple of 4}
|a – b| = 4k on b = a + 4k.
∴R ={(1,5),(1,9),(2, 6), (2, 10), (3, 7), (3, 11) , (4,8), (4,12), (5,9), (6,10), (7,11), (8.12) ,(0,0),(1,1), (2,2),…..(12,12)
(a) (a – a) = 0 = 4k,where k = 0=>(a,a)∈R
∴ R is reflexive.
(b) If |a – b| = 4k,then|b – a| = 4k i.e. (a,b) and (b, a) both belong to R. R is symmetric.
(c) a – c = a – b + b – c
when a – b and b – c are both multiples of 4 then a – c is also a multiple of 4. This shows if (a,b)(b,c) ∈ R then a – c also ∈ R
∴ R is an equivalence relation. The sets related 1 are {(1,5), (1,9)}.

(ii) R= {(a, b):a = b}
{(0,0), (1,1), (2,2)…..(12,12)}
(a) a = a => (a, a) ∈R
R is reflexive.
(b) Again if (a, b) ∈R, then (b, a) also ∈R
Since a = b and (a, b) ∈ R => R is symmetric.
(c) If(a, b) ∈R,then (b, c) ∈R =>a = b = c
∴ a = c => (a, c) ∈R, Hence, R is transitive set related is {1}.

Ex 1.1 Class 12 Maths Question 10.
Give an example of a relation which is
(i) Symmetric but neither reflexive nor transitive.
(ii) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.
Solution:
Let A = set of straight lines in a plane
(i) R: {(a, b): a is perpendicular to b} let a, b be two perpendicular lines.

(ii) Let A = set of real numbers R= {(a,b):a>b}
(a) An element is not greater than itself
∴R is not reflexive.
(b) If a > b than b is not greater than a => R is not symmetric
(c) If a > b also b > c, then a > c thus R is transitive
Hence, R is transitive but neither reflexive nor symmetric.

(iii) The relation R in the set {1,2,3} is given by R= {(a, b) :a + b≤4}
R= {(1,1), (1,2), (2,1), (1,3), (3,1), (2,2)} (1,1), (2,2) ∈ R => R is reflexive
(1,2), (2,1), (1,3), (3,1) => R is symmetric
But it is not transitive, since (2,1) ∈R, (1,3) ∈R but (2,3)∉R.

(iv) The relation R in the set {1,2,3} given by R = {(a, b): a≤b} = {(1,2), (2,2), (3,3), (2,3), 0,3)}
(a) (1,1), (2,2), (3,3) ≤R => R is reflexive
(b) (1, 2) ∈R, but (2, 1) ∉R => R is not symmetric
(c) (1,2) ∈R, (2,3) ∈R,Also (1,3) ∈R=>R is transitive.

(v) The relation R in the set {1,2,3} given by R= {(a, b): 0 < |a – b| ≤ 2} = {(1,2), (2,1), (1, 3), (3,1), (2,3), (3,2)}
(a) R is not reflexive
∵ (1,1),(2,2), (3,3) do not belong to R
(b) R is symmetric
∵ (1,2), (2,1), (1,3), (3,1), (2,3), (3,2) ∈R
(c) R is transitive (1,2) ∈R, (2,3) ∈R, Also (1,3) ∈R

Ex 1.1 Class 12 Maths Question 11.
Show that the relation R in the set A of punts in a plane given by R = {(P, Q) : distance of the point P from the origin is same as the distance of the punt Q from the origin}, is an equivalence relation. Further, show that the set of all punts related to a point P ≠ (0,0) is the circle passing through P with origin as centre.
Solution:
Let O be the origin then the relation
R={(P,Q):OP=OQ}
(i) R is reflexive. Take any distance OP,
OP = OP => R is reflexive.
(ii) R is symmetric, if OP = OQ then OQ = OP
(iii) R is transitive, let OP = OQ and OQ = OR =>OP=OR
Hence, R is an equivalence relation.
Since OP = K (constant) => P lies on a circle with centre at the origin.

Ex 1.1 Class 12 Maths Question 12.
Show that the relation R defined in the set A of all triangles as R= {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3,4,5, T2 with sides 5,12,13 and T3 with sides 6,8,10. Which triangles among T1, T2 and T3 are related?
Solution:
(i) In a set of triangles R = {(T1, T2) : T1 is similar T2}
(a) Since A triangle T is similar to itself. Therefore (T, T) ∈ R for all T ∈ A.
∴ Since R is reflexive
(b) If triangle T1 is similar to triangle T2 then T2 is similar triangle T1
∴ R is symmetric.
(c) Let T1 is similar to triangle T2 and T2 to T3 then triangle T1 is similar to triangle T3,
∴ R is transitive.
Hence, R is an equivalence relation.
(ii) Two triangles are similar if their sides are proportional now sides 3,4,5 of triangle T1 are proportional to the sides 6, 8, 10 of triangle T3.
∴ T1 is related to T3.

Ex 1.1 Class 12 Maths Question 13.
Show that the relation R defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5?
Solution:
Let n be the number of sides of polygon P1.
R= {(P1, P2): P1 and P2 are n sides polygons}
(i) (a) Any polygon P1 has n sides => R is reflexive
(b) If P1 has n sides, P2 also has n sides then if P2 has n sides P1 also has n sides.
=> R is symmetric.
(c) Let P1, P2; P2, P3 are n sided polygons. P1 and P3 are also n sided polygons.
=> R is transitive. Hence R is an equivalence relation.
(ii) The set A = set of all the triangles in a plane.

Ex 1.1 Class 12 Maths Question 14.
Let L be the set of all lines in XY plane and R be the relation in L defined as R={(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x+4.
Solution:
L = set of all the lines in XY plane, R= {(L1,L2) : L1 is parallel to L2}
(i) (a) L1 is parallel to itself => R is reflexive.
(b) L1 is parallel to L2 => L2 is parallel to L1 R is symmetric.
(c) Let L1 is parallel to L2 and L2 is parallel to L3 and L1 is parallel to L3 => R is transitive.
Hence, R is an equivalence relation.
(ii) Set of parallel lines related to y = 2x + 4 is y = 2x + c, where c is an arbitrary constant.

Ex 1.1 Class 12 Maths Question 15.
Let R be the relation in the set {1,2,3,4} given by R={(1,2), (2,2), (1,1), (4,4), (1,3), (3,3), (3,2) }. Choose the correct answer.
(a) R is reflexive and symmetric but not transitive.
(b) R is reflexive and transitive but not symmetric.
(c) R is symmetric and transitive but not reflexive.
(d) R is an equivalence relation.
Solution:
(b)

Ex 1.1 Class 12 Maths Question 16.
Let R be the relation in the set N given by R = {(a, b): a=b – 2, b > 6}. Choose the correct answer.
(a)(2,4)∈R
(b)(3,8)∈R
(c)(6,8)∈R
(d)(8,7)∈R
Solution:
Option (c) satisfies the condition that a = b – 2
i. e. 6 = 8 – 2 and b > 6, i.e. b = 8
=> option (c) is correct.

Ex 1.2 Class 12 Maths Question 1.
Show that the function f: R —> R defined by f (x) = \\ \frac { 1 }{ x }  is one-one onto, where R is the set of all non-zero real numbers. Is the result true, if the domain R is replaced by N with co-domain being same as R ?
Solution:
(a) We observe the following properties of f:
(i) f(x) = \\ \frac { 1 }{ x }  if f(x1) = f(x2)
\frac { 1 }{ { x }_{ 1 } } =\frac { 1 }{ { x }_{ 2 } }
=> x1 = x2
Each x ∈ R has a unique image in codomain
=> f is one-one.
(ii) For each y belonging codomain then
y= \frac { 1 }{ x }  or x= \frac { 1 }{ y }  there is a unique pre image of y.
=> f is onto.

(b) When domain R is replaced by N. codomain remaining the same, then f: N—> R If f(x1) = f(x2)
=> \frac { 1 }{ { n }_{ 1 } } =\frac { 1 }{ { n }_{ 2 } }  => n1 = n2 where n1; n2 ∈ N
=> f is one-one.
But for every real number belonging to codomain may not have a pre-image in N.
eg:\frac { 1 }{ 2 } ,\frac { 3 }{ 2 } ,N
∴ f is not onto.

Ex 1.2 Class 12 Maths Question 2.
Check the injectivity and surjectivity of the following functions:
(i) f: N -> N given by f (x) = x²
(ii) f: Z -> Z given by f (x) = x²
(iii) f: R -> R given by f (x) = x²
(iv) f: N -> N given by f (x) = x³
(v) f: Z ->Z given by f (x) = x³
Solution:
(i) f: N —> N given by f (x) = x²
(a) f(x1) =>f(x2)
=>x12 = x22 =>x1 = x2
∴ f is one-one i.e. it is injective.
(b) There are such member of codomain which have no image in domain N.
e.g. 3 ∈ codomain N. But there is no pre-image in domain of f.
=> f is not onto i.e. not surjective.
(ii) f: z —> z given by f(x) = x²
(a) f (-1) = f (1) = 1 => -1 and 1 have the same image.
∴ f is not one-one i.e. not injective.
(b) There are many such elements belonging to codomain have no pre-image in its codomain z.
e.g. 3 ∈ codomain z but √3 ∉ domain z of f,
∴ f is not onto i.e. not surjective
(iii) f: R->R, given by f(x) = x²
(a) f is not one-one since f(-1) = f(1) = 1
– 1 and 1 have the same image i.e., f is not injective
(b) – 2∈ codomain R off but √-2 does not belong to domain R of f.
=> f is not onto i.e. f is not surjective.
(iv) Injective but not surjective.
(v) Injective but not surjective.

Ex 1.2 Class 12 Maths Question 3.
Prove that the Greatest Integer Function f: R->R given by f (x)=[x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Solution:
f: R—> R given by f (x) = [x]
(a) f(1. 2) = 1, f(1. 5) = 1 => f is not one-one
(b) All the images of x e R belonging to its domain have integers as the images in codomain. But no fraction proper or improper belonging to codomain of f has any pre-image in its domain.
=> f is not onto.

Ex 1.2 Class 12 Maths Question 4.
Show that the Modulus Function f: R -> R given by f (x) = |x|, is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is- x, if xis negative.
Solution:
f: R->R given by f(x) = |x|
(a) f(-1) = |-1| = 1,f(1) = |1| = 1
=> -1 and 1 have the same image
∴ f is not one-one
(b) No negative value belonging to codomain of f has any pre-image in its domain
∴ f is not onto. Hence, f is neither one-one nor onto.

Ex 1.2 Class 12 Maths Question 5.
Show that the Signum Function f: R–>R given by
f(x) = 1, if x > 0
f(x) = 0, if x = 0
f(x) = – 1, if x < 0
is neither one-one nor onto.
Solution:
f: R–>R given by
f(x) = 1, if x > 0
f(x) = 0, if x = 0
f(x) = -1, if x < 0
(a) f(x1) = f(x2) = 1
∴ 1 and 2 have the same image i.e.
f(x1) = f(x2) = 1 for x>0
=> x1≠x2
Similarly f(x1) = f(x2) = – 1, for x<0 where x1 ≠ x2 => f is not one-one.
(b) Except – 1,0,1 no other member of codomain of f has any pre-image in its domain.
∴ f is not onto.
=> f is neither into nor onto.

Ex 1.2 Class 12 Maths Question 6.
Let A= {1,2,3}, B = {4,5,6,7} and let f = {(1,4), (2,5), (3,6)} be a function from A to B. Show that f is one-one.
Solution:
A= {1,2,3},B= {4,5,6,7} f= {(1,4), (2,5), (3,6) }.
Every member of A has a unique image in B
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.2 Q6.1
∴ f is one – one.

Ex 1.2 Class 12 Maths Question 7.
In each of die following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f: R–>R defined by f(x) = 3 – 4x
(ii) f: R–>R defined by f(x) = 1 + x²
Solution:
(i) f: R —> R defined by 3 – 4x,
f (x1) = 3 – 4x1, f(x2) = 3 – 4x2
(a) f(x1) = f(x2) =>3 – 4x1 = 3 – 4x2
=> x1 = x2. This shows that f is one-one
(b) f(x) = y = 3 – 4x
x= \frac { 3-y }{ 4 }
For every value of y belonging to its codomain. There is a pre-image in its domain => f is onto.
Hence, f is one-one onto

(ii) f: R—>R given by f(x)= 1 + x²
(a) f(1) = 1 + 1 = 2,f(-1) = 1 +1 = 2
∴ f (-1) = f (1) = 2 i.e.-1 and 1 have the same image 2.
=> f is not one-one.
(b) No negative number belonging to its codomain has its pre-image in its domain
=> f is not onto. Thus f is neither one- one nor onto.

Ex 1.2 Class 12 Maths Question 8.
Let A and B be sets. Show that f:A x B –>B x A such that f (a, b) = (b, a) is bijective function.
Solution:
We have f: (A x B) —> B x A such that f (a, b) = b, a
(a) ∴ f(a1, b1)= (b1, a1) f(a2, b2) = (b2, a2) f(a1, b1) = f(a2, b2)
=>(b1, a1)
= (b2, a2)
=> b1 = b2 and a1 = a2 f is one-one
(b) Every member (p, q) belonging to its codomain has its pre-image in its domain as (q, p) f is onto. Thus, f is one-one and onto i.e. it is bijective.

Ex 1.2 Class 12 Maths Question 9.
Let f: N —> N be defined by
f (n) = 
\frac { n+1 }{ 2 }  ,if n is odd
f (n) = \frac { n }{ 2 }  ,if n is even
for all n∈N

State whether the function f is bijective. Justify your answer.
Solution:
f: N —> N, defined by
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.2 Q9.1
The elements 1, 2 belonging to domain of f have the same image 1 in its codomain
=> f is not one-one.
∴ it is not injective,
(b) Every member of codomain has pre-image in its domain e.g. 1 has two pre-images 1 and 2
=> f is onto. Thus f is not one-one but it is onto
=> f is not bijective.

Ex 1.2 Class 12 Maths Question 10.
Let A = R-{3} and B = R-{1}. consider the function f: A -> B defined by f (x) = \left( \frac { x-2 }{ x-3 } \right)
Solution:
Is f one-one and onto? Justify your answer.
f: A –> B where A = R – {3}, B = R – {1} f is defined by
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.2 Q10.1

Ex 1.2 Class 12 Maths Question 11.
Let f: R -> R be defined as f (x)=x4. Choose the correct answer.
(a) f is one-one onto
(b) f is many-one onto
(c) f is one-one but not onto
(d) f is neither one-one nor onto
Solution:
f(-1) = (-1)4 = 1,f(1) = 14 = 1
∴ – 1, 1 have the same image 1 => f is not one- one
Further – 2 in the codomain of f has no pre-image in its domain.
∴ f is not onto i.e. f is neither one-one nor onto Option (d) is correct.

Question 12.
Let f: R –> R be defined as f (x)=3x. Choose the correct answer.
(a) f is one-one onto
(b) f is many-one onto
(c) f is one-one but not onto
(d) f is neither one-one nor onto
Solution:
f: R –> R is defined by f (x) = 3x
(a) f(x1) = 3x1, f(x2) = 3x2
=> f(x1) = f(x2)
=> 3x1 = 3x2
=> x1 = x2
=> f is one-one
(b) for every member y belonging to co-domain has pre-image x in domain of f.
∵ y = 3x
=>x= \frac { y }{ 3 }
f is onto
f is one-one and onto. Option (a) is correct.

Ex 1.3 Class 12 Maths Question 1.
Let f: {1,3,4} –> {1,2, 5} and g : {1, 2,5} –> {1,3} be given by f = {(1, 2), (3,5), (4,1) and g = {(1,3), (2,3), (5,1)}. Write down g of.
Solution:
f= {(1,2),(3,5),(4,1)}
g= {(1,3),(2,3),(5,1)}
f(1) = 2, g(2) = 3 => gof(1) = 3
f(3) = 5, g(5)= 1 =>gof(3) = 1
f(4) = 1, g(1) = 3 => gof(4) = 3
=> gof= {(1,3), (3,1), (4,3)}

Ex 1.3 Class 12 Maths Question 2.
Let f, g and h be functions from R to R. Show that (f + g) oh = foh + goh, (f • g) oh = (foh) • (goh)
Solution:
f + R –> R, g: R –> R, h: R –> R
(i) (f+g)oh(x)=(f+g)[h(x)]
= f[h(x)]+g[h(x)]
={foh} (x)+ {goh} (x)
=>(f + g) oh = foh + goh
(ii) (f • g) oh (x) = (f • g) [h (x)]
= f[h (x)] • g [h (x)]
= {foh} (x) • {goh} (x)
=> (f • g) oh = (foh) • (goh)

Ex 1.3 Class 12 Maths Question 3.
Find gof and fog, if
(i) f (x) = |x| and g (x) = |5x – 2|
(ii) f (x) = 8x³ and g (x) = { x }^{ 1/3 }.
Solution:
(i) f(x) = |x|, g(x) = |5x – 2|
(a) gof(x) = g(f(x)) = g|x|= |5| x | – 2|
(b) fog(x) = f(g (x)) = f(|5x – 2|) = ||5 x – 2|| = |5x-2|
(ii) f(x) = 8x³ and g(x) = { x }^{ 1/3 }
(a) gof(x) = g(f(x)) = g(8x³) = { { (8x }^{ 3 }) }^{ 1/3 } = 2x
(b) fog (x) = f(g (x))=f({ x }^{ 1/3 }) = 8.({ x }^{ 1/3 })³ = 8x

Ex 1.3 Class 12 Maths Question 4.
If f(x)=\frac { 4x+3 }{ 6x-4 } x\neq \frac { 2 }{ 3 } , show that fof (x) = x, for all x\neq \frac { 2 }{ 3 } . What is the inverse of f?
Solution:
f(x)=\frac { 4x+3 }{ 6x-4 } x\neq \frac { 2 }{ 3 }
(a) fof (x) = f(f(x)) = f\frac { 4x+3 }{ 6x-4 }
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 Q4.1

Ex 1.3 Class 12 Maths Question 5.
State with reason whether following functions have inverse
(i) f: {1,2,3,4}–>{10} with f = {(1,10), (2,10), (3,10), (4,10)}
(ii) g: {5,6,7,8}–>{1,2,3,4} with g = {(5,4), (6,3), (7,4), (8,2)}
(iii) h: {1,2,3,4,5}–>{7,9,11,13} with h = {(2,7), (3,9), (4,11), (5,13)}
Solution:
f: {1,2,3,4} –> {10} with f = {(1,10), (2,10), (3,10), (4,10)}
(i) f is not one-one since 1,2,3,4 have the same image 4.
=> f has no inverse.
(ii) g: {5,6,7,8} –> {1,2,3,4} with g = {(5,4), (6,3) , (7,4), (8,2)}
Here also 5 and 7 have the same image
∴ g is not one-one. Therefore g is not invertible.
(iii) f has an inverse

 

Ex 1.3 Class 12 Maths Question 6.
Show that f: [-1,1] –> R, given by f(x) = \frac { x }{ (x+2) }  is one-one. Find the inverse of the function f: [-1,1] –> Range f.
Hint – For y ∈ Range f, y = f (x) = \frac { x }{ (x+2) }  for some x in [- 1,1], i.e., x = \frac { 2y }{ (1-y) }
Solution:
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 Q6.1Ex 1.3 Class 12 Maths Question 7.
Consider f: R –> R given by f (x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Solution:
f: R—>R given by f(x) = 4x + 3
f (x1) = 4x1 + 3, f (x2) = 4x2 + 3
If f(x1) = f(x2), then 4x1 + 3 = 4x2 + 3
or 4x1 = 4x2 or x1 = x2
f is one-one
Also let y = 4x + 3, or 4x = y – 3
∴ x=\frac { y-3 }{ 4 }
For each value of y ∈ R and belonging to co-domain of y has a pre-image in its domain.
∴ f is onto i.e. f is one-one and onto
f is invertible and f-1 (y) = g (y) = \frac { y-3 }{ 4 }

Ex 1.3 Class 12 Maths Question 8.
Consider f: R+ –> [4, ∞] given by f (x) = x² + 4. Show that f is invertible with the inverse f-1 of f given by f-1 (y) = √y-4 , where R+ is the set of all non-negative real numbers.
Solution:
f(x1) = x12 + 4 and f(x2) = x22 + 4
f(x1) = f(x2) => x12 + 4 = x22 + 4
or x12 = x22 => x1 = x2 As x ∈ R
∴ x>0, x12 = x22 => x1 = x2 =>f is one-one
Let y = x² + 4 or x² = y – 4 or x = ±√y-4
x being > 0, -ve sign not to be taken
x = √y – 4
∴ f-1 (y) = g(y) = √y-4 ,y ≥ 4
For every y ≥ 4, g (y) has real positive value.
∴ The inverse of f is f-1 (y) = √y-4

Ex 1.3 Class 12 Maths Question 9.
Consider f: R+ –> [- 5, ∞) given by f (x) = 9x² + 6x – 5. Show that f is invertible with
{ f }^{ -1 }(y)=\left( \frac { \left( \sqrt { y+6 } \right) -1 }{ 3 } \right)
Solution:
Let y be an arbitrary element in range of f.
Let y = 9x² + 6x – 5 = 9x² + 6x + 1 – 6
=> y = (3x + 1)² – 6
=> y + 6 = (3x + 1)²
=> 3x + 1 = √y + 6
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 Q9.1

Ex 1.3 Class 12 Maths Question 10.
Let f: X –> Y be an invertible function. Show that f has unique inverse.
Hint – suppose g1 and g2 are two inverses of f. Then for all y∈Y, fog1(y)=Iy(y)=fog2(y).Use one-one ness of f.
Solution:
If f is invertible gof (x) = Ix and fog (y) = Iy
∴ f is one-one and onto.
Let there be two inverse g1 and g2
fog1 (y) = Iy, fog2 (y) = Iy
Iy being unique for a given function f
=> g1 (y) = g2 (y)
f is one-one and onto
f has a unique inverse.

Ex 1.3 Class 12 Maths Question 11.
Consider f: {1,2,3} –> {a, b, c} given by f (1) = a, f (2)=b and f (3)=c. Find f-1 and show that (f-1)f-1=f.
Solution:
f: {1,2, 3,} –> {a,b,c} so that f(1) = a, f(2) = b, f(3) = c
Now let X = {1,2,3}, Y = {a,b,c}
∴ f: X –> Y
∴ f-1: Y –> X such that f-1 (a)= 1, f-1(b) = 2; f-1(c) = 3
Inverse of this function may be written as
(f-1)-1 : X –> Y such that
(f-1)-1 (1) = a, (f-1)-1 (2) = b, (f-1)-1 (3) = c
We also have f: X –> Y such that
f(1) = a,f(2) = b,f(3) = c => (f-1)-1 = f

Ex 1.3 Class 12 Maths Question 12.
Let f: X –> Y be an invertible function. Show that the inverse of f-1 is f, i.e., (f-1)-1 = f.
Solution:
f: X —> Y is an invertible function
f is one-one and onto
=> g : Y –> X, where g is also one-one and onto such that
gof (x) = Ix and fog (y) = Iy => g = f-1
Now f-1 o (f-1)-1 = I
and fo[f-1o (f-1)-1] =fol
or (fof-1)-1 o (f-1)-1 = f
=> Io (f-1)-1 = f
=> (f-1)-1 = f

Ex 1.3 Class 12 Maths Question 13.
If f: R –> R be given by f(x) = { \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } } , then fof (x) is
(a) { x }^{ \frac { 1 }{ 3 } }
(b) x³
(c) x
(d) (3 – x³)
Solution:
f: R-> R defined by f(x) = { \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } }
fof (x) = f[f(x)] = {f{ \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } }}
{ \left[ 3-{ \left\{ { \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } } \right\} }^{ 3 } \right] }^{ \frac { 1 }{ 3 } }
{ \left[ 3-{ \left\{ { \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } } \right\} } \right] }
{ \left( { x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } }
= x

Ex 1.3 Class 12 Maths Question 14.
Let f: R-\left\{ -\frac { 4 }{ 3 } \right\} \rightarrow R be a function defined as f (x) = \frac { 4x }{ 3x+4 }  . The inverse of f is the map g: Range f–> R-\left\{ -\frac { 4 }{ 3 } \right\} \rightarrow R given by
(a) g(y)=\frac { 3y }{ 3-4y }
(b) g(y)=\frac { 4y }{ 4-3y }
(c) g(y)=\frac { 4y }{ 3-4y }
(d) g(y)=\frac { 3y }{ 4-3y }
Solution:
(b)

Ex 1.4 Class 12 Maths Question 1.
Determine whether or not each of the definition of * given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
(i) On Z+,define * by a * b = a – b
(ii) On Z+, define * by a * b = ab
(iii) On R, define * by a * b = ab²
(iv) On Z+,define * by a * b = |a – b|
(v) On Z+, define * by a * b = a
Solution:
(i) If a > b, a * b = a – b > 0, which belongs to Z+.
But if a < b, a * b = a – b < 0, which does not belong to Z+
=> * given operation is not a binary operation.
(ii) For all a and b belonging to Z-1, ab also belongs to Z+.
∴ The operation *, defined by a * b = ab is a binary operation.
(iii) For all a and b belonging to R, ab² also belongs to R.
∴ The operation * defined by a * b = ab² is binary operation.
(iv) For all a and b belonging to Z+, |a – b| also belongs to Z+1
∴ The operation a * b = |a – b| is a binary operation.
(v) On Z+ defined by a * b = a
a, b ∈ Z+ = a ∈ Z+
∴ The operation * is a binary operation.

Ex 1.4 Class 12 Maths Question 2.
For each binary operation * defined below, determine whether * is commutative or associative.
(i) OnZ, define a * b = a – b
(ii) OnQ, define a * b = ab + 1
(iii) On Q, define a * b = \\ \frac { ab }{ 2 }
(iv) On Z+, define a * b = 2ab
(v) On Z+, define a * b = ab
(vi) On R- {-1}, define a * b = \\ \frac { a }{ b+1 }
Solution:
(i) On Z, operation * is defined as
(a) a * b = a – b => b * a = b – a
But a – b ≠ b – a ==> a * b ≠ b * a
Defined operation is not commutative
(b) a – (b – c) ≠ (a – b) – c
Binary operation * as defined is not associative.

(ii) On Q, Operation * is defined as a * b = ab + 1
(a) ab + 1 = ba + 1, a * b = b * a
Defined binary operation is commutative.
(b) (a*b)*c = (ab + 1)*c = (ab + 1)c + 1 = abc + c + 1
a * (b * c) = a * (bc + 1) = a(bc + 1)+ 1 = abc + a+ 1
=> a * (b * c) ≠ (a * b) * c
∴ Binary operation defined is not associative.

(iii) (a) On Q, operation * is defined as a * b = \\ \frac { ab }{ 2 }
∴ a * b = b * a
∴ Operation binary defined is commutative.
be abc
(b) a * (b * c) = a * \\ \frac { bc }{ 2 }  = \\ \frac { abc }{ 4 }  and
(a * b) * c = \\ \frac { bc }{ 2 }  * c \\ \frac { abc }{ 4 }
=> (a * b) * c = \\ \frac { bc }{ 2 }  * c \\ \frac { abc }{ 4 }
Defined binary operation is associative.

(iv) On Z+ operation * is defined as a * b = 2ab
(a) a * b = 2ab, b * a = 2ba = 2ab
=> a * b = b * a .
∴ Binary operation defined as commutative.
(b) a * (b * c) = a * 2ba = 2a.2bc
(a * b) * c = 2ab * c = 22ab
Thus (a * b) * c ≠ a * (b * c)
∴ Binary operation * as defined as is not associative.

(v) On Z+, a * b = ab
(a) b * a = ba .
∴ ab ≠ ba = a * b ≠ b * a.
* is not commutative.
(b) (a*b)*c = ab*c = (ab)c = abc a*(b* c)
= a*bc = abc
Thus (a * b) * c ≠ (a * b * c)
∴ Operation * is not associative.

(vi) Neither commutative nor associative.

Ex 1.4 Class 12 Maths Question 3.
Consider the binary operation ^ on the set {1, 2, 3, 4, 5} defined by a ^ b=min {a, b}. Write the operation table of the operation ^.
Solution:
Operation ^ table on the set {1, 2, 3, 4, 5} is as follows.
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.4 Q3.1

Ex 1.4 Class 12 Maths Question 4.
Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative?
(iii) Compute (2 * 3) * (4 * 5).
Hint – use the following table)
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.4 Q4.1
Solution:
(i) From the given table, we find
2*3 = 1, 1*4 = 1
(a) (2*3)*4 = 1 * 4 = 1
(b) 2*(3*4) = 2 * 1 = 1
(ii) Let a, b ∈ {1,2,3,4,5} From the given table, we find
a*a = a
a*b = b*a = 1 when a or b or are odd and a b.
2 * 4 = 4 * 2 = 2, when a and b are even and a ≠ b
Thus a * b = b * c
∴Binary operation * given is commutative.
(iii) Binary operation * given is commutative (2 * 3) * (4 * 5) = 1 * 1 = 1.

Ex 1.4 Class 12 Maths Question 5.
Let *’ be the binary operation on the set {1,2,3,4,5} defined by a *’ b=H.C.F. of a and b. Is the operation *’ same as the operation * defined in the exp no. 4 above? Justify your answer.
Solution:
The set is {1,2,3,4, 5} and a * b = HCF of a and b.
Let us prepare the table of operation *.
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.4 Q5.1

Ex 1.4 Class 12 Maths Question 6.
Let * be the binary operation on N given by a * b = L.C.M. of a and b.Find
(i) 5 * 7, 20 * 16
(ii) Is * commutative?
(iii) Is * associative?
(iv) Find the identity of * in N
Solution:
Binary operation * defined as a * b = 1 cm. of a and b.
(i) 5 * 7 = 1 cm of 5 and 7 = 35
20 * 16= 1 cm of 20 and 16 = 80
(ii) a * b= 1 cm of a and b b * a = 1 cm of b and a
=> a * b = b * a, 1 cm of a, b and b, a are equal
∴ Binary operation * is commutative.
(iii) a * (b * c) = 1 cm of a, b, c and (a * b) * c = 1 cm of a, b, c
=> a * (b * c) = (a * b) * c
=> Binary operation * given is associative.
(iv) Identity of * in N is 1
1 * a = a * 1 = a = 1 cm of 1 and a.
(v) Let * : N x N—> N defined as a * b = 1.com of (a, b)
For a = 1, b = 1, a * b = l b * a
Otherwise a * b ≠ 1
∴ Binary operation * is not invertible
=> 1 is invertible for operation *

Ex 1.4 Class 12 Maths Question 7.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.
Solution:
The given set = {1,2,3,4,5} Binary operation is defined as a * b = 1 cm of a and b. 4 * 5 = 20 which does not belong to the given set {1, 2, 3, 4, 5}.
It is not a binary operation.

Ex 1.4 Class 12 Maths Question 8.
Let * be the binary operation on N defined by a * b = H.C.F. of a and b. Is * commutative? Is * associative? Does there exist identity for this binary operation on N?
Solution:
Binary operation on set N is defined as a * b = HCF of a and b
(a) We know HCF of a, b = HCF of b, a
∴ a * b = b * a
∴ Binary operation * is commutative.
(b) a*(b*c) = a* (HCF of b, c) = HCF of a and (HCF of b, c) = HCF of a, b and c
Similarly (a * b) * c = HCF of a, b, and c
=> (a * b) * c = a * (b * c)
Binary operation * as defined above is associative.
(c) 1 * a = a * 1 = 1 ≠ a
∴ There does not exists any identity element.

Ex 1.4 Class 12 Maths Question 9.
Let * be a binary operation on the set Q of rational numbers as follows:
(i) a * b = a – b
(ii) a * b = a² + b²
(iii) a * b = a + ab
(iv) a * b = (a – b)²
(v) a * b = \\ \frac { ab }{ 2 }
(vi) a * b = ab²
Find which of the binary operations are commutative and which are associative.
Solution:
Operation is on the set Q.,,
(i) defined as a * b = a – b
(a) Now b * a = b – a
But a – b ≠ b – a
∴ a * b ≠ b * a
∴ Operation * is not commutative.
(b) a * (b * c) = a * (b – c) = a – (b – c) = a – b + c (a * b) * c = (a – b) * c = a – b – c
Thus a * (b * c)¹ (a * b) * c = (a² + b²)² + c²
=> a * (b * c) ≠ (a * b) * c
∴ The operation * as defined is not associative.

(ii) (a) a * b = a² + b * a = b² + a² = a² + b².
a * b = b * a
This binary operation is commutative,
(b) a*(b*c) = a*(b² + c²) = a² + (b²)² + c²)²
=> (a*b)*c = (a² + b²)*c = (a² + b²) + c²
Thus a * (b*c) (a*b) * c
The operation * given is not associative.

(iii) Operation * is defined as a * b = a + ab
(a) b * a = b + ba
a * b ≠ b * a
The operation is not commutative.
(b) a*(b*c) = a*(b + bc)
= a + a(b + bc)
= a + ab + abc (a * b) * c
= (a + ab) * c
= (a + ab) + (a + ab) • c
= a + ab + ac + abc
=> a * (b * c) ≠ (a * b) * c
=> The binary operation is not associative.

(iv) The binary operation is defined as a * b = (a – b)²
(a) b*a = (b – a)² = (a – b)² => a*b = b*a
.’. This binary operation * is commutative.
(b) a*(b*c) = a*(b – c)² = [a – (b – c)²]² (a * b) * c
= (a – b)² * c
= [(a – b)² – c]²
=> a * (b * c) ≠ (a * b) * c
the operation * is not associative.

(v) Commutative and associative.

(vi) Neither commutative nor associative.

Ex 1.4 Class 12 Maths Question 10.
Show that none of the operations given above has identity.
Solution:
The binary operation * on set Q is
(i) defined as a*b = a – b
For identity element e, a*e = e*a = a
But a*e = a – e≠a and e*a = e – a≠a
There is no identity element for this operation
(ii) Binary operation * is defined as a * b = a² + b² ≠ a
This operation * has no identity.
(iii) The binary operation is defined as a*b = a+ab
Putting b = e, a + e = a + eb ≠ a
There is no identity element.
(iv) The binary operation is defined as a * b = (a – b)²
Put b = e, a * e = (a – e)² ≠ a for any value of
e∈Q
=> there is no Identity Element.
(v) The operation is a * b = \\ \frac { ab }{ 4 }
∴ a * e = \\ \frac { ae }{ 4 }  ≠ a for any value of e ∈ Q
∴ Operation * has no identity
(vi) The operation * is a * b = ab² Put b = e, a
*e = ae² and e * a = ea² ≠ a for any value of e∈Q
=> There is no Identity Element. Thus, these operations have no Identity.

Ex 1.4 Class 12 Maths Question 11.
Let A=N x N and * be the binary operation on A defined by (a,b)*(c,d)=(a+c,b+d)
Show that * is commutative and associative. Find the identity element for * on A, if any.
Solution:
A = N x N Binary operation * is defined as (a, b) * (c, d) = (a + c, b + d)
(a) Now (c, d) * (a,b) = (c+a, d+b) = (a+c,b+d)
=> (a, b) * (c, d) = (c, d) * (a, b)
∴ This operation * is commutative
(b) Next(a,b)* [(c,d)*(e,f)]=(a,b)*(c+e,d+f) = ((a + c + e), (b + d + f))
and [(a, b) * (c, d)] * (e, f)=(a+c, b+d) * (e, f) = ((a + c + e, b+d + f))
=> (a, b) * [(c, d) * (e, f)] = [(a, b) * (c, d)] * (e,f)
∴ The binary operation given is associative
(c) Identity element does not exists.

Ex 1.4 Class 12 Maths Question 12.
State whether the following statements are true or false. Justify.
(i) For an arbitrary binary operation * on a set N,
a*a=a∀a∈N.
(ii) If * is a commutative binary operation on N, then
a * (b * c) = (c * b) * a
Solution:
(i) A binary operation on N is defined as
a*a=a∀a∈N.
Here operation * is not defined.
∴ Given statement is false.
(ii) * is a binary commutative operation on N. c
* b = b * c
∵ * is commutative
∵ (c * b) * a = (b * c) * a = a * (b * c)
∴ Thus a * (b * c) = (c * b) * a
This statement is true.

Ex 1.4 Class 12 Maths Question 13.
Consider a binary operation * on N defined as a * b = a³ + b³. Choose the correct answer.
(a) Is * both associative and commutative?
(b) Is * commutative but not associative?
(c) Is * associative but not commutative?
(d) Is * neither commutative nor associative?
Solution:
(b)

Exercise 1.3
 
1. Let f : R → R be defined as f(x) = 10x + 7. Find the function g : R → R such that gof = fog = IR .
 
Answer
 
It is given that f: R → R is defined as f(x) = 10x + 7.
For one – one
Let f(x) = f(y), where x, y ∈ R.
⇒ 10x + 7 = 10y + 7
⇒ x = y
∴ f is a one – one function.
For onto
For y ∈ R, let y = 10x + 7.
∴ f is onto.
Therefore, f is one–one and onto.
Thus, f is an invertible function.
Let us define g: R → R as g(y) = y−7/10
Now, we have
 
2. Let f : W → W be defined as f(n) = n–1, if n is odd and f(n) = n+1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.
 
Answer
 
It is given that:
For one–one
Let f(n) = f(m).
It can be observed that if n is odd and m is even, then we will have n−1 = m + 1.
⇒ n − m = 2
However, this is impossible.
Similarly, the possibility of n being even and m being odd can also be ignored
under a similar argument.
∴ Both n and m must be either odd or even. Now, if both n and m are odd,
Then, we have
f(n) = f(m)
⇒ n − 1 = m – 1
⇒ n = m
Again, if both n and m are even,
Then, we have
f(n) = f(m)
⇒ n + 1 = m + 1
⇒ n = m
∴ f is one–one.
 
For onto:
It is clear that any odd number 2r + 1 in co-domain N is the image of 2r in domain
N and any even number 2r in co-domain N is the image of 2r + 1 in domain N.
∴ f is onto.
Hence, f is an invertible function.
Now, when n is odd
gof(n) = g(f(n)) = g(n − 1) = n − 1 + 1 = n and
When n is even
gof(n) = g(f(n)) = g(n + 1) = n + 1 − 1 = n
Similarly,
When m is odd
fog(m) = f(g(m)) = f(m − 1) = m − 1 + 1 = m and
When m is even
fog(m) = f(g(m)) = f(m + 1) = m + 1 − 1 = m
∴ gof = IW and fog = IW
Thus, f is invertible and the inverse of f is given by f-1 = g, which is the same as f. Hence, the inverse of f is f itself.
 
3. If f : R → R is defined by f(x) = x2 – 3x + 2, find f (f(x)).
 
Answer
 
It is given that f: R → R is defined as f(x) = x2 − 3x + 2.
f(f(x)) = f(x2 − 3x + 2)
= (x2 − 3x + 2)2 − 3(x2 − 3x + 2) + 2
= (x4 + 9x2 + 4 − 6x3 − 12x + 4x2) + (−3x2 + 9x − 6) + 2
= x4 − 6x3 + 10x2 − 3x
 
4. Show that the function f : R → {x ∈ R : –1 < x < 1} defined by
 , x ∈ R is one one and onto function.
 
Answer
 
For one – one
Suppose f(x) = f(y), where x, y ∈ R.
Since, x is positive and y is negative
x > y ⇒ x − y > 0
But, 2xy is negative.
Then 2xy ≠ x − y
 
Thus, the case of x being positive and y being negative can be ruled out.
Under a similar argument, x being negative and y being positive can also be ruled out.
∴ x and y have to be either positive or negative.
When x and y are both positive, we have
∴ f is one – one.
For onto
Now, let y ∈ R such that −1 < y < 1.
If y is negative, then, there exists x =y/1+y ∈ R such that
∴ f is onto.
Hence, f is one–one and onto.
 
5. Show that the function f : R → R given by f(x) = x3 is injective.
 
Answer
 
f: R → R is given as f(x) = x3.
 
For one – one
Suppose f(x) = f(y), where x, y ∈ R.
⇒ x3 = y3 ….(1)
Now, we need to show that x = y.
Suppose x ≠ y, their cubes will also not be equal.
⇒ x3 ≠ y3
However, this will be a contradiction to (1).
∴ x = y
Hence, f is injective.
 
6. Give examples of two functions f : N → Z and g : Z → Z such that g o f is injective but g is not injective.
(Hint : Consider f(x) = x and g (x) = | x |). 
 
Answer
 
Define f: N → Z as f(x) = x and g: Z → Z as g (x) = |x|.
We first show that g is not injective.
It can be observed that
g (−1) =|−1| = 1
g (1) = |1| = 1
∴ g (−1) = g (1), but −1 ≠ 1.
∴ g is not injective.
Now, g of: N → Z is defined as gof(x) = g(f(x)) = g(x) = |x|.
Let x, y ∈ N such that g of(x) = g of(y).
⇒ |x| = |y|
Since x and y ∈ N, both are positive.
∴ |x| = |y| ⇒ x = y
Hence, gof is injective.
 
7. Give examples of two functions f : N → N and g : N → N such that g o f is onto but f is not onto.
 
Answer
 
Define f: N → N by f(x) = x + 1 and,
We first show that g is not onto.
For this, consider element 1 in co-domain N. It is clear that this element is not an image of any of the elements in domain N.
∴ f is not onto.
Now, gof: N → N is defined by
gof(x) = g(f(x)) = g(x + 1) = x + 1 − 1 = x [x ∈ N ⇒ x + 1 > 1]
Then, it is clear that for y ∈ N, there exists x = y ∈ N such that gof(x) = y.
Hence, gof is onto.
 
8. Given a non empty set X, consider P(X) which is the set of all subsets of X.
Define the relation R in P(X) as follows:
For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.
 
Answer
 
Since every set is a subset of itself, ARA for all A ∈ P(X).
∴ R is reflexive.
Let ARB ⇒ A ⊂ B.
This cannot be implied to B ⊂ A.
For instance, if A = {1, 2} and B = {1, 2, 3}, then it cannot be implied that B is
related to A.
∴ R is not symmetric.
Further, if ARB and BRC, then A ⊂ B and B ⊂ C.
⇒ A ⊂ C
⇒ ARC
∴ R is transitive.
Hence, R is not an equivalence relation as it is not symmetric.
 
Page No. 30
 
9. Given a non-empty set X, consider the binary operation ∗ : P(X) × P(X) → P(X) given by A ∗ B = A ∩ B ∀ A, B in P(X), where P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation ∗.
 
Answer
 
It is given the binary operation *:
P(X) × P(X) → P(X) given by A * B = A ∩ B ∀ A, B in P(X)
We know that A ∩ X = A = X ∩ A for all A ∈ P(X)
⇒ A * X = A = X * A for all A ∈ P(X)
Thus, X is the identity element for the given binary operation *.
Now, an element A ∈ P(X) is invertible if there exists B ∈ P(X) such that
A * B = X = B * A [As X is the identity element]
or
A ∩ B = X = B ∩ A
This case is possible only when A = X = B.
Thus, X is the only invertible element in P(X) with respect to the given operation*.
Hence, the given result is proved.
10. Find the number of all onto functions from the set {1, 2, 3, … , n} to itself.
 
Answer
 
Onto functions from the set {1, 2, 3, … , n} to itself is simply a permutation on n symbols 1, 2, …, n.
Thus, the total number of onto maps from {1, 2, … , n} to itself is the same as the total number of permutations on n symbols 1, 2, …, n, which is n.
 
11. Let S = {a, b, c} and T = {1, 2, 3}. Find F-1 of the following functions F from S to T, if it exists.
(i) F = {(a, 3), (b, 2), (c, 1)}
(ii) F = {(a, 2), (b, 1), (c, 1)}
 
Answer
 
S = {a, b, c}, T = {1, 2, 3}
(i) F: S → T is defined as F = {(a, 3), (b, 2), (c, 1)}
⇒ F (a) = 3, F (b) = 2, F(c) = 1
Therefore, F-1 : T → S is given by F-1 = {(3, a), (2, b), (1, c)}.
 
(ii) F: S → T is defined as F = {(a, 2), (b, 1), (c, 1)}
Since F (b) = F (c) = 1, F is not one – one.
Hence, F is not invertible i.e., F-1 does not exist.
 
12. Consider the binary operations ∗ : R × R → R and o : R × R → R defined as a ∗b = |a – b| and a o b = a, ∀ a, b ∈ R. Show that ∗ is commutative but not associative, o is associative but not commutative. Further, show that ∀ a, b, c ∈ R, a ∗ (b o c) = (a ∗ b) o (a ∗ c). [If it is so, we say that the operation ∗ distributes over the operation o]. Does o distribute over ∗? Justify your answer.
 
Answer
 
It is given that *: R × R → and o: R × R → R is defined as a ∗ b = |a − b| and
aob = a, ∀ a, b ∈ R
For a, b ∈ R, we have
a ∗ b = |a − b| and b ∗ a = |b − a| = |−(a − b)| = |a − b|
∴ a * b = b * a
Hence, the operation * is commutative.
It can be observed that
(1 ∗ 2) ∗ 3 = (|1 − 2|) ∗ 3 = 1 ∗ 3 = |1 − 3| = 2
and
1 ∗ (2 ∗ 3) = 1 ∗ (|2 − 3|) = 1 ∗ 1 = |1 − 1| = 0
∴ (1 ∗ 2) ∗ 3 ≠ 1 ∗ (2 ∗ 3) where 1, 2, 3 ∈ R.
Hence, the operation * is not associative.
Now, consider the operation o
It can be observed that 1 o 2 = 1 and 2 o 1 = 2.
∴ 1 o 2 ≠ 2 o 1 where 1, 2 ∈ R.
Hence, the operation o is not commutative.
Let a, b, c ∈ R. Then, we have
(a o b) o c = a o c = a
and
a o (b o c) = a o b = a
∴ (a o b) o c = a o (b o c), where a, b, c ∈ R
Hence, the operation o is associative.
Now, let a, b, c ∈ R, then we have
a * (b o c) = a * b =|a − b|
(a * b) o (a * c) = (|a − b|)o(|a − c|) = |a − b|
Hence, a * (b o c) = (a * b) o (a * c).
Now,
1 o (2 ∗ 3) = 1o(|2 − 3|) = 1o1 = 1
(1 o 2) * (1 o 3) = 1 * 1 = |1 − 1| = 0
∴ 1 o (2 * 3) ≠ (1 o 2) * (1 o 3) where 1, 2, 3 ∈ R
Hence, the operation o does not distribute over *.
 
13. Given a non-empty set X, let ∗ : P(X) × P(X) → P(X) be defined as A * B = (A–B) ∪ (B–A), ∀ A, B ∈ P(X). Show that the empty set φ is the identity for the operation ∗ and all the elements A of P(X) are invertible with A-1 = A. (Hint : (A–φ) ∪ (φ–A) = A and (A–A) ∪ (A–A) = A ∗ A = φ).
 
Answer
 
It is given that *: P(X) × P(X) → P(X) is defined
as A * B = (A − B) ∪ (B − A) ∀ A, B ∈ P(X).
Let A ∈ P(X). Then, we have
A * Φ = (A − Φ) ∪ (Φ − A) = A ∪ Φ = A
Φ * A = (Φ − A) ∪ (A − Φ) = Φ ∪ A = A
∴ A * Φ = A = Φ * A for all A ∈ P(X)
Thus, Φ is the identity element for the given operation*.
Now, an element A ∈ P(X) will be invertible if there exists B ∈ P(X) such that
A * B = Φ = B * A. [As Φ is the identity element]
Now, we observed that,
A * A = ( A – A) ∪ (A – A) = Φ ∪ Φ = Φ for all A ∈ P(X).
Hence, all the elements A of P(X) are invertible with A-1 = A.
 
14. Define a binary operation ∗ on the set {0, 1, 2, 3, 4, 5} as
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6–a being the inverse of a
 
Answer
 
Let X = {0, 1, 2, 3, 4, 5}.
An element e ∈ X is the identity element for the operation *, if
a ∗ e = a = e ∗ a for all a ∈ X
For a ∈ X, we have
a ∗ 0 = a + 0 = a [a ∈ X ⇒ a + 0 < 6]
0 ∗ a = 0 + a = a [a ∈ X ⇒ 0 + a < 6]
∴ a ∗ 0 = a = 0 ∗ a for all a ∈ X
Thus, 0 is the identity element for the given operation *.
 
An element a ∈ X is invertible if there exists b ∈ X such that a * b = 0 = b * a.
⇒ a = −b or b = 6 − a
But, X = {0, 1, 2, 3, 4, 5} and a, b ∈ X. Then, a ≠ −b.
∴ b = 6 − a is the inverse of a for all a ∈ X.
Hence, the inverse of an element a ∈X, a ≠ 0 is 6 − a i.e., a-1 = 6 − a.
 
15. Let A = {– 1, 0, 1, 2}, B = {– 4, – 2, 0, 2} and f, g : A → B be functions defined by
Justify your answer. (Hint: One may note that two functions f : A → B and g : A → B such that f(a) = g (a) ∀ a ∈ A, are called equal functions).
 
Answer
 
It is given that A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2}.
Also, it is given that f, g: A → B are defined by
∴ f(a) = g(a) for all a ∈ A
Hence, the functions f and g are equal.
 
16. Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3) which are
reflexive and symmetric but not transitive is
(A) 1
(B) 2
(C) 3
(D) 4
 
Answer
 
The given set is A = {1, 2, 3}.
The smallest relation containing (1, 2) and (1, 3) which is reflexive and symmetric, but not transitive is given by:
R = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1)}
This is because relation R is reflexive as (1, 1), (2, 2), (3, 3) ∈ R.
Relation R is symmetric since (1, 2), (2, 1) ∈ R and (1, 3), (3, 1) ∈ R.
But relation R is not transitive as (3, 1), (1, 2) ∈ R, but (3, 2) ∉ R.
Now, if we add any two pairs (3, 2) and (2, 3) (or both) to relation R, then relation R will become transitive.
Hence, the total number of desired relations is one.
 
The correct answer is A.
 
17. Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
 
Answer
 
It is given that A = {1, 2, 3}.
The smallest equivalence relation containing (1, 2) is given by,
R1 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
Now, we are left with only four pairs i.e., (2, 3), (3, 2), (1, 3), and (3, 1).
If we odd any one pair [say (2, 3)] to R1, then for symmetry we must add (3, 2).
Also, for transitivity we are required to add (1, 3) and (3, 1).
Hence, the only equivalence relation (bigger than R1) is the universal relation.
This shows that the total number of equivalence relations containing (1, 2) is two.
 
The correct answer is B.
 
Page No. 31
 
18. Let f : R → R be the Signum Function defined as
and g : R → R be the Greatest Integer Function given by g (x) = [x], where [x] is greatest integer less than or equal to x. Then, does fog and gof coincide in (0, 1]?
 
Answer
 
It is given that,
Also, g: R → R is defined as g(x) = [x], where [x] is the greatest integer less than or equal to x.
Now, let x (0, 1].
Then, we have
[x] = 1 if x = 1 and [x] = 0 if 0 < x < 1.
 
19. Number of binary operations on the set {a, b} are
(A) 10 
(B) 16 
(C) 20
(D ) 8
 
Answer
 
A binary operation * on {a, b} is a function from {a, b} × {a, b} → {a, b}
i.e., * is a function from {(a, a), (a, b), (b, a), (b, b)} → {a, b}.
Hence, the total number of binary operations on the set {a, b} is 24 i.e., 16.
 
The correct answer is B.
Read More

NCERT MCQ CLASS-12 CHAPTER-7 | CHEMISTRY NCERT MCQ | THE p-BLOCK ELEMENTS | EDUGROWN

In This Post we are  providing Chapter-7 The p-Block Elements NCERT MCQ for Class 12 Chemistry which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These MCQS  can be really helpful in the preparation of Board exams and will provide you with a brief knowledge of the chapter.

NCERT MCQ ON THE p-BLOCK ELEMENTS

1. Among the following, which one is a wrong statement.
(a) PH5 and BiCl5 do not exist.
(b) pπ-dπ bonds are present in SO2
(c) SeF4 and CH4 have same shape.
(d) I3 has bent geometry.

Answer: c

2. In which of the pair of ions, both species contain S—S bond?
Chemistry MCQs for Class 12 with Answers Chapter 7 The p-Block Elements 1

Answer: a

3. Which one of the following order is correct for the bond dissociation enthalpy of halogen molecule?
(a) Br2 > I2 > F2 > Cl2
(b) F2 > Cl2 > Br2 > I2
(c) I2 > Br2 > Cl2 > F2
(d) Cl2 > Br2 > F2 > I2

Answer: d

4. Which is strongest acid in the following:
(a) HClO4
(b) H2SO3
(c) H2SO4
(d) HClO3

Answer: a

5. In which of the following pairs, the two species are isostructural
Chemistry MCQs for Class 12 with Answers Chapter 7 The p-Block Elements 2

Answer: c

6. The correct order of oxidizing power is
(a) HClO4 > HClO3 > HClO2 > HCIO
(b) HOCl > HClO2 > HClO3 > HClO4
(c) HClO3 > HClO4 > HClO2 > HClO
(d) HCIO2 > HOCl > HClO3 > HClO4

Answer: b

7. The correct order of acid strength is
(a) HClO4 < HClO3 < HClO2 < HClO
(b) HCIO < HClO2 < HClO3 < HClO4
(c) HClO4 < HClO < HClO2 < HClO3
(d) HClO2 < HClO3 < HClO4 < HClO

Answer: b

8. Among the following which is strongest oxidizing agent.
(a) Br2
(b) I2
(c) Cl2
(d) F2

Answer: d

9. The correct order of bond angles in the following species is
Chemistry MCQs for Class 12 with Answers Chapter 7 The p-Block Elements 3

Answer: b

10. Sulphur trioxide can be obtained by which of the following:
Chemistry MCQs for Class 12 with Answers Chapter 7 The p-Block Elements 4

Answer: (b)

11. When Cl2 reacts with hot and cone. NaOH, the oxidation number of chlorine changes from
(a) zero to +1 and zero to +5
(b) 0 to -1 and 0 to +5
(c) zero to -1 and zero to +3
(d) 0 to +1 and 0 to -3

Answer: b

12. Acidity of diprotic acid in aqueous solution increases in the order.
(a) H2S < H2Se < H2Te
(b) H2Se < H2S < H2Te
(c) H2Te < H2S < H2Se
(d) H2Se < H2Te < H2S

Answer: a

13. Which of the following statement is incorrect?
(a) ONF is isoelectronic with NO2
(h) OF2 is an oxide of fluoride
(c) Cl2O7 is an anhydride of perchloric acid
(d) O3 molecule is bent

Answer: b

14. Chlorine reacts with excess of NH3 to form
(a) NH4Cl
(b) N2 + HCl
(c) N2 + NH4Cl
(d) NCl3 + HCl

Answer: c

15. Which of the following reactions is an example of redox reaction?
(a) XeF4 + O2F2 → XeF6 + O2
(b) XeF2 + PF5 → [XeF]+ [PF6]
(c) XeF6 + H2O → XeOF4 + 2HF

Answer: a


Read More

NCERT MCQ CLASS-12 CHAPTER-6 | CHEMISTRY NCERT MCQ | GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS | EDUGROWN

In This Post we are  providing Chapter-6 General Principles and Processes of Isolation of Elements NCERT MCQ for Class 12 Chemistry which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These MCQS  can be really helpful in the preparation of Board exams and will provide you with a brief knowledge of the chapter.

NCERT MCQ ON GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

Question 1.
Concentration of sulphide ore is done by

(a) froth flotation process
(b) electrolysis
(c) roasting
(d) None of these

Answer: (a) froth flotation process

Question 2.
Malachite is an ore of

(a) iron
(b) copper
(c) zinc
(d) Sliver

Answer: (b) copper

Question 3.
Formula of copper pyrite is

(a)Cu2S
(b) CuFeS
(c) CuFeS2
(d) Cu2Fe2S2

Answer: (c) CuFeS2

Question 4.
Ore of aluminum is

(a) bauxite
(b) hematite
(c) dolomite
(d) None of these

Answer: (a) bauxite

Question 5.
Removal of the unwanted materials like sand, clays, etc. from the ore is known as ………., …….. or ……….

(a) concentration, dressing, benefaction
(b) separation, refining, gangue
(c) magnetic separation, purification, gangue
(d) washing, refining, amalgamation

Answer: (a) concentration, dressing, benefaction

Question 6.
For which of the following ores froth floatation method is used for concentration?

(a) Hematite
(b) Zinc blende
(c) Magnetite
(d) Camallite

Answer: (b) Zinc blende

Question 7.
The powdered ore is agitated with water or washed with running stream of water. The heavy ore particles and lighter impurities are separated. This method of concentration is known as

(a) metallurgy
(b) leaching
(c) froth floatation process
(d) gravity separation

Answer: (d) gravity separation

Question 8.
The oil used as frothing agent in froth floatation process is

(a) coconut oil
(b) castor oil
(c) palmitic oil
(d) pine oil

Answer: (d) pine oil

Question 9.
Which of the following metals is not extracted by leaching?

(a) Aluminum
(b) Mercury
(c) Silver
(d) Gold

Answer: (b) Mercury

Question 10.
Sulphide ore of zinc/copper is concentrated by

(a) floatation process
(b) electromagnetic process
(c) gravity separation
(d) distillation

Answer: (a) floatation process

Question 11.
Which of the following ores is concentrated by chemical leaching method?

(a) Cinnabar
(b) Argentite
(c) Copper pyrites
(d) Galena

Answer: (b) Argentite

Question 12.
How do we separate two sulphide ores by froth floatation method?

(a) By using excess of pine oil
(b) By adjusting proportion of oil to water or using depressant.
(c) By using some solvent in which one of the sulphide is soluble
(d) By using collectors and froth stabilizers like xanthates

Answer: (b) By adjusting proportion of oil to water or using depressant.

Question 13.
Common impurities present in bauxite are

(a) CuO
(b) ZnO
(c) CaO
(d) SiO2

Answer: (d) SiO2

Question 14.
An ore of tin containing FeCrO4 is concentrated by

(a) gravity separation
(b) magnetic separation
(c) froth floatation
(d) leaching

Answer: (b) magnetic separation

Question 15.
Which of the following ores cannot be concentrated by magnetic separation?

(a) Hematite
(b) Malachite
(c) Magnetite
(d) Siderite

Answer: (b) Malachite


Read More

NCERT MCQ CLASS-12 CHAPTER-5 | CHEMISTRY NCERT MCQ | SURFACE CHEMISTRY | EDUGROWN

In This Post we are  providing Chapter-5 Surface Chemistry NCERT MCQ for Class 12 Chemistry which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These MCQS  can be really helpful in the preparation of Board exams and will provide you with a brief knowledge of the chapter.

NCERT MCQ ON SURFACE CHEMISTRY

Question 1.
Movement of dispersion medium under the influence of electric field is known as

(a) electrodialysis
(b) electrophoresis
(c) electro osmosis
(d) cataphoresis.

Answer: (c) electro osmosis

Question 2.
At CMC (Critical Micellization Cone.) the surface molecules

(a) associate
(b) dissociate
(c) decompose
(d) become completely soluble.

Answer: (a) associate

Question 3.
Milk is an example of

(a) emulsion
(b) suspension
(c) foam
(d) sol.

Answer: (a) emulsion

Question 4.
Tyndall effect is due to

(a) electric charge
(b) scattering of light
(c) absorption of light
(d) none of these.

Answer: (b) scattering of light

Question 5.
Fog is a colloidal system of

(a) liquid dispersed in a gas
(b) gas dispersed in a gas
(c) solid dispersed in gas
(d) solid dispersed in liquid

Answer: (a) liquid dispersed in a gas

Question 6.
Blood may be purified by

(a) coagulation
(b) dialysis
(c) electro-osmosis
(d) filtration

Answer: (b) dialysis

Question 7.
Blue color of water in sea is due to

(a) refraction of blue light by impurities in sea water
(b) scattering of light by water
(c) refraction of blue sky by water
(d) None of these

Answer: (a) refraction of blue light by impurities in sea water

Question 8.
The cause of Brownian movement is

(a) heat change in liquid state
(b) attractive force between colloidal particles and dispersion medium
(c) bombardment of the colloidal particles by the molecules of the dispersion medium
(d) interaction of charged particles

Answer: (c) bombardment of the colloidal particles by the molecules of the dispersion medium

Question 9.
Emulsifying agent present in milk that makes it stable is

(a) maltose
(b) casein
(c) lactose
(d) none of these

Answer: (b) casein

Question 10.
Cloud is an example of

(a) liquid dispersed in gas
(b) solid dispersed in gas
(c) solid dispersed in liquid
(d) none of these

Answer: (a) liquid dispersed in gas

Question 11.
The color of sky is due to

(a) absorption of light
(b) transmission of light
(c) scattering of light
(d) all of these

Answer: (c) scattering of light

Question 12.
Which of the following is lyophobic colloid?

(a) Starch in water
(b) Gum in water
(c) Soap in water
(d) Gold sol

Answer: (d) Gold sol

Question 13.
At high concentration of soap in water, soap behaves as

(a) molecular colloid
(b) associated colloid
(c) macro molecular colloid
(d) lyophilic colloid

Answer: (b) associated colloid

Question 14.
The efficiency of a protective colloid is described in terms of

(a) gold number
(b) flocculation number
(c) valence of counter ion
(d) Tyndall effect.

Answer: (a) gold number

Question 15.
The function of enzymes in the living system is to

(a) maintain pH
(b) catalyze biochemical process
(c) provide immunity
(d) transport oxygen

Answer: (b) catalyze biochemical process



Read More