RD SHARMA SOLUTION CHAPTER- 6 Trigonometric Identities | CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 6 Trigonometric Identities Exercise Ex. 6.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23(i)

Solution 23(i)

Question 23(ii)

Solution 23(ii)

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

Solution 36

Question 37. i

Solution 37. i

Question 37. ii

Prove the following trigonometric identities:

Solution 37. ii

L.H.S.,

Question 38(i)

Solution 38(i)

Question 38(ii)

Solution 38(ii)

Question 38(iii)

Solution 38(iii)

Question 38(iv)

Solution 38(iv)

Question 39

Solution 39

Question 40

Solution 40

Question 41

Solution 41

Question 42

Solution 42

Question 43

Solution 43

Question 44

Solution 44

Question 45

Solution 45

Question 46

Solution 46

Question 47 (i)

Solution 47 (i)

Question 47 (ii)

Solution 47 (ii)

Question 47 (iii)

Solution 47 (iii)

Question 47(iv)

Prove that:

(sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θSolution 47(iv)

Question 48

Solution 48

Question 49

Solution 49

Question 50

Prove that:

Solution 50

Question 51

Solution 51

Question 52

Solution 52

Question 53

Solution 53

Question 54

Solution 54

Question 55. i

Solution 55. i

Question 55. ii

Solution 55. ii

Question 56

Solution 56

Question 57

Solution 57

Question 58

Solution 58

Question 59

begin mathsize 12px style If space 3 space sin space straight theta space plus space 5 space cos space straight theta equals 5 comma space prove space that space 5 space sin space straight theta minus space 3 space cosθ equals plus-or-minus 3. end style

Solution 59

Question 60

Solution 60

Question 61

Solution 61

Question 62

Solution 62

Question 63

Solution 63

Question 64

Solution 64

Question 65. i

Solution 65. i

Question 65(ii)

Solution 65(ii)

Question 66

Solution 66

Question 67

Solution 67

Question 68

Solution 68

Question 69

Solution 69

Question 70

Solution 70

Question 71

Solution 71

Question 72

Solution 72

Question 73

Solution 73

Question 74

Solution 74

Question 75

Solution 75

Question 76

Solution 76

Question 77

Solution 77

Question 78

Solution 78

Question 79

Solution 79

Question 80

Solution 80

Question 81

Solution 81

Question 82

Solution 82

Question 83

Solution 83

Question 84

Solution 84

Question 85

Solution 85

Question 86

If sin θ + 2 cos θ = 1 prove that 2 sin θ – cos θ = 2.Solution 86

Question 23 (iii)

Solution 23 (iii)

To prove: 

Consider LHS

= RHS

Hence, proved.

Chapter 6 Trigonometric Identities Exercise Ex. 6.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

If 2sinθ – cosθ = 2, then find the value of θ.Solution 13

Question 14

If  tan θ – 1 = 0, find the value of sin2θ – cosθ.Solution 14

Question 4

If   evaluate   Solution 4

Given: 

Consider,

  … [Multiplying and dividing by tan θ]

Chapter 6 Trigonometric Identities Exercise 6.56

Question 1

begin mathsize 11px style table attributes columnalign left end attributes row cell If text  sec end text straight theta text  + tan end text straight theta text  = x then sec end text straight theta end cell row cell left parenthesis straight a right parenthesis text   end text fraction numerator straight x squared plus 1 over denominator straight x end fraction text        end text left parenthesis straight b right parenthesis text   end text fraction numerator straight x squared plus 1 over denominator 2 straight x end fraction text      end text left parenthesis straight c right parenthesis fraction numerator straight x squared minus 1 over denominator 2 straight x end fraction text       end text left parenthesis straight d right parenthesis text   end text fraction numerator straight x squared minus 1 over denominator straight x end fraction end cell end table end style

Solution 1

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text    tan end text to the power of text 2 end text end exponent straight theta text  = sec end text to the power of text 2 end text end exponent straight theta minus 1 end cell row cell text    end text rightwards double arrow text  sec end text to the power of text 2 end text end exponent straight theta minus tan squared straight theta equals 1 end cell row cell text    end text rightwards double arrow left parenthesis secθ minus tanθ right parenthesis text   end text left parenthesis secθ plus tanθ right parenthesis equals 1 end cell row cell text    end text rightwards double arrow secθ minus tanθ equals fraction numerator 1 over denominator secθ plus tanθ end fraction text      -- end text box enclose 1 end cell row cell Given text  sec end text straight theta text  + tan end text straight theta text  = x    --- end text box enclose 2 end cell row cell so comma text   sec end text straight theta text  - tan end text straight theta text  =  end text 1 over straight x text     --- end text box enclose 3 end cell row cell Apply text   end text box enclose 2 text   +   end text box enclose 3 end cell row cell rightwards double arrow 2 secθ equals straight x plus 1 over straight x end cell row cell rightwards double arrow 2 secθ equals fraction numerator straight x squared plus 1 over denominator straight x end fraction end cell row cell rightwards double arrow box enclose secθ equals fraction numerator straight x squared plus 1 over denominator 2 straight x end fraction end enclose end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 2

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text secθ text   end text plus text   end text tanθ equals text   end text straight x comma text   end text then text   end text tanθ end cell row cell left parenthesis straight a right parenthesis fraction numerator straight x squared plus 1 over denominator straight x end fraction text       end text left parenthesis straight b right parenthesis fraction numerator straight x squared minus 1 over denominator straight x end fraction text      end text left parenthesis straight c right parenthesis text   end text fraction numerator straight x squared plus 1 over denominator 2 straight x end fraction text     end text left parenthesis straight d right parenthesis fraction numerator straight x squared minus 1 over denominator 2 straight x end fraction end cell end table end style

Solution 2

begin mathsize 11px style table attributes columnalign left end attributes row cell Given space secθ  +  tanθ equals space straight x space space space space space minus negative negative box enclose 1 end cell row cell text ⇒ end text fraction numerator 1 over denominator space secθ space plus space tanθ end fraction equals space 1 over straight x end cell row cell text ⇒ end text fraction numerator space secθ space minus space tanθ over denominator space secθ squared space minus space tanθ squared end fraction equals space 1 over straight x end cell row cell text ⇒ end text space secθ space minus space tanθ equals space 1 over straight x.... left parenthesis Since space space secθ squared space equals 1 plus space tanθ squared right parenthesis end cell end table
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space minus negative negative box enclose 2
table attributes columnalign left end attributes row cell Apply straight space box enclose 1    -   box enclose 2 end cell row cell rightwards double arrow space space 2 tanθ space equals space straight x minus 1 over straight x end cell row cell rightwards double arrow straight space box enclose tanθ equals fraction numerator straight x squared minus 1 over denominator 2 straight x end fraction end enclose end cell end table
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 3

begin mathsize 11px style table attributes columnalign left end attributes row cell square root of fraction numerator 1 plus sinθ over denominator 1 minus sinθ end fraction end root text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  sec end text straight theta plus tanθ text        end text left parenthesis straight b right parenthesis text  sec end text straight theta minus tanθ text   end text end cell row cell left parenthesis straight c right parenthesis text  sec end text to the power of text 2 end text end exponent straight theta plus tan squared straight theta text      end text left parenthesis straight d right parenthesis text  sec end text to the power of text 2 end text end exponent straight theta minus tan squared straight theta end cell end table end style

Solution 3

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text      end text sin squared straight theta plus cos squared equals 1 end cell row cell rightwards double arrow text   end text box enclose cos squared equals 1 minus sin squared straight theta end enclose text     --- end text box enclose 1 end cell row cell Given text   end text square root of fraction numerator 1 plus sinθ over denominator 1 minus sinθ end fraction end root end cell row cell text     end text rightwards double arrow text   end text square root of fraction numerator left parenthesis 1 plus sinθ right parenthesis text   end text left parenthesis 1 plus sinθ right parenthesis over denominator left parenthesis 1 minus sinθ right parenthesis text   end text left parenthesis 1 plus sinθ right parenthesis end fraction end root end cell row cell text    end text rightwards double arrow text   end text square root of fraction numerator left parenthesis 1 plus sinθ right parenthesis squared over denominator 1 minus sin squared straight theta end fraction end root end cell row cell from text   end text box enclose 1 end cell row cell text    end text rightwards double arrow text    end text square root of fraction numerator left parenthesis 1 plus sinθ right parenthesis squared over denominator cos squared straight theta end fraction end root text       end text end cell row cell text    end text rightwards double arrow text   end text fraction numerator 1 plus sinθ over denominator cosθ end fraction end cell row cell text    end text rightwards double arrow text   end text 1 over cosθ text   end text plus text   end text sinθ over cosθ end cell row cell text    end text rightwards double arrow text  sec end text straight theta text  + tan end text straight theta end cell end table
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 4

begin mathsize 11px style table attributes columnalign left end attributes row cell The text  value of  end text square root of fraction numerator 1 plus cosθ over denominator 1 minus cosθ end fraction end root text  is  end text end cell row cell left parenthesis straight a right parenthesis text  cos end text straight theta plus cosecθ text        end text left parenthesis straight b right parenthesis text   end text cosecθ plus cotθ text   end text end cell row cell left parenthesis straight c right parenthesis text  cosec end text to the power of text 2 end text end exponent straight theta plus cot squared straight theta text      end text left parenthesis straight d right parenthesis text   end text left parenthesis cotθ plus cosecθ right parenthesis squared end cell end table end style

Solution 4

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text      cos end text squared straight theta plus sin squared equals 1 end cell row cell rightwards double arrow text   end text box enclose sin squared straight theta equals 1 minus cso squared straight theta end enclose text     --- end text box enclose 1 end cell row cell Given text   end text square root of fraction numerator 1 plus cosθ over denominator 1 minus cosθ end fraction end root end cell row cell text     end text equals text   end text square root of fraction numerator left parenthesis 1 plus cosθ right parenthesis text   end text left parenthesis 1 plus cosθ right parenthesis over denominator left parenthesis 1 minus cosθ right parenthesis text   end text left parenthesis 1 plus cosθ right parenthesis end fraction end root end cell row cell text     end text equals text   end text square root of fraction numerator left parenthesis 1 plus cosθ right parenthesis squared over denominator 1 minus cos squared straight theta end fraction end root end cell row cell text     end text equals text    end text square root of fraction numerator left parenthesis 1 plus cosθ right parenthesis squared over denominator sin squared straight theta end fraction end root text      from equation   end text box enclose 1 end cell row cell text     end text equals text   end text fraction numerator 1 plus cosθ over denominator sinθ end fraction end cell row cell text     end text equals text   end text 1 over sinθ text   end text plus text   end text cosθ over sinθ end cell row cell text     end text equals text  cosec end text straight theta text  + cot end text straight theta end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 5

sec4 – sec2A  is equal to

(a)  tan2A –  tan4A     (b) tan4A –  tan2

(c) tan4A + tan2A      (d) tan2A –  tan4A  Solution 5

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text       end text 1 text  + tan end text to the power of text 2 end text end exponent straight A text  = sec end text to the power of text 2 end text end exponent straight A text      --- end text box enclose 1 end cell row cell rightwards double arrow text  sec end text to the power of text 2 end text end exponent straight A minus 1 equals tan squared straight A text     --- end text box enclose 2 end cell row cell Given colon text  sec end text to the power of text 4 end text end exponent straight A minus sec squared text A end text end cell row cell text         end text equals text  sec end text to the power of text 2 end text end exponent straight A left parenthesis sec squared text A end text minus 1 right parenthesis end cell row cell text from   end text box enclose 1 text   &  end text box enclose 2 end cell row cell text        end text rightwards double arrow text   end text left parenthesis 1 plus tan squared straight A right parenthesis tan squared straight A end cell row cell text        end text equals text   tan end text to the power of text 2 end text end exponent straight A plus text tan end text to the power of 4 straight A end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 6

cos4A-sin4A is equal  to

(a)  2cos2A+1    (b) 2cos2A-1   

(c)  2sin2A-1     (d) 2sin2A+1  Solution 6

begin mathsize 11px style We space space know
table attributes columnalign left end attributes row cell text           end text sin squared straight A plus cos squared straight A equals 1 text     --- end text box enclose 1 end cell row cell Given text   cos end text to the power of text 4 end text end exponent straight A minus sin to the power of 4 straight A end cell row cell text       end text equals text   end text left parenthesis cos squared straight A right parenthesis squared minus left parenthesis sin squared straight A right parenthesis squared text                           end text end cell row cell text       end text equals text   end text left parenthesis cos squared straight A plus sin squared straight A right parenthesis text   end text left parenthesis cos squared straight A minus sin squared straight A right parenthesis end cell row cell from text    end text box enclose 1 end cell row cell text       end text rightwards double arrow text   cos end text to the power of text 2 end text end exponent straight A minus sin squared straight A text                    end text left curly bracket table attributes columnalign left end attributes row cell straight a squared minus straight b squared end cell row cell equals left parenthesis straight a minus straight b left parenthesis straight a plus straight b right parenthesis right parenthesis end cell end table right curly bracket end cell row cell text       end text equals text   cos end text to the power of text 2 end text end exponent straight A minus left parenthesis text 1- cos end text to the power of text 2 end text end exponent straight A right parenthesis end cell row cell text       end text equals text   cos end text to the power of text 2 end text end exponent straight A minus text  1 +cos end text to the power of text 2 end text end exponent straight A end cell row cell text       end text equals text   2cos end text to the power of text 2 end text end exponent straight A minus 1 text     end text end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Chapter 6 Trigonometric Identities Exercise 6.57

Question 7

begin mathsize 11px style table attributes columnalign left end attributes row cell fraction numerator sinθ over denominator 1 plus cosθ end fraction text   is equal to end text end cell row cell left parenthesis straight a right parenthesis text   end text fraction numerator 1 plus cosθ over denominator sinθ end fraction text     end text left parenthesis straight b right parenthesis text   end text fraction numerator 1 minus cosθ over denominator cosθ end fraction text     end text left parenthesis straight c right parenthesis text   end text fraction numerator 1 minus cosθ over denominator sinθ end fraction text     end text left parenthesis straight d right parenthesis text   end text fraction numerator 1 minus sinθ over denominator cosθ end fraction end cell end table end style

Solution 7

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text             sin end text to the power of text 2 end text end exponent straight theta plus cos squared straight theta equals 1 end cell row cell text        end text rightwards double arrow text  1-  end text cos squared straight theta equals text  sin end text to the power of text 2 end text end exponent straight theta text      --- end text box enclose 1 text   end text end cell row cell text Given :  end text fraction numerator sinθ over denominator 1 plus cosθ end fraction end cell row cell text       end text equals text    end text fraction numerator sinθ left parenthesis 1 minus cosθ right parenthesis over denominator left parenthesis 1 plus cosθ right parenthesis text   end text left parenthesis 1 minus cosθ right parenthesis end fraction end cell row cell text       end text equals text    end text fraction numerator sinθ left parenthesis 1 minus cosθ right parenthesis over denominator text  1-cos end text to the power of text 2 end text end exponent straight theta end fraction end cell row cell from text   end text box enclose 1 end cell row cell text       end text rightwards double arrow text   end text fraction numerator sinθ left parenthesis 1 minus cosθ right parenthesis over denominator text  sin end text to the power of text 2 end text end exponent straight theta end fraction end cell row cell text       end text equals text   end text fraction numerator 1 minus cosθ over denominator sinθ end fraction end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 8

begin mathsize 11px style table attributes columnalign left end attributes row cell fraction numerator sinθ over denominator 1 minus cotθ end fraction plus fraction numerator cosθ over denominator 1 minus tanθ end fraction text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  0      end text left parenthesis straight b right parenthesis text  1       end text left parenthesis straight c right parenthesis text  sin end text straight theta text  + cos end text straight theta text     end text left parenthesis straight d right parenthesis text  sin end text straight theta text  - cos end text straight theta end cell end table end style

Solution 8

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text            tan end text straight theta text  =  end text sinθ over cosθ text      --- end text box enclose 1 end cell row cell text            cot end text straight theta text  =  end text cosθ over sinθ text      --- end text box enclose 2 end cell row cell Given colon text   end text fraction numerator sinθ over denominator 1 minus cosθ end fraction plus fraction numerator cosθ over denominator 1 minus tanθ end fraction end cell row cell from text    end text box enclose 1 text  &  end text box enclose 2 end cell row cell text     end text rightwards double arrow text    end text fraction numerator sinθ over denominator 1 minus cosθ over sinθ end fraction text   end text plus text   end text fraction numerator cosθ over denominator 1 minus sinθ over cosθ end fraction end cell row cell text    end text equals text    end text fraction numerator sin squared straight theta over denominator sinθ minus cosθ end fraction text   end text plus text    end text fraction numerator cos squared straight theta over denominator cosθ minus sinθ end fraction end cell row cell text    end text equals text   end text fraction numerator sin squared straight theta minus text   end text cos squared straight theta text   end text over denominator sinθ minus text   end text cosθ text   end text end fraction end cell row cell text    end text equals text   end text fraction numerator left parenthesis sinθ minus up diagonal strike straight c osθ right parenthesis text   end text left parenthesis sinθ plus cosθ right parenthesis over denominator left parenthesis sinθ minus up diagonal strike straight c osθ right parenthesis end fraction end cell row cell text    end text equals text   end text left parenthesis sinθ plus text cos end text straight theta right parenthesis end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 9

The value of (1+cotθ – cosecθ )  (1+tanθ + secθ) is

 (a) 1     (b) 2      (c) 4      (d) 0Solution 9

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell cotθ equals text   end text cosθ over sinθ text     --- end text box enclose 1 text        end text cosecθ equals text   end text 1 over sinθ text     --- end text box enclose 3 end cell row cell tanθ equals text   end text sinθ over cosθ text     --- end text box enclose 2 text        end text secθ equals text   end text 1 over cosθ text     --- end text box enclose 4 text    end text end cell row cell text Given :  end text left parenthesis 1 plus cotθ minus text  cosec end text straight theta right parenthesis text   end text left parenthesis 1 plus tanθ plus secθ right parenthesis text   end text end cell row cell from text    end text box enclose 1 text ,    end text box enclose 2 text ,    end text box enclose 3 text ,    end text box enclose 4 end cell row cell rightwards double arrow left parenthesis 1 plus cosθ over sinθ minus 1 over sinθ right parenthesis text   end text left parenthesis 1 plus sinθ over cosθ plus 1 over cosθ right parenthesis end cell row cell rightwards double arrow left parenthesis fraction numerator sinθ plus cosθ minus 1 over denominator sinθ end fraction right parenthesis text   end text left parenthesis fraction numerator sinθ plus cosθ plus 1 over denominator cosθ end fraction right parenthesis end cell row cell rightwards double arrow fraction numerator left parenthesis sinθ plus cosθ right parenthesis squared minus 1 over denominator sinθcosθ end fraction text                      end text left curly bracket left parenthesis straight a plus straight b right parenthesis left parenthesis straight a minus straight b right parenthesis equals straight a squared minus straight b squared right curly bracket end cell row cell rightwards double arrow fraction numerator sin squared straight theta plus cos squared plus 2 sinθcosθ minus 1 over denominator sinθcosθ end fraction equals 2 text    end text left curly bracket sin squared straight theta plus cos squared straight theta equals 1 right curly bracket end cell row cell rightwards double arrow fraction numerator 1 plus 2 sinθcosθ minus 1 over denominator sinθcosθ end fraction equals 2 end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis.
end style

Question 10

begin mathsize 11px style table attributes columnalign left end attributes row cell fraction numerator tanθ over denominator secθ minus 1 end fraction plus fraction numerator tanθ over denominator secθ plus 1 end fraction text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  2 tan end text straight theta text    end text left parenthesis straight b right parenthesis text  2 sec end text straight theta text    end text left parenthesis straight c right parenthesis text  2 cosec end text straight theta text    end text left parenthesis straight d right parenthesis text  2 tan end text straight theta text  sec end text straight theta end cell end table end style

Solution 10

begin mathsize 11px style table attributes columnalign left end attributes row cell text      end text fraction numerator tanθ over denominator secθ minus 1 end fraction plus fraction numerator tanθ over denominator secθ plus 1 end fraction end cell row cell rightwards double arrow text   end text fraction numerator tanθ left parenthesis secθ plus 1 right parenthesis plus tanθ left parenthesis secθ minus 1 right parenthesis over denominator left parenthesis secθ minus 1 right parenthesis left parenthesis secθ plus 1 right parenthesis end fraction text   end text end cell row cell rightwards double arrow text   end text fraction numerator tanθ text   end text secθ plus tanθ plus tanθ text   end text secθ minus tanθ over denominator sec squared straight theta minus 1 end fraction end cell row cell rightwards double arrow text   end text fraction numerator 2 tanθsecθ over denominator tan squared straight theta end fraction text                     end text left curly bracket sec squared straight theta equals 1 plus tan squared straight theta right curly bracket end cell row cell rightwards double arrow text   end text fraction numerator 2 secθ over denominator tanθ end fraction end cell row cell rightwards double arrow text   end text fraction numerator 2 left parenthesis 1 over cosθ right parenthesis over denominator sinθ over cosθ end fraction end cell row cell rightwards double arrow text   end text 2 over sinθ equals 2 cosecθ end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 11

(cosecθ – sinθ) (secθ – cosθ) (tanθ + cotθ) is equal

(a) 0          (b)   1       (c)-1        (d) None of theeSolution 11

begin mathsize 11px style table attributes columnalign left end attributes row cell We text  know  end text box enclose sin squared straight theta plus cos squared straight theta plus 1 end enclose text          --- end text box enclose 1 end cell row cell text   end text left parenthesis cosecθ minus sinθ right parenthesis left parenthesis secθ minus cosθ right parenthesis left parenthesis tanθ plus cotθ right parenthesis end cell row cell equals text   end text left parenthesis 1 over sinθ minus sinθ right parenthesis left parenthesis 1 over cosθ minus cosθ right parenthesis left parenthesis sinθ over cosθ plus cosθ over sinθ right parenthesis end cell row cell equals text   end text fraction numerator left parenthesis 1 minus sin squared straight theta right parenthesis over denominator sinθ end fraction cross times fraction numerator left parenthesis 1 minus cos squared straight theta right parenthesis over denominator cosθ end fraction cross times fraction numerator left parenthesis sinθ plus cos squared straight theta right parenthesis over denominator sinθcosθ end fraction end cell row cell from text   end text box enclose 1 end cell row cell rightwards double arrow text   end text fraction numerator cos squared straight theta over denominator sinθ end fraction cross times fraction numerator sin squared straight theta over denominator cosθ end fraction cross times 1 over sinθcosθ end cell row cell equals text  1 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 12

begin mathsize 11px style table attributes columnalign left end attributes row cell If space text   end text straight x equals acosθ space space and text    end text space straight y equals text   end text bsinθ comma text   end text than text   end text straight b squared straight x squared plus straight a squared straight y squared equals end cell row cell left parenthesis straight a right parenthesis straight a squared straight b squared space space space space space left parenthesis straight b right parenthesis ab space space space space space space left parenthesis straight c right parenthesis text   end text straight a to the power of 4 straight b to the power of 4 space space space left parenthesis straight d right parenthesis text   end text straight a squared plus straight b squared end cell end table end style

Solution 12

begin mathsize 11px style Given space straight x equals acosθ space space space space and space space space straight y equals bsinθ
table attributes columnalign left end attributes row cell space space space space straight x squared equals straight a squared cos squared straight theta space space space space and space space space straight y to the power of straight 2 equals straight b squared sin squared straight theta end cell row cell rightwards double arrow space straight b to the power of straight 2 straight x squared equals straight a squared straight b to the power of straight 2 cos squared straight theta space space space and space space straight a squared straight y to the power of straight 2 equals straight a squared straight b to the power of straight 2 sin squared straight theta end cell row cell rightwards double arrow space straight b to the power of straight 2 straight x squared plus straight space straight a squared straight y to the power of straight 2 equals straight space straight a squared straight b to the power of straight 2 straight space left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis end cell row cell rightwards double arrow space straight b to the power of straight 2 straight x squared plus straight space straight a squared straight y to the power of straight 2 equals straight space straight a squared straight b to the power of straight 2 left parenthesis 1 right parenthesis end cell row cell space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight a squared straight b to the power of straight 2 end cell end table
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 13

If  x =a secθ  and  y=b tanθ  then  b2x2a2y2=

(a) ab      (b) a– b2       (c) a+ b2    (d) a2b2Solution 13

begin mathsize 11px style table attributes columnalign left end attributes row cell We straight space know space space    end cell row cell         sec squared straight theta straight space – straight space tan squared straight theta equals 1 space space     --- box enclose 1 end cell row cell straight space rightwards double arrow space straight b to the power of straight 2 straight x squared straight space minus space straight a to the power of straight 2 straight y squared end cell row cell straight space equals space straight b to the power of straight 2 left parenthesis straight a straight space secθ right parenthesis squared minus space straight a to the power of straight 2 left parenthesis straight b straight space tanθ right parenthesis squared end cell row cell straight space equals space straight a to the power of straight 2 straight b to the power of straight 2 straight space sec squared straight theta minus straight a to the power of straight 2 straight b to the power of straight 2 straight space tan squared straight theta end cell row cell straight space equals space straight a to the power of straight 2 straight b to the power of straight 2 straight space left parenthesis sec squared straight theta straight space – straight space tan squared straight theta right parenthesis end cell row cell straight space space from space box enclose 1 end cell row cell straight space rightwards double arrow space straight a to the power of straight 2 straight b to the power of straight 2 straight space left parenthesis sec squared straight theta straight space – straight space tan squared straight theta right parenthesis equals space straight a to the power of straight 2 straight b to the power of straight 2 straight space end cell end table
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 14

begin mathsize 11px style table attributes columnalign left end attributes row cell fraction numerator cotθ over denominator cotθ minus cot 30 end fraction text   end text plus text   end text fraction numerator tanθ over denominator tanθ minus tan 30 end fraction text      is equal to end text end cell row cell left parenthesis straight a right parenthesis text  0       end text left parenthesis straight b right parenthesis 1 text        end text left parenthesis straight c right parenthesis minus 1 text        end text left parenthesis straight d right parenthesis text  2 end text end cell end table end style

Solution 14

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text         cot 3 end text straight theta text  =  end text fraction numerator 3 cotθ minus cot cubed straight theta over denominator 1 minus 3 cot squared straight theta end fraction text    ---- end text box enclose 1 end cell row cell text         tan 3 end text straight theta text  =  end text fraction numerator 3 tanθ minus tan cubed straight theta over denominator 1 minus 3 tan squared straight theta end fraction text    ---- end text box enclose 2 end cell row cell rightwards double arrow text   end text fraction numerator cotθ over denominator cotθ minus cot 3 straight theta end fraction text   end text plus text   end text fraction numerator tanθ over denominator tanθ minus tan 3 straight theta end fraction end cell row cell from text     end text box enclose 1 text    &   end text box enclose 2 text   end text end cell row cell rightwards double arrow text   end text fraction numerator cotθ over denominator cotθ minus left parenthesis fraction numerator 3 cotθ minus cot cubed straight theta over denominator 1 minus 3 cot squared straight theta end fraction right parenthesis end fraction text   end text plus text   end text fraction numerator tanθ over denominator tanθ minus left parenthesis fraction numerator 3 tanθ minus tan cubed straight theta over denominator 1 minus 3 tan squared straight theta end fraction right parenthesis end fraction end cell row cell equals text   end text fraction numerator cotθ left parenthesis 1 minus 3 cot squared straight theta right parenthesis over denominator negative 2 cotθ minus 2 cot cubed straight theta end fraction text  +  end text fraction numerator tanθ left parenthesis 1 minus 3 tan squared straight theta right parenthesis over denominator negative 2 tanθ minus 2 tan cubed straight theta end fraction end cell row cell equals text  - end text fraction numerator left parenthesis 1 minus 3 tan squared straight theta right parenthesis over denominator 2 left parenthesis 1 plus tan squared straight theta right parenthesis end fraction text   end text minus text   end text fraction numerator left parenthesis 1 minus 3 cot squared straight theta right parenthesis over denominator 2 left parenthesis 1 plus cot squared straight theta right parenthesis end fraction end cell row cell equals text  - end text 1 half left curly bracket fraction numerator 1 minus 3 tan squared straight theta over denominator sec squared straight theta end fraction text  +  end text fraction numerator 1 minus 3 cot squared straight theta over denominator cosec squared straight theta end fraction text   end text right curly bracket end cell row cell equals text  - end text 1 half left curly bracket fraction numerator 1 minus fraction numerator 3 sin squared straight theta over denominator cos squared straight theta end fraction over denominator fraction numerator 1 over denominator cos squared straight theta end fraction end fraction text  +  end text fraction numerator 1 minus fraction numerator 3 cos squared straight theta over denominator sin squared straight theta end fraction over denominator fraction numerator 1 over denominator cos squared straight theta end fraction end fraction text   end text right curly bracket end cell row cell equals text  - end text 1 half left curly bracket cosθ minus 3 sin squared straight theta text  + sin end text to the power of text 2 end text end exponent straight theta minus 3 cos squared straight theta right curly bracket end cell row cell equals text  - end text 1 half left curly bracket negative 2 cos squared straight theta text  - 2sin end text to the power of text 2 end text end exponent straight theta right curly bracket end cell row cell equals text  sin end text to the power of text 2 end text end exponent straight theta text  + cos end text to the power of text 2 end text end exponent straight theta end cell row cell equals text  1 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 15

begin mathsize 11px style table attributes columnalign left end attributes row cell 2 left parenthesis sin to the power of 6 straight theta plus cos to the power of 6 straight theta right parenthesis minus 3 left parenthesis sin to the power of 4 straight theta plus cos to the power of 4 straight theta right parenthesis text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  0     end text left parenthesis straight b right parenthesis text  1      end text left parenthesis straight c right parenthesis text  -1      end text left parenthesis straight d right parenthesis text  None of these end text end cell end table end style

Solution 15

Error converting from MathML to accessible text.

Question 16

If acosθ + bsinθ = 4 and asinθ-bcosθ = 3, then a2+b2=

(a) 7    (b) 12      (c) 25      (d) None of theseSolution 16

begin mathsize 11px style table attributes columnalign left end attributes row cell acosθ plus bsinθ equals 4 end cell row cell On text  squaring both sides end text end cell row cell rightwards double arrow text  a end text to the power of text 2 end text end exponent cos squared straight theta plus straight b squared sin squared straight theta plus 2 absinθcosθ equals 16 text      --- end text box enclose 1 end cell row cell text      asin end text straight theta text  - bcos end text straight theta equals 3 end cell row cell text On squaring both sides end text end cell row cell rightwards double arrow text  a end text to the power of text 2 end text end exponent sin squared straight theta plus straight b squared cos squared straight theta minus 2 absincosθ equals 9 text       --- end text box enclose 2 end cell row cell Adding text    end text box enclose 1 text   &  end text box enclose 2 text   end text end cell row cell rightwards double arrow text  a end text to the power of text 2 end text end exponent left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis plus straight b squared left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis equals 25 end cell row cell rightwards double arrow text  a end text to the power of text 2 end text end exponent plus straight b squared equals 25 end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 17

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text acotθ plus bcosecθ equals straight p text   and bcot+ end text straight theta plus acosecθ equals straight q comma text    end text end cell row cell text then p end text to the power of text 2 end text end exponent text-end text straight q squared equals end cell row cell left parenthesis straight a right parenthesis text  a end text to the power of text 2 end text end exponent minus straight b to the power of text 2 end text end exponent text      end text left parenthesis straight b right parenthesis text  b end text to the power of text 2 end text end exponent minus text a end text to the power of text 2 end text end exponent text       end text left parenthesis straight c right parenthesis text  a end text to the power of text 2 end text end exponent plus straight b squared text        end text left parenthesis straight d right parenthesis text  b-a end text end cell end table end style

Solution 17

begin mathsize 11px style table attributes columnalign left end attributes row cell Given straight space acotθ plus bcosecθ equals straight p end cell row cell Squaring straight space both space sides end cell row cell rightwards double arrow space straight a to the power of straight 2 cot squared straight theta plus straight b squared cosec squared straight theta plus 2 abcotθcosecθ equals straight p squared     --- box enclose 1 end cell row cell Given space bcotθ  +  acosecθ equals straight q end cell row cell Squaring space both space sides end cell row cell rightwards double arrow space straight b to the power of straight 2 cot squared straight theta plus straight a squared cosec squared straight theta plus 2 abcotθcoseθ equals straight q squared     --- box enclose 2 end cell row cell Subtracting space space box enclose 2 space from space box enclose 1 comma end cell row cell rightwards double arrow space straight a to the power of straight 2 left parenthesis cot squared straight theta minus cosec squared straight theta right parenthesis plus straight b squared left parenthesis cosec squared straight theta minus cot squared straight theta right parenthesis equals straight p squared minus straight q squared   --- box enclose 3 end cell row cell We space know space space cosec squared straight theta equals 1 plus straight space cot squared straight theta end cell row cell space rightwards double arrow cosec squared straight theta minus cot squared straight theta equals 1        --- box enclose 4    end cell row cell from space box enclose 3   &   box enclose 4 end cell row cell rightwards double arrow negative straight a to the power of straight 2 plus straight b to the power of straight 2 equals straight p squared minus straight q squared end cell row cell rightwards double arrow space space    straight p squared minus straight q squared equals straight b to the power of straight 2 minus straight a to the power of straight 2 end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 18

begin mathsize 11px style table attributes columnalign left end attributes row cell The text   end text value text   end text of text   end text sin squared 29 to the power of 0 plus sin squared 61 to the power of 0 text  is end text end cell row cell left parenthesis straight a right parenthesis text  1        end text left parenthesis straight b right parenthesis text  0        end text left parenthesis straight c right parenthesis text  2sin end text to the power of text 2 end text end exponent 29 to the power of 0 text      end text left parenthesis straight d right parenthesis text  2cos end text to the power of text 2 end text end exponent 61 to the power of 0 end cell end table end style

Solution 18

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text      end text sin left parenthesis 90 minus straight theta right parenthesis equals cos left parenthesis straight theta right parenthesis end cell row cell rightwards double arrow text  for  end text straight theta text  = 29 end text to the power of text 0 end text end exponent end cell row cell rightwards double arrow text  sin end text left parenthesis 61 to the power of 0 right parenthesis equals cos 29 to the power of 0 text       --- end text box enclose 1 end cell row cell text      end text also text   sin end text to the power of text 2 end text end exponent straight theta plus cos squared straight theta equals 1 text    --- end text box enclose 2 end cell row cell rightwards double arrow text  sin end text to the power of text 2 end text end exponent text 29 end text to the power of text 0 end text end exponent plus sin squared 61 to the power of 0 end cell row cell text      end text from text      end text box enclose 1 end cell row cell rightwards double arrow text  sin end text to the power of text 2 end text end exponent text 29 end text to the power of text 0 end text end exponent plus cos to the power of text 2 end text end exponent text 29 end text to the power of text 0 end text end exponent end cell row cell rightwards double arrow text  1 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 19

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text straight x text   end text equals text   end text rsinθcosϕ comma text  y=  end text rsinθsinϕ text   and z= rcos end text straight theta text , then end text end cell row cell left parenthesis straight a right parenthesis text  x end text to the power of text 2 end text end exponent plus straight y squared plus straight z squared equals straight r squared text         end text left parenthesis straight b right parenthesis text  x end text to the power of text 2 end text end exponent plus straight y squared minus straight z squared equals straight r squared end cell row cell left parenthesis straight c right parenthesis text  x end text to the power of text 2 end text end exponent minus straight y squared plus straight z squared equals straight r squared text         end text left parenthesis straight d right parenthesis text  z end text to the power of text 2 end text end exponent plus straight y squared plus straight x squared equals straight r squared end cell end table end style

Solution 19

begin mathsize 11px style table attributes columnalign left end attributes row cell straight x equals straight space rsinθcosϕ end cell row cell straight y equals straight space rsinθsinϕ end cell row cell straight z equals space rcosθ end cell row cell We space know space space space sin to the power of straight 2 straight A plus cos squared straight A equals 1   --- box enclose 1 end cell row cell rightwards double arrow space straight x to the power of straight 2 plus straight y to the power of straight 2 end cell row cell rightwards double arrow straight space straight r squared sin squared θcos squared straight ϕ plus straight r squared sin squared θsin squared straight ϕ end cell row cell rightwards double arrow straight space straight r squared sin squared straight theta left parenthesis cos squared straight ϕ plus sin squared straight ϕ right parenthesis end cell row cell rightwards double arrow straight space straight r squared sin squared straight theta          --- box enclose 1 end cell row cell rightwards double arrow straight space straight r squared sin squared straight theta straight space equals space straight x to the power of straight 2 plus straight y to the power of straight 2 end cell row cell Add space straight z to the power of straight 2 space both space side end cell row cell rightwards double arrow space straight x to the power of straight 2 plus straight y to the power of straight 2 plus straight z to the power of straight 2 equals straight r squared sin squared straight theta plus straight r squared cos squared straight theta end cell row cell                space space space space space     =  straight r squared left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis               end cell row cell rightwards double arrow space straight x to the power of straight 2 plus straight y to the power of straight 2 plus straight z to the power of straight 2 equals straight r squared end cell end table
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Chapter 6 Trigonometric Identities Exercise 6.58

Question 20

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text sinθ plus sin squared straight theta equals 1 text   then  cos end text to the power of text 2 end text end exponent straight theta plus cos to the power of 4 straight theta equals end cell row cell left parenthesis straight a right parenthesis text  -1     end text left parenthesis straight b right parenthesis text  1      end text left parenthesis straight c right parenthesis text  0       end text left parenthesis straight d right parenthesis text  None of these end text end cell end table end style

Solution 20

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text    end text sin squared straight theta plus cos squared straight theta equals 1 end cell row cell rightwards double arrow cos squared straight theta equals 1 minus sin squared straight theta text             --- end text box enclose 1 end cell row cell Given text     s end text inθ plus sin squared straight theta text  =1    --- end text box enclose 2 text   end text end cell row cell text              end text sinθ equals text  1- end text sin squared straight theta text   end text end cell row cell text              from  end text box enclose 1 end cell row cell text               end text box enclose sinθ equals cos squared straight theta end enclose text       --- end text box enclose 3 end cell row cell To text  find    end text cos squared straight theta plus cos to the power of 4 straight theta end cell row cell text           end text rightwards double arrow cos squared straight theta left parenthesis 1 plus cos squared straight theta right parenthesis end cell row cell text           from   end text box enclose 3 end cell row cell text           end text rightwards double arrow sinθ left parenthesis 1 plus sinθ right parenthesis end cell row cell text           end text rightwards double arrow sinθ plus sin squared straight theta end cell row cell text           from  end text box enclose 2 end cell row cell text            end text rightwards double arrow text  1 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 21

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text acosθ plus bsinθ equals straight m text   and asin end text straight theta text -bcos end text straight theta text  = n, then a end text to the power of text 2 end text end exponent plus straight b squared equals end cell row cell left parenthesis straight a right parenthesis text  m end text to the power of text 2 end text end exponent minus straight n squared text      end text left parenthesis straight b right parenthesis text  m end text to the power of text 2 end text end exponent straight n squared text     end text left parenthesis straight c right parenthesis text   end text straight n squared text  - m end text to the power of text 2 end text end exponent text     end text left parenthesis straight d right parenthesis text  m end text to the power of text 2 end text end exponent plus straight n squared text   end text end cell end table end style

Solution 21

begin mathsize 11px style table attributes columnalign left end attributes row cell acosθ plus bsinθ equals straight m end cell row cell On text  squaring end text end cell row cell text a end text to the power of text 2 end text end exponent cos squared straight theta plus straight b squared sin squared straight theta plus 2 absinθcosθ equals straight m squared text     --- end text box enclose 1 end cell row cell asinθ minus bcosθ equals straight n end cell row cell On text  squaring end text end cell row cell text a end text to the power of text 2 end text end exponent sin squared straight theta plus straight b squared cos squared straight theta minus 2 absinθcosθ equals straight n squared text       --- end text box enclose 2 end cell row cell On text   end text adding text   end text box enclose 1 text  &  end text box enclose 2 text   and knowing sin end text to the power of text 2 end text end exponent straight theta plus cos squared straight theta equals 1 end cell row cell rightwards double arrow text a end text to the power of text 2 end text end exponent left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis plus straight b squared left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis equals straight m squared plus straight n squared end cell row cell rightwards double arrow text a end text to the power of text 2 end text end exponent plus straight b to the power of text 2 end text end exponent equals straight m to the power of text 2 end text end exponent plus straight n to the power of text 2 end text end exponent end cell end table
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 22

begin mathsize 11px style table attributes columnalign left end attributes row cell If text  cosA + cos end text to the power of text 2 end text end exponent straight A equals 1 comma text   then  sin end text to the power of text 2 end text end exponent straight A plus sin to the power of 4 straight A equals end cell row cell left parenthesis straight a right parenthesis text  -1       end text left parenthesis straight b right parenthesis text  0        end text left parenthesis straight c right parenthesis text  1       end text left parenthesis straight d right parenthesis text  None of these end text end cell end table end style

Solution 22

begin mathsize 11px style table attributes columnalign left end attributes row cell text            end text sin squared straight A plus cos squared straight A equals 1 end cell row cell text            end text sin squared straight A equals 1 minus cos squared straight A text            --- end text box enclose 1 end cell row cell given text    cosA + cos end text to the power of text 2 end text end exponent straight A equals 1 text             --- end text box enclose 2 end cell row cell text           cosA = 1-cos end text to the power of text 2 end text end exponent straight A end cell row cell text        from  end text box enclose text 1 end text end enclose end cell row cell text           cosA end text equals text sin end text to the power of text 2 end text end exponent text A                   --- end text box enclose 3 end cell row cell To text  find:    s end text in squared straight A plus sin to the power of 4 straight A end cell row cell text             end text rightwards double arrow sin squared straight A left parenthesis 1 plus sin squared straight A right parenthesis end cell row cell text           end text from text   end text box enclose 3 text     end text end cell row cell text              end text rightwards double arrow text  cosA end text left parenthesis 1 plus text cosA end text right parenthesis end cell row cell text              end text rightwards double arrow text  cosA end text plus text cos end text to the power of text 2 end text end exponent text A end text end cell row cell text            end text from text   end text box enclose 2 end cell row cell text               end text rightwards double arrow text  1 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 23

begin mathsize 11px style table attributes columnalign left end attributes row cell If text  x = asec end text θcosϕ comma text  y = bsec end text θsinϕ text   and z = ctan end text straight theta end cell row cell text then   end text straight x squared over straight a squared text   end text plus text   end text straight y squared over straight b squared equals end cell row cell left parenthesis straight a right parenthesis text   end text straight z squared over straight c squared text      end text left parenthesis straight b right parenthesis text  1- end text straight z squared over straight c squared text        end text left parenthesis straight c right parenthesis text   end text straight z squared over straight c squared minus 1 text       end text left parenthesis straight d right parenthesis text  1+ end text straight z squared over straight c squared text   end text end cell end table end style

Solution 23

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell sin squared straight theta plus cos squared plus 1 text          --- end text box enclose 1 end cell row cell 1 plus tan squared straight theta equals sec squared straight theta text      --- end text box enclose 2 end cell row cell rightwards double arrow straight x squared over straight a squared text   end text plus text   end text straight y squared over straight b squared end cell row cell equals fraction numerator straight a squared sec squared θcos squared straight ϕ over denominator straight a squared end fraction text   end text plus text   end text fraction numerator straight b squared sec squared θsin squared straight ϕ over denominator straight b squared end fraction end cell row cell equals text   end text sec squared θcos squared straight ϕ text   end text plus text   end text sec squared θsin squared straight ϕ end cell row cell equals text   end text sec squared straight theta left parenthesis cos squared straight ϕ plus sin squared straight ϕ right parenthesis end cell row cell text  from  end text box enclose 1 text  &  end text box enclose 2 end cell row cell rightwards double arrow text   end text left parenthesis 1 plus tan squared straight theta right parenthesis text          --- end text box enclose 3 end cell row cell given text   z = ctan end text straight theta end cell row cell rightwards double arrow text  tan end text straight theta equals straight z over straight c text    --- end text box enclose 4 end cell row cell rightwards double arrow straight x squared over straight a squared text   end text plus text   end text straight y squared over straight b squared equals 1 plus straight z squared over straight c squared end cell end table
So comma space the space correct space option space is space left parenthesis straight d right parenthesis.
end style

Question 24

begin mathsize 11px style table attributes columnalign left end attributes row cell If text  acos end text straight theta text  - bsin end text straight theta text  = c, then asin end text straight theta text  + bcos end text straight theta equals end cell row cell left parenthesis straight a right parenthesis text   end text plus-or-minus space root index blank of straight a to the power of straight 2 plus straight b to the power of straight 2 plus straight c to the power of straight 2 end root text        end text left parenthesis straight b right parenthesis text   end text plus-or-minus space root index blank of straight a to the power of straight 2 plus straight b to the power of straight 2 minus straight c to the power of straight 2 end root end cell row cell left parenthesis straight c right parenthesis plus-or-minus space root index blank of straight c to the power of straight 2 plus straight a squared minus straight b to the power of straight 2 end root text         end text left parenthesis straight d right parenthesis text  None of these  end text end cell end table end style

Solution 24

begin mathsize 11px style table attributes columnalign left end attributes row cell acosθ minus bsinθ equals straight c end cell row cell rightwards double arrow space space space On space squaring end cell row cell space space space space space space space straight a to the power of straight 2 cos squared straight theta plus straight b squared sin squared straight theta minus 2 abcosθsinθ equals straight c squared space space space minus negative negative box enclose 1 end cell row cell Let space space space asinθ plus bcosθ space equals space straight t end cell row cell space space space space space space space On space squaring end cell row cell space space rightwards double arrow space straight a to the power of straight 2 sin to the power of straight 2 straight theta space plus space straight b to the power of straight 2 cos to the power of straight 2 straight theta space plus space 2 absinθcosθ space equals space straight t to the power of straight 2 space space space minus negative negative box enclose 2 end cell row cell Adding straight space box enclose straight 1 space & space box enclose 2 comma space space we space get end cell row cell rightwards double arrow space straight a to the power of straight 2 left parenthesis sin to the power of straight 2 straight theta plus cos to the power of straight 2 straight theta right parenthesis space plus space straight b to the power of straight 2 left parenthesis sin to the power of straight 2 straight theta plus cos to the power of straight 2 straight theta right parenthesis equals space straight c to the power of straight 2 plus straight t squared space space space minus negative negative box enclose 3 end cell row cell rightwards double arrow space sin to the power of straight 2 straight theta plus cos to the power of straight 2 straight theta equals 1 space space space left parenthesis we space know right parenthesis end cell row cell space space space space space from space box enclose 3 end cell row cell space space space space straight a to the power of straight 2 plus straight b to the power of straight 2 equals straight c to the power of straight 2 plus straight t squared end cell row cell rightwards double arrow space straight t equals plus-or-minus space root index blank of straight a to the power of straight 2 plus straight b to the power of straight 2 minus straight c to the power of straight 2 end root end cell row cell Hence comma end cell row cell asinθ space plus space bcosθ space equals plus-or-minus space root index blank of straight a to the power of straight 2 plus straight b to the power of straight 2 minus straight c to the power of straight 2 end root end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 25

begin mathsize 11px style table attributes columnalign left end attributes row cell 9 sec squared straight A minus 9 tan squared straight A text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  1     end text left parenthesis straight b right parenthesis text  9      end text left parenthesis straight c right parenthesis text  8       end text left parenthesis straight d right parenthesis text  0 end text end cell end table end style

Solution 25

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text      end text 1 text  + tan end text to the power of text 2 end text end exponent straight a equals sec squared straight A end cell row cell rightwards double arrow sec squared straight A minus tan squared straight A equals 1 text        --- end text box enclose 1 end cell row cell To text  find:  9sec end text to the power of text 2 end text end exponent straight A minus 9 tan squared straight A end cell row cell text            end text rightwards double arrow text  9 end text left parenthesis text sec end text to the power of text 2 end text end exponent straight A minus tan squared straight A right parenthesis end cell row cell text         from  end text box enclose 1 end cell row cell text           end text rightwards double arrow text  9(1) = 9 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 26

begin mathsize 11px style table attributes columnalign left end attributes row cell left parenthesis 1 plus tanθ plus secθ right parenthesis left parenthesis 1 plus cotθ minus cosecθ right parenthesis equals end cell row cell left parenthesis straight a right parenthesis text  0     end text left parenthesis straight b right parenthesis text  1      end text left parenthesis straight c right parenthesis text  2        end text left parenthesis straight d right parenthesis text  -1 end text end cell end table end style

Solution 26

begin mathsize 11px style table attributes columnalign left end attributes row cell    left parenthesis 1 plus sinθ over cosθ plus 1 over cosθ right parenthesis left parenthesis 1 plus cosθ over sinθ minus 1 over sinθ right parenthesis end cell row cell equals left parenthesis fraction numerator sinθ plus cosθ plus 1 over denominator cosθ end fraction right parenthesis left parenthesis fraction numerator sinθ plus cosθ minus 1 over denominator sinθ end fraction right parenthesis end cell row cell We space know end cell row cell        left parenthesis straight a plus straight b right parenthesis left parenthesis straight a minus straight b right parenthesis plus straight a squared minus straight b squared          --- box enclose 1 end cell row cell and    sin to the power of straight 2 straight theta plus cos squared plus 1           space   --- box enclose 2 end cell row cell from straight space box enclose 1 comma space we space get end cell row cell             fraction numerator left parenthesis sinθ plus cosθ right parenthesis squared minus 1 over denominator sinθcosθ end fraction end cell row cell         equals space fraction numerator sin to the power of straight 2 straight theta plus cos squared plus 2 sinθcosθ minus 1 over denominator sinθcosθ end fraction end cell row cell from straight space box enclose 2       end cell row cell          rightwards double arrow straight space fraction numerator 1 plus 2 sinθcosθ minus 1 over denominator sinθcosθ end fraction    end cell row cell          rightwards double arrow   2 end cell row cell space So comma space the space correct space option space is space left parenthesis straight c right parenthesis. space space space end cell end table
end style

Question 27

begin mathsize 11px style table attributes columnalign left end attributes row cell left parenthesis secA plus tanA right parenthesis left parenthesis 1 minus sinA right parenthesis equals end cell row cell left parenthesis straight a right parenthesis text  secA      end text left parenthesis straight b right parenthesis text  sinA      end text left parenthesis straight c right parenthesis text  cosecA      end text left parenthesis straight d right parenthesis cosA end cell end table end style

Solution 27

begin mathsize 11px style table attributes columnalign left end attributes row cell text     end text left parenthesis secA plus tanA right parenthesis left parenthesis 1 minus sinA right parenthesis end cell row cell equals text   end text open parentheses 1 over cosA plus sinA over cosA close parentheses left parenthesis 1 minus sinA right parenthesis end cell row cell equals text   end text fraction numerator left parenthesis 1 plus sinA right parenthesis left parenthesis 1 minus sinA right parenthesis over denominator cosA end fraction end cell row cell equals text   end text fraction numerator 1 minus sin squared straight A over denominator cos squared end fraction end cell row cell equals text   end text fraction numerator cos squared straight A over denominator cosA end fraction end cell row cell equals text   cosA end text end cell end table
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 28

begin mathsize 11px style table attributes columnalign left end attributes row cell fraction numerator 1 plus tan squared straight A over denominator 1 plus cot squared straight A end fraction text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  sec end text to the power of text 2 end text end exponent straight A text      end text left parenthesis straight b right parenthesis text  -1    end text left parenthesis straight c right parenthesis text  cot end text to the power of text 2 end text end exponent straight A text    end text left parenthesis straight d right parenthesis text  tan end text to the power of text 2 end text end exponent straight A text    end text end cell end table end style

Solution 28

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell 1 plus tan squared straight A equals sec squared straight A equals fraction numerator 1 over denominator cos squared straight A end fraction text        --- end text box enclose 1 end cell row cell 1 plus cot squared straight A equals cosec squared straight A equals fraction numerator 1 over denominator sin squared straight A end fraction text        --- end text box enclose 1 end cell row cell To text  find:  end text fraction numerator 1 plus tan squared straight A over denominator 1 plus cot squared straight A end fraction end cell row cell from text    end text box enclose 1 text  &  end text box enclose 2 end cell row cell text      end text rightwards double arrow text   end text fraction numerator fraction numerator 1 over denominator cos squared straight A end fraction over denominator fraction numerator 1 over denominator sin squared straight A end fraction end fraction text   end text end cell row cell text      end text rightwards double arrow text   end text fraction numerator sin squared straight A over denominator cos squared straight A end fraction end cell row cell text      end text rightwards double arrow text  tan end text to the power of text 2 end text end exponent straight A end cell row cell text  So, the correct option is (d). end text end cell end table end style

Question 29

If sin θ – cos θ = 0, then the value of sinθ + cosθ is

  1. 1

Solution 29

Question 30

The value of sin (45° + θ) – cos (45° – θ) is equal to

  1. 2 cos θ
  2. 0
  3. 2 sin θ
  4. 1

Solution 30

Question 31

If ΔABC is right angled at C, then the value of cos (A + B) is

  1. 0
  2. 1

Solution 31

Chapter 6 Trigonometric Identities Exercise 6.59

Question 32

If cos 8θ = sin θ and 8θ < 90°, then the value of tan 6θ is

  1. 1
  2. 0

Solution 32

Question 33

If cos (α + β) = 0, then sin (α  –  β) can be reduced to

  1. cos β
  2. cos 2β
  3. sin α
  4. sin 2α

Solution 33

Read More

RD SHARMA SOLUTION CHAPTER- 5 Trigonometric Ratios | CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 5 Trigonometric Ratios Exercise Ex. 5.1

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 1 (v)

Solution 1 (v)

Question 1 (vi)

Solution 1 (vi)

Question 1 (vii)

Solution 1 (vii)

Question 1 (viii)

Solution 1 (viii)

Question 1 (ix)

Solution 1 (ix)

Question 1 (x)

Solution 1 (x)

Question 1 (xi)

Solution 1 (xi)

Question 1 (xii)

Solution 1 (xii)

Question 2

In ABC right angled at B, AB = 24 cm, BC = 7 cm. Determine

(i)  sin A, cos A
(ii)  sin C, cos C

Solution 2

In ABC by applying Pythagoras theorem
AC2 = AB2 + BC2
= (24)2 + (7)2
= 576 + 49
= 625
AC =  = 25 cm






Question 3

Solution 3

Question 4

Solution 4

Question 5

Given 15 cot A = 8. Find sin A and sec ASolution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

begin mathsize 10px style If space angle straight A space and space angle straight P space are space acute space angles space such space that space tan space straight A equals space tanP comma space then space show space that space angle straight A space equals space angle straight P. end style

Solution 36

Question 25

If   find the value of   Solution 25

Given: 

Chapter 5 Trigonometric Ratios Exercise Ex. 5.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26 (i)

Solution 26 (i)

Question 26 (ii)

Solution 26 (ii)

Question 26 (iii)

Solution 26 (iii)

Question 26 (iv)

Solution 26 (iv)

Question 27 (i)

If A = B = 60o, verify that cos (A – B) = cos A cos B + sin A sin BSolution 27 (i)

Question 27 (ii)

Solution 27 (ii)

Question 27 (iii)

Solution 27 (iii)

Question 28 (i)

Solution 28 (i)

Question 28 (ii)

Solution 28 (ii)

Question 29

Solution 29

Question 30 (i)

Solution 30 (i)

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

If sin (A – B) = sin A cos B – cos A sin B and cos(A – B) = cos A cos B + sin A sin B, find the values of sin 15o and cos 15o.Solution 35

Question 36

Solution 36

Question 37

Solution 37

Question 38

Solution 38

Question 39

Solution 39

Question 40

Prove that

Solution 40

Question 30 (ii)

If tan(A + B) = 1 and   0o < A + B < 90o, A > B, then find the values of A and B. Solution 30 (ii)

Given: tan(A + B) = 1 and 

Therefore,

A + B = 45o … (i)

A – B = 30o … (ii)

Adding the two equations, we get

Chapter 5 Trigonometric Ratios Exercise Ex. 5.3

Question 1

Solution 1

Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Solution 2 (iii)

Question 2 (iv)

Solution 2 (iv)

Question 2 (v)

Solution 2 (v)

Question 2 (vi)

Solution 2 (vi)

Question 2 (vii)

Solution 2 (vii)

Question 2 (viii)

Solution 2 (viii)

Question 2 (ix)

Solution 2 (ix)

Question 2 (x)

Solution 2 (x)

Question 2 (xi)

Solution 2 (xi)

Question 3

Express each one of the following in terms of trigonometric ratios of angles lying between 0o and 45o

(i) sin 59o + cos 56o

(ii) tan 65o + cot 49o

(iii) sec 76o + cosec 52o

(iv) cos 78o + sec 78o

(v) cosec 54o + sin 72o

(vi) cot 85o + cos 75o

(vii) sin 67o + cos 75oSolution 3

Question 4

Solution 4

Question 5

If sin 3A = cos (A – 26o), where 3A is an acute angle, find the value of A.Solution 5

Question 6(i)

Solution 6(i)

Question 6(ii)

Solution 6(ii)

Question 7 (i)

Solution 7 (i)

Question 7 (ii)

Solution 7 (ii)

Question 7 (iii)

Solution 7 (iii)

Question 7 (iv)

Solution 7 (iv)

Question 8 (i)

Solution 8 (i)

Question 8 (ii)

Solution 8 (ii)

Question 8 (iii)

Solution 8 (iii)

Question 8 (iv)

Solution 8 (iv)

Question 8 (v)

Solution 8 (v)

Question 9 (i)

Solution 9 (i)

Question 9 (ii)

Solution 9 (ii)

Question 9 (iii)

Solution 9 (iii)

Question 9 (iv)

Solution 9 (iv)

Question 9 (v)

Solution 9 (v)

Question 9 (vi)

Solution 9 (vi)

Question 9 (vii)

Solution 9 (vii)

Question 9 (viii)

Solution 9 (viii)

Question 9 (ix)

Solution 9 (ix)

Question 9 (x)

Solution 9 (x)

Question 10

Solution 10

Question 11 (ii)

If A, B,C are the interior angles of a ΔABC,show that

begin mathsize 10px style left parenthesis ii right parenthesis space cos space fraction numerator straight B plus straight C over denominator 2 end fraction equals sin space straight A over 2 end style

Solution 11 (ii)

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 6 (iii)

If A, B, C, are the interior angles of a triangle ABC, ∠A = 90o, then find the value of   Solution 6 (iii)

Given: ∠A = 90o

For a triangle ABC, ∠A + ∠B + ∠C = 90o

Question 9 (xi)

Evaluate:   Solution 9 (xi)

Using the identities

Question 11 (i)

If A, B, C are the interior angles of a ∆ABC, show that:   Solution 11 (i)

For a triangle ABC, ∠A + ∠B + ∠C = 90o

Question 18

If tan 2A = cot(A – 18o), where 2A is an acute angle, find the value of A.Solution 18

Given: tan 2A = cot(A – 18o

As tan x = cot(90o – x), we have

cot(90o – 2A) = cot(A – 18o)

90o – 2A = A – 18o

3A = 108o

Therefore, A = 36o.

Chapter 5 Trigonometric Ratios Exercise 5.56

Question 1

begin mathsize 11px style If space straight theta space is space an space acute space angle space such space that space cos space straight theta space equals space 3 over 5 comma space then space fraction numerator sin space straight theta space tan space straight theta space minus space 1 over denominator 2 space tan squared straight theta end fraction equals
left parenthesis straight a right parenthesis space 16 over 625
left parenthesis straight b right parenthesis space 1 over 36
left parenthesis straight c right parenthesis space 3 over 160
left parenthesis straight d right parenthesis space 160 over 3 end style

Solution 1

begin mathsize 11px style It space is space given space that space straight theta space is space an space acute space angle space so space straight theta space lies space in space 1 to the power of st space quadrant.
In space the space first space quadrant space all space trigonometric space functions space are space positive.
sin space straight theta space equals space square root of 1 minus cos squared end root straight theta
space space space space space space space space space space equals square root of 1 minus open parentheses 3 over 5 close parentheses squared end root
space space space space space space space space space space equals square root of 1 minus 9 over 25 end root equals 4 over 5
tan space straight theta space equals space fraction numerator sin space straight theta over denominator cos space straight theta end fraction
space space space space space space space space space space space equals fraction numerator begin display style 4 over 5 end style over denominator begin display style 3 over 5 end style end fraction equals 4 over 3
Now space fraction numerator sin space straight theta space tan space straight theta space minus 1 over denominator 2 space tan space squared straight theta end fraction
equals fraction numerator begin display style 4 over 5 cross times 4 over 3 minus 1 end style over denominator 2 open parentheses begin display style 4 over 3 end style close parentheses squared end fraction
equals fraction numerator begin display style 1 over 15 end style over denominator begin display style 32 over 9 end style end fraction equals fraction numerator 9 over denominator 15 cross times 32 end fraction equals 3 over 160
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 2

begin mathsize 11px style If space tan space straight theta space equals space straight a over straight b comma space then space fraction numerator straight a space sin space straight theta space plus space straight b space cos space straight theta over denominator straight a space sin space straight theta space minus space straight b space cos space straight theta end fraction space is space equal space to
left parenthesis straight a right parenthesis space fraction numerator straight a squared plus straight b squared over denominator straight a squared minus straight b squared end fraction
left parenthesis straight b right parenthesis space fraction numerator straight a squared minus straight b squared over denominator straight a squared plus straight b squared end fraction
left parenthesis straight c right parenthesis space fraction numerator straight a plus straight b over denominator straight a minus straight b end fraction
left parenthesis straight d right parenthesis space fraction numerator straight a minus straight b over denominator straight a plus straight b end fraction end style

Solution 2

begin mathsize 11px style fraction numerator straight a space sin space straight theta space plus space straight b space cos space straight theta over denominator straight a space sin space straight theta space minus space straight b space cos space straight theta end fraction
equals space fraction numerator begin display style fraction numerator straight a space sin space straight theta over denominator cos space straight theta end fraction plus straight b end style over denominator begin display style fraction numerator straight a space sin space straight theta over denominator cos space straight theta end fraction minus space straight b end style end fraction
equals fraction numerator straight a space tan space straight theta plus straight b over denominator straight a space tan space straight theta space minus space straight b end fraction space space space space space space space space space space space space space space space space space space space space space space space space open curly brackets fraction numerator sin space straight theta over denominator cos space straight theta end fraction equals space tan space straight theta close curly brackets
equals fraction numerator straight a open parentheses begin display style straight a over straight b end style close parentheses plus straight b over denominator straight a open parentheses begin display style straight a over straight b end style close parentheses minus straight b end fraction equals fraction numerator straight a squared plus straight b squared over denominator straight a squared minus straight b squared end fraction
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 3

begin mathsize 11px style If space 5 space tan space straight theta minus 4 equals 0 comma space then space the space value space of space fraction numerator 5 space sin space straight theta space minus space 4 space cos space straight theta over denominator 5 space sin space straight theta space plus space 4 space cos space straight theta end fraction space is space
left parenthesis straight a right parenthesis space 5 over 3
left parenthesis straight b right parenthesis space 5 over 6
left parenthesis straight c right parenthesis space 0
left parenthesis straight d right parenthesis space 1 over 6 end style

Solution 3

begin mathsize 11px style 5 space tan space straight theta space minus 4 space equals space 0
box enclose tan space straight theta space equals space 4 over 5 end enclose space minus space circle enclose 1
To space find space colon space fraction numerator 5 space sin space straight theta space minus space 4 space cos space straight theta over denominator 5 space sin space straight theta space plus space 4 space cos space straight theta end fraction
space space space space space space space space space space space equals fraction numerator 5 space tan space straight theta minus 4 over denominator 5 space tan space straight theta plus 4 end fraction space space space...... space left parenthesis after space taking space cosθ space common right parenthesis
from space circle enclose 1 comma space
fraction numerator 5 space tan space straight theta minus 4 over denominator 5 space tan space straight theta plus 4 end fraction equals space fraction numerator 5 open parentheses begin display style 4 over 5 end style close parentheses minus 4 over denominator 5 open parentheses begin display style 4 over 5 end style close parentheses plus 4 end fraction equals space 0
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 4

begin mathsize 11px style If space 16 space cot space straight x space equals space 12 comma space then space fraction numerator sin space straight x space minus space cos space straight x over denominator sin space straight x space plus space cos space straight x end fraction space equals
left parenthesis straight a right parenthesis space 1 over 7
left parenthesis straight b right parenthesis space 3 over 7
left parenthesis straight c right parenthesis space 2 over 7
left parenthesis straight d right parenthesis space 0 end style

Solution 4

begin mathsize 12px style 16 space cot space straight x space equals space 12
rightwards double arrow space cot space straight x space equals space 12 over 16
rightwards double arrow box enclose cot space straight x space equals space 3 over 4 end enclose space minus space circle enclose 1
To space find space colon space fraction numerator space sin space straight x space minus space cos space straight x over denominator sin space straight x space plus space cos space straight x end fraction
equals space fraction numerator open parentheses 1 minus begin display style cosx over sinx end style close parentheses over denominator open parentheses 1 plus fraction numerator cos space straight x over denominator sin space straight x end fraction close parentheses end fraction
equals space fraction numerator 1 space minus space cot space straight x over denominator 1 space plus space cot space straight x end fraction
from space circle enclose 1
equals space fraction numerator 1 minus begin display style 3 over 4 end style over denominator 1 plus begin display style 3 over 4 end style end fraction
equals fraction numerator begin display style 1 fourth end style over denominator begin display style 7 over 4 end style end fraction equals 1 over 7 end style

So, the correct option is (a).Question 5

begin mathsize 11px style If space 8 space tan space straight x space equals space 15 comma space then space sin space straight x space minus space cos space straight x space is space equal space to
left parenthesis straight a right parenthesis space 8 over 17
left parenthesis straight b right parenthesis space 17 over 7
left parenthesis straight c right parenthesis space 1 over 17
left parenthesis straight d right parenthesis space space 7 over 17 end style

Solution 5

begin mathsize 11px style 8 space tan space straight x space equals space 15
space tan space straight x space equals space 15 over 8
square root of 8 squared plus 15 squared end root space equals space square root of 64 space plus 225 end root
space space space space space space space space space space space space space space space space space space space equals space square root of 289
space space space space space space space space space space space space space space space space space space space equals space 17 space space space space space space
Sin space straight x space equals space 15 over 17 space space space space space space space space space space space space space space cos space straight x space equals space 8 over 17
To space find space colon space sin space straight x space minus space cos space straight x
space space space space space space space space space space space space space space space equals 15 over 17 minus 8 over 17
space space space space space space space space space space space space space space space equals 7 over 17
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 6

begin mathsize 11px style If space tan space straight theta space equals space fraction numerator 1 over denominator square root of 7 end fraction comma then space fraction numerator cosec squared straight theta minus sec squared straight theta over denominator cosec squared straight theta plus sec squared straight theta end fraction equals
left parenthesis straight a right parenthesis space 5 over 7
left parenthesis straight b right parenthesis space 3 over 7
left parenthesis straight c right parenthesis space 1 over 12
left parenthesis straight d right parenthesis space 3 over 4 end style

Solution 6

begin mathsize 11px style We space know comma space tan space straight theta space equals space fraction numerator 1 over denominator cot space straight theta end fraction space minus space circle enclose 1
space space space space space space space space space space space space space space space space space space 1 plus tan squared straight theta space equals space sec squared straight theta minus circle enclose 2
space space space space space space space space space space space space space space space space space space 1 space plus space cot squared straight theta space equals space cosec squared straight theta space minus space circle enclose 3
from space circle enclose 1
space space space space space space space space space space box enclose cot space straight theta space equals space square root of 7 end enclose
from space circle enclose 2
space space space space space space space space space 1 space plus space open parentheses fraction numerator 1 over denominator square root of 7 end fraction close parentheses squared space equals space sec squared straight theta
space rightwards double arrow space space sec squared straight theta space equals space 1 plus 1 over 7 equals 8 over 7
rightwards double arrow space box enclose sec squared straight theta equals 8 over 7 end enclose minus space circle enclose 4
from space circle enclose 3
space space space space 1 space plus space open parentheses square root of 7 close parentheses squared equals space cosec squared straight theta
rightwards double arrow space space box enclose cosec squared straight theta equals 8 end enclose space minus space circle enclose 5
To space find colon space fraction numerator cosec squared straight theta minus sec squared straight theta over denominator cosec squared straight theta plus sec squared straight theta end fraction
space space space space space space space equals fraction numerator 8 minus begin display style 8 over 7 end style over denominator 8 plus begin display style 8 over 7 end style end fraction equals fraction numerator begin display style 48 over 7 end style over denominator begin display style 64 over 7 end style end fraction
space space space space space space space equals space 48 over 64 equals space 3 over 4
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Chapter 5 Trigonometric Ratios Exercise 5.57

Question 7

begin mathsize 11px style If space tan space straight theta space equals space 3 over 4 comma space then space cos squared straight theta space minus space sin space squared straight theta space equals space
left parenthesis straight a right parenthesis space 7 over 25
left parenthesis straight b right parenthesis space 1
left parenthesis straight c right parenthesis space fraction numerator negative 7 over denominator 25 end fraction
left parenthesis straight d right parenthesis space 4 over 25 end style

Solution 7

Error converting from MathML to accessible text.
begin mathsize 11px style from space circle enclose 1 comma circle enclose 2 comma circle enclose 3
box enclose sin space straight theta space equals space 3 over 5 end enclose minus space circle enclose 4
box enclose cos space straight theta space equals space 4 over 5 space end enclose minus space circle enclose 5
To space find space colon space space cos squared straight theta space minus space space sin squared straight theta
space space space space space space space space space space space space space space space space equals open parentheses 4 over 5 close parentheses squared space minus space open parentheses 3 over 5 close parentheses squared... left parenthesis from space circle enclose 4 space and space circle enclose 5 right parenthesis
space space space space space space space space space space space space space space space space equals space 7 over 25
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 8

begin mathsize 11px style If space straight theta space is space an space acute space angle space such space that space tan squared straight theta space equals space 8 over 7 comma space then space the space value space of space
fraction numerator open parentheses 1 plus sinθ close parentheses open parentheses 1 minus sinθ close parentheses over denominator open parentheses 1 plus cosθ close parentheses open parentheses 1 minus cosθ close parentheses end fraction space is
left parenthesis straight a right parenthesis space 7 over 8
left parenthesis straight b right parenthesis space 8 over 7
left parenthesis straight c right parenthesis space 7 over 4
left parenthesis straight d right parenthesis space 64 over 49 end style

Solution 8

Error converting from MathML to accessible text.
begin mathsize 11px style sin space straight theta space equals space square root of 8 over 15 end root
cos space straight theta space equals space square root of 7 over 15 end root
To space find space colon space fraction numerator open parentheses 1 plus sin space straight theta close parentheses open parentheses 1 minus sin space straight theta close parentheses over denominator open parentheses 1 plus cos space straight theta close parentheses open parentheses 1 minus cosθ close parentheses end fraction
space space space space space space space space space space space space space equals fraction numerator 1 minus sin squared straight theta over denominator 1 minus cos squared straight theta end fraction
space space space space space space space space space space space space space space equals fraction numerator 1 minus open parentheses square root of begin display style 8 over 15 end style end root close parentheses squared over denominator 1 minus open parentheses begin display style 7 over 15 end style close parentheses squared end fraction
space space space space space space space space space space space space space space equals fraction numerator 1 minus begin display style 8 over 15 end style over denominator 1 minus begin display style 7 over 15 end style end fraction equals fraction numerator begin display style 7 over 15 end style over denominator begin display style 8 over 15 end style end fraction
space space space space space space space space space space space space space space equals 7 over 8
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 9

begin mathsize 11px style If space 3 space cos space straight theta space equals space 5 space sin space straight theta comma space then space the space value space of space fraction numerator 5 space sin space straight theta minus 2 sec cubed straight theta plus 2 space cosθ over denominator 5 space sin space straight theta space plus space 2 space sec cubed straight theta minus 2 space cosθ end fraction space is
left parenthesis straight a right parenthesis space 271 over 979
left parenthesis straight b right parenthesis space 316 over 2937
left parenthesis straight c right parenthesis space 542 over 2937
left parenthesis straight d right parenthesis space None space of space these end style

Solution 9

Error converting from MathML to accessible text.
begin mathsize 11px style sin space straight theta space equals space fraction numerator 3 over denominator square root of 34 end fraction
cos space straight theta space equals space fraction numerator 5 over denominator square root of 34 end fraction
We space know space sec space straight theta space equals space fraction numerator 1 over denominator cos space straight theta end fraction space equals space fraction numerator square root of 34 over denominator 5 end fraction
To space find space colon space fraction numerator 5 space sin space straight theta space minus space 2 space sec cubed straight theta space plus space 2 space cosθ over denominator 5 space sin space straight theta space plus space 2 space sec cubed straight theta space minus space 2 space cos space straight theta end fraction

space space space space space space space space space space space rightwards double arrow fraction numerator 5 open parentheses begin display style fraction numerator 3 over denominator square root of 34 end fraction end style close parentheses minus 2 open parentheses square root of begin display style 34 over 5 end style end root close parentheses cubed plus 2 open parentheses begin display style fraction numerator 5 over denominator square root of 34 end fraction end style close parentheses over denominator 5 open parentheses begin display style fraction numerator 3 over denominator square root of 34 end fraction end style close parentheses plus 2 open parentheses begin display style fraction numerator square root of 34 over denominator 5 end fraction end style close parentheses cubed minus 2 open parentheses begin display style fraction numerator 5 over denominator square root of 34 end fraction end style close parentheses end fraction
space space space space space space space space space space rightwards double arrow fraction numerator begin display style fraction numerator 25 over denominator square root of 34 end fraction minus fraction numerator 68 square root of 34 over denominator 125 end fraction end style over denominator begin display style fraction numerator 5 over denominator square root of 34 end fraction plus fraction numerator 68 square root of 34 over denominator 125 end fraction end style end fraction
space space space space space space space space space space space rightwards double arrow fraction numerator space 125 space cross times space 25 space minus space 68 space cross times space 34 over denominator 5 space cross times space 125 space plus space 68 space cross times 34 end fraction
space space space space space space space space space space space rightwards double arrow space 813 over 2937
space space space space space space space space space space space space space rightwards double arrow 271 over 979
space So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 10

begin mathsize 11px style If space tan squared 45 to the power of straight o space minus space cos squared 30 to the power of straight o space equals space straight x space sin space 45 to the power of straight o space cos 45 to the power of straight o comma space then space straight x space equals space
left parenthesis straight a right parenthesis space 2
left parenthesis straight b right parenthesis space minus 2
left parenthesis straight c right parenthesis space minus 1 half
left parenthesis straight d right parenthesis space 1 half end style

Solution 10

begin mathsize 11px style We space know
space space space space space space space space space space space tan space 45 to the power of straight o space equals space 1 space space space space minus space circle enclose 1
space space space space space space space space space space cos space 30 to the power of straight o space space equals space fraction numerator square root of 3 over denominator 2 end fraction space minus space circle enclose 2
space space space space space space space space space sin space 45 to the power of straight o space equals space fraction numerator 1 over denominator square root of 2 end fraction space space space minus space circle enclose 3 space space space space
space space space space space space space cos space 45 to the power of straight o space end exponent equals space fraction numerator 1 over denominator square root of 2 end fraction space minus space circle enclose 4
Given space tan squared 45 to the power of straight o space minus space cos squared 30 to the power of straight o space end exponent space equals space straight x space sin space 45 to the power of straight o space cos space 45 to the power of straight o
from space circle enclose 1 comma circle enclose 2 comma circle enclose 3
rightwards double arrow 1 space minus space open parentheses fraction numerator square root of 3 over denominator 2 end fraction close parentheses squared space equals space straight x open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses
rightwards double arrow 1 space minus space 3 over 4 equals space straight x over 2
rightwards double arrow space straight x over 2 space equals space 1 fourth
rightwards double arrow space straight x space equals space 2 over 4 space equals space 1 half end style

So, the correct option is (d).Question 11

begin mathsize 11px style The space value space of space cos squared space 17 to the power of straight o space minus space sin squared 73 to the power of straight o space is
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space 1 third
left parenthesis straight c right parenthesis space 0
left parenthesis straight d right parenthesis space minus 1 end style

Solution 11

begin mathsize 11px style We space know space sin space left parenthesis 90 space minus space straight theta right parenthesis space equals space cos space straight theta
space space space space space space space space space space space so space space sin space left parenthesis 90 minus space 17 right parenthesis space equals space cos 17
space space space space space space space space space space space space space rightwards double arrow space sin space left parenthesis 73 to the power of straight o right parenthesis space equals space cos 17 to the power of straight o space space minus space circle enclose 1
To space find space colon space cos squared 17 to the power of straight o space minus space sin squared 73 to the power of straight o
from space circle enclose 1
space space space space space space space space space space rightwards double arrow cos squared 17 to the power of straight o space minus space cos squared 17 to the power of straight o
space space space space space space space space space space rightwards double arrow space 0 end style

So, the correct option is (c).Question 12

begin mathsize 11px style The space value space of space fraction numerator cos cubed 20 to the power of straight o minus cos cubed 70 to the power of straight o over denominator sin cubed 70 to the power of straight o minus sin cubed 20 to the power of straight o end fraction space is
left parenthesis straight a right parenthesis space 1 half
left parenthesis straight b right parenthesis space fraction numerator 1 over denominator square root of 2 end fraction
left parenthesis straight c right parenthesis space 1
left parenthesis straight d right parenthesis space 2 end style

Solution 12

begin mathsize 11px style We space know space sin space left parenthesis 90 minus straight theta right parenthesis equals cos space straight theta
so space space space space space space space space space space space space space space sin space left parenthesis 90 degree minus 20 to the power of straight o right parenthesis space equals space cos 20 to the power of straight o
space space space space space space space space space space space space space space space rightwards double arrow box enclose sin space 70 to the power of straight o space equals space cos space 20 to the power of straight o end enclose space minus space circle enclose 1
space space space space space space space space space space space space space space space space space space sin space left parenthesis 90 degree minus 70 to the power of straight o right parenthesis space equals space ws space 70 to the power of straight o
space space space space space space space space space space space space space space space space space box enclose sin space left parenthesis 20 to the power of straight o right parenthesis space equals space cos space left parenthesis 70 to the power of straight o right parenthesis end enclose space minus space circle enclose 2
To space find space fraction numerator cos cubed 20 to the power of straight o space minus space cos cubed 70 to the power of straight o over denominator sin space cubed 70 to the power of straight o space minus space sin space cubed 20 to the power of straight o end fraction
space space space from space circle enclose 1 space end enclose space space and space circle enclose 2
rightwards double arrow space fraction numerator cos cubed 20 to the power of straight o minus cos cubed 70 to the power of straight o over denominator cos cubed 20 to the power of straight o minus cos cubed 70 to the power of straight o end fraction equals 1
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 13

begin mathsize 11px style If space fraction numerator straight x space cosec squared 30 to the power of straight o space sec squared 45 to the power of straight o over denominator 8 space cos squared 45 to the power of straight o space sin squared 60 to the power of straight o end fraction equals tan squared 60 to the power of straight o space minus space tan squared 30 to the power of straight o comma space then space straight x space equals space
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space minus 1
left parenthesis straight c right parenthesis space 2
left parenthesis straight d right parenthesis space 0 end style

Solution 13

begin mathsize 11px style We space know
rightwards double arrow space tan space 60 to the power of straight o equals space square root of 3
rightwards double arrow tan space 30 to the power of straight o space equals space fraction numerator 1 over denominator square root of 3 end fraction
rightwards double arrow cos space 45 to the power of straight o space equals space fraction numerator 1 over denominator square root of 2 end fraction
rightwards double arrow sec space 45 to the power of straight o space equals space square root of space 2 end root
rightwards double arrow sin space 60 to the power of straight o space equals space fraction numerator square root of 3 over denominator 2 end fraction
rightwards double arrow cosec space 30 to the power of straight o space equals space 2
given space fraction numerator xcosec squared 30 to the power of straight o sec squared 45 to the power of straight o over denominator 8 cos squared 45 to the power of straight o space sin space squared 60 to the power of straight o end fraction equals space tan squared 6 to the power of straight o minus tan squared 30 to the power of straight o
rightwards double arrow fraction numerator straight x space left parenthesis 4 right parenthesis space left parenthesis 2 right parenthesis over denominator 8 space open parentheses begin display style 1 half end style close parentheses open parentheses begin display style 3 over 4 end style close parentheses end fraction equals 3 minus 1 third
rightwards double arrow fraction numerator 8 straight x over denominator 3 end fraction space equals space 8 over 3
rightwards double arrow box enclose straight x space equals space 1 end enclose
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 14

If A and B are complementary angles, then

(a) sin A = sin B

(b) cos A and cos B

(c) tan A = tan B

(d) sec A = cosec BSolution 14

begin mathsize 11px style Complementary space angles space means space that space sum space of space two space angles space is space 90 to the power of straight o
straight A space and space straight B space are space complementary space angles space so
straight A space plus space straight B space equals space 90 to the power of straight o
rightwards double arrow space straight A space equals space 90 to the power of straight o space minus space straight B space space minus space circle enclose 1
left parenthesis straight a right parenthesis space Applying space sin space on space both space sides space in space circle enclose 1
space space space space space space space space sin space straight A space equals space sin space left parenthesis 90 to the power of straight o space minus space straight B right parenthesis
space space space space space space space rightwards double arrow sin space straight A space equals space cos space straight B
left parenthesis straight b right parenthesis space Applying space cos space on space both space sides space in space circle enclose 1
space space space space space space cos space straight A space equals space cos space left parenthesis 90 degree space minus space straight B right parenthesis
space space space space space space rightwards double arrow cos space straight A space equals space sin space straight B
left parenthesis straight c right parenthesis space Applying space tan space on space both space sides space in space circle enclose 1
space space space space space space space space space tan space straight A space equals space tan space left parenthesis 90 degree minus straight B right parenthesis
space space space space space space rightwards double arrow space tan space straight A space equals space cot space straight B
left parenthesis straight d right parenthesis space Applying space sec space on space both space sides space in space circle enclose 1
space space space space space space space space sec space straight A space equals space sec space left parenthesis 90 degree minus straight B right parenthesis
space space space space space space space box enclose sec space straight A space equals space cosec space straight B end enclose
So comma space correct space option space is space left parenthesis straight d right parenthesis end style

Question 15

begin mathsize 11px style If space straight x space sin space left parenthesis 90 to the power of straight o space minus space straight theta right parenthesis space cot space left parenthesis 90 to the power of straight o space minus space straight theta right parenthesis space equals space cos space left parenthesis 90 to the power of straight o space minus straight theta right parenthesis comma space then space straight x space equals space
left parenthesis straight a right parenthesis space 0
left parenthesis straight b right parenthesis thin space 1
left parenthesis straight c right parenthesis space minus 1
left parenthesis straight d right parenthesis space 2 end style

Solution 15

begin mathsize 11px style We space know space that
space space space space space space space space space space space space space space space space sin space left parenthesis 90 degree space minus space straight theta right parenthesis space equals space cos space straight theta
space space space space space space space space space space space space space space space space cos space left parenthesis 90 degree space minus straight theta right parenthesis space equals space sin space straight theta
space space space space space space space space space space space space space space space space cot space left parenthesis 90 degree space minus space straight theta right parenthesis space equals space tan space straight theta
rightwards double arrow space straight x space sin space left parenthesis 90 degree space minus space straight theta right parenthesis space cot space left parenthesis 90 degree space minus space straight theta right parenthesis space equals space cos space left parenthesis 90 degree space minus space straight theta right parenthesis
rightwards double arrow straight x space cos space straight theta space tan space straight theta space equals space sin space straight theta
rightwards double arrow space straight x space cos space straight theta space open parentheses fraction numerator sin space straight theta over denominator cos space straight theta end fraction close parentheses space equals space sin space straight theta
rightwards double arrow space box enclose straight x space equals space 1 end enclose end style

So, the correct option is (b).Question 16

begin mathsize 11px style If space straight x space tan space 45 to the power of straight o space cos space 60 to the power of straight o space equals space sin space 60 to the power of straight o cot 60 to the power of straight o comma space then space straight x space is space equal space to
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis thin space square root of 3
left parenthesis straight c right parenthesis space 1 half
left parenthesis straight d right parenthesis space fraction numerator 1 over denominator square root of 2 end fraction end style

Solution 16

begin mathsize 11px style We space know
space space space space space space space space space space space space space space rightwards double arrow space tan space 45 to the power of straight o space equals space 1
space space space space space space space space space space space space space space rightwards double arrow cos space 60 to the power of straight o space equals space 1 half
space space space space space space space space space space space space space space rightwards double arrow sin space 60 to the power of straight o space equals space fraction numerator square root of 3 over denominator 2 end fraction
space space space space space space space space space space space space space space rightwards double arrow cot space 60 to the power of straight o space equals space fraction numerator 1 over denominator square root of 3 end fraction
To space find space colon space straight x space tan space 45 to the power of straight o cos space 60 to the power of straight o space equals space sin space 60 to the power of straight o cot 60 to the power of straight o
space space space space space space space space space space space space space space space rightwards double arrow straight x space left parenthesis 1 right parenthesis space open parentheses 1 half close parentheses space equals space open parentheses fraction numerator square root of 3 over denominator 2 end fraction close parentheses open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses
space space space space space space space space space space space space space space space space rightwards double arrow box enclose straight x space equals space 1 end enclose end style

So, the correct option is (a).Question 17

begin mathsize 11px style If space angles space straight A comma straight B comma straight C space of space straight a space triangle ABC space form space an space increasing space AP comma space then space sin space straight B space equals space
left parenthesis straight a right parenthesis space 1 half
left parenthesis straight b right parenthesis space fraction numerator square root of 3 over denominator 2 end fraction
left parenthesis straight c right parenthesis space 1
left parenthesis straight d right parenthesis space fraction numerator 1 over denominator square root of 2 end fraction end style

Solution 17

begin mathsize 11px style We space know comma space sum space of space all space angles space of space straight a space triangle space equals space 180
space space space space space space space space space space space space space rightwards double arrow space straight A space plus space straight B space plus space straight C space equals space 180
it space is space given space that space straight A comma straight B comma straight C space are space in space AP comma
So comma space let space straight A space equals space straight B minus straight r space space and space straight C space equals space straight B space plus space straight r
Now space angles space are space straight B space minus space straight r comma space straight B comma space straight B space plus space straight r
space space space space space space space space space From space circle enclose 1 space and space circle enclose 2
space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis straight B minus straight r right parenthesis plus space straight B space plus space left parenthesis straight B space plus straight r right parenthesis space equals space 180 to the power of straight o
space space space space space space space space space space space space space space rightwards double arrow space 3 straight B space equals space 180 to the power of straight o space rightwards double arrow space straight B space equals space 60 to the power of straight o
Now space sin space straight B space rightwards double arrow space box enclose sin space 60 to the power of straight o space equals space fraction numerator square root of 3 over denominator 2 end fraction end enclose end style

So, the correct option is (b).Question 18

begin mathsize 11px style If space straight theta space is space an space acute space such space that space sec squared straight theta space equals space 3 comma space then space the space value space of space fraction numerator tan squared straight theta minus cosec squared straight theta over denominator tan squared straight theta space plus space cosec squared straight theta end fraction space is
left parenthesis straight a right parenthesis space 4 over 7
left parenthesis straight b right parenthesis space 3 over 7
left parenthesis straight c right parenthesis space 2 over 7
left parenthesis straight d right parenthesis space 1 over 7 end style

Solution 18

Error converting from MathML to accessible text.
begin mathsize 11px style space space space space space space space space space space space space space space space space space space space space space space space space space space space space sin space straight theta space equals space fraction numerator square root of 2 over denominator square root of 3 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space cosec space straight theta space equals space fraction numerator 1 over denominator sin space straight theta end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow box enclose cosec space straight theta space equals space fraction numerator square root of 3 over denominator square root of 2 end fraction end enclose space minus space circle enclose 2
To space find space colon space space fraction numerator tan squared straight theta space minus space cosec squared straight theta over denominator tan squared straight theta space plus space cosec squared straight theta end fraction
space space space space space space space space space space space space From space circle enclose 2 space end enclose space and space circle enclose 1
space space space space space space space space space space space rightwards double arrow fraction numerator 2 minus open parentheses begin display style 3 over 2 end style close parentheses over denominator 2 plus open parentheses begin display style 3 over 2 end style close parentheses end fraction equals fraction numerator begin display style 1 half end style over denominator begin display style 7 over 2 end style end fraction
space space space space space space space space space equals space 1 over 7 end style

So, the correct option is (d).

Chapter 5 Trigonometric Ratios Exercise 5.58

Question 19

begin mathsize 11px style The space value space of space tan space 1 to the power of straight o space tan 2 to the power of straight o space tan 3 to the power of straight o space............. space tan space 89 to the power of straight o space is
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space minus 1
left parenthesis straight c right parenthesis space 0
left parenthesis straight d right parenthesis space None space of space these end style

Solution 19

begin mathsize 11px style We space know space tan space left parenthesis 90 minus straight theta right parenthesis space equals space cot space straight theta space minus space circle enclose 1
space space space space space space space space space space space space and space tan space open parentheses straight theta close parentheses space equals space fraction numerator 1 over denominator cot space straight theta end fraction space minus space circle enclose 2
from space circle enclose 1 space and space circle enclose 2
space space space space space space space space space space space space box enclose tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space fraction numerator 1 over denominator tan space straight theta end fraction end enclose
or space space space space space space space space space box enclose tan space straight theta space tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space 1 end enclose space minus space circle enclose 3
To space find space colon space space tan space 1 to the power of straight o space tan space 2 to the power of straight o space tan space 3 to the power of straight o straight _ space straight _ space straight _ space straight _ space straight _ thin space straight _ space straight _ space tan space 89 to the power of straight o
space space space space space space space space space space space space space it space can space also space be space rewritten space space as
space space space space space space space space space space rightwards double arrow left parenthesis tan space 1 to the power of straight o space tan 89 to the power of straight o right parenthesis space left parenthesis tan 2 to the power of straight o space tan 88 to the power of straight o right parenthesis space straight _ space straight _ thin space straight _ space straight _ thin space straight _ open parentheses tan space 44 to the power of straight o space tan space 46 to the power of straight o close parentheses space tan space 45 to the power of straight o
space space space space space space space space space space rightwards double arrow from space circle enclose 3 space and space tan space 45 to the power of straight o space equals space 1
space space space space space space space space space space rightwards double arrow left parenthesis 1 right parenthesis space left parenthesis 1 right parenthesis space left parenthesis 1 right parenthesis space straight _ space straight _ space straight _ space straight _ space straight _ thin space straight _ space straight _ left parenthesis 1 right parenthesis
space space space space space space space space space space space equals space 1 space
space So comma space the space correct space option space is space left parenthesis straight a right parenthesis. space space space space space space space space space end style

Question 20

begin mathsize 11px style The space value space of space cos 1 to the power of straight o space cos 2 to the power of straight o space cos 3 to the power of straight o space............ space cos space 180 to the power of straight o space is space
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space 0
left parenthesis straight c right parenthesis space minus 1
left parenthesis straight d right parenthesis space None space of space these end style

Solution 20

begin mathsize 11px style We space know space box enclose cos space 90 to the power of straight o space equals space 0 end enclose space minus space circle enclose 1
space space space space space space space space So space cos 1 to the power of straight o space space cos 2 to the power of straight o space straight _ space straight _ space straight _ thin space straight _ thin space straight _ space space cos 90 to the power of straight o space straight _ space straight _ space straight _ space straight _ thin space space cos space 180 to the power of straight o space minus space circle enclose 2
space space space space space space space space space from space circle enclose 1 space and space circle enclose 2
space space space space space space space rightwards double arrow space 0 end style

So, the correct option is (b).Question 21

begin mathsize 11px style The space value space of space tan space 10 to the power of straight o space tan space 15 to the power of straight o space tan space 75 to the power of straight o space tan space 80 to the power of straight o space is
left parenthesis straight a right parenthesis space minus 1
left parenthesis straight b right parenthesis space 0
left parenthesis straight c right parenthesis space 1
left parenthesis straight d right parenthesis space None space of space these end style

Solution 21

begin mathsize 11px style space space space space space space space We space know
space space space space space space space space space space space space space space tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space cot space straight theta space space space minus space circle enclose 1
space space and space space space space space tan space straight theta space equals space fraction numerator 1 over denominator cot space straight theta end fraction space minus space space space space space space space space space space circle enclose 2
From space circle enclose 1 space and space circle enclose 2
space space space space space space space space space box enclose tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space fraction numerator 1 over denominator tan space straight theta end fraction end enclose space minus space circle enclose 3
For space straight theta space equals space 10 to the power of straight o space space rightwards double arrow tan space left parenthesis 80 to the power of straight o right parenthesis space equals space fraction numerator 1 over denominator tan space 10 to the power of straight o end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space tan space left parenthesis 80 to the power of straight o right parenthesis space tan space left parenthesis 10 to the power of straight o right parenthesis space equals space 1 space space space space space space space space minus space circle enclose 4
For space straight theta space equals space 15 to the power of straight o space space rightwards double arrow space tan space left parenthesis 75 to the power of straight o right parenthesis space equals space fraction numerator 1 over denominator tan space left parenthesis 15 to the power of straight o right parenthesis end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space tan space left parenthesis 75 to the power of straight o right parenthesis space tan space left parenthesis 15 to the power of straight o right parenthesis space equals space 1 space space space space space minus space circle enclose 5
To space Find space colon space space space tan space 10 to the power of straight o space tan space 15 to the power of straight o space tan space 75 to the power of straight o space tan space 80 to the power of straight o
space space space space space space space space space space space space space space space space space rightwards double arrow space open parentheses tan space 10 to the power of straight o space tan space 80 to the power of straight o close parentheses space left parenthesis tan space 15 to the power of straight o space tan space 75 to the power of straight o right parenthesis
space space space space space space space space space space space from space circle enclose 4 space and space circle enclose 5
space space space space space space space space space space space space space space space space space space space rightwards double arrow 1
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 22

begin mathsize 11px style The space value space of space fraction numerator cos space left parenthesis 90 to the power of straight o minus straight theta right parenthesis space sec space left parenthesis 90 to the power of straight o minus straight theta right parenthesis space tan space straight theta over denominator cosec space left parenthesis 90 to the power of straight o space minus space straight theta right parenthesis space sin space left parenthesis 90 to the power of straight o space minus space straight theta right parenthesis space cot space left parenthesis 90 to the power of straight o space minus space straight theta right parenthesis end fraction plus fraction numerator tan space left parenthesis 90 to the power of straight o minus straight theta right parenthesis over denominator cot space straight theta end fraction space is
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space minus 1 space
left parenthesis straight c right parenthesis space 2
left parenthesis straight d right parenthesis space minus 2 end style

Solution 22

begin mathsize 11px style We space know comma space space space space space space space cos space left parenthesis 90 space minus space straight theta right parenthesis space equals space sin space straight theta space space minus space circle enclose 1
space space space space space space space space space space space space space space space space space space space space space space space space sec space left parenthesis 90 space minus space straight theta right parenthesis space equals space cosec space straight theta space minus space circle enclose 2
space space space space space space space space space space space space space space space space space space space space space space space space cosec space left parenthesis 90 space minus space straight theta right parenthesis space equals space sec space straight theta space minus space circle enclose 3
space space space space space space space space space space space space space space space space space space space space space space space sin space left parenthesis 90 space minus space straight theta right parenthesis space space equals space cos space straight theta space space minus space circle enclose 4
space space space space space space space space space space space space space space space space space space space space space space cot space left parenthesis 90 space minus space straight theta right parenthesis space equals space tan space straight theta space space minus space circle enclose 5
space space space space space space space space space space space space space space space space space space space space space space tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space cot space straight theta space space minus space circle enclose 6
To space find space colon space space fraction numerator cos space left parenthesis 90 degree space minus space straight theta right parenthesis space sec space left parenthesis 90 degree space minus space straight theta right parenthesis space tan space straight theta over denominator cosec space left parenthesis 90 degree minus space straight theta right parenthesis space sin space left parenthesis 90 degree minus space straight theta right parenthesis cot left parenthesis 90 degree minus space straight theta right parenthesis end fraction space plus space fraction numerator tan space left parenthesis 90 degree space minus space straight theta right parenthesis over denominator cot space left parenthesis straight theta right parenthesis end fraction
space space space space space space space rightwards double arrow space with space the space help space of space eq space circle enclose 1 comma space circle enclose 2 comma circle enclose 3 comma circle enclose 4 comma circle enclose 5 comma circle enclose 6
space space space space space space space rightwards double arrow fraction numerator sin space straight theta space cosec space straight theta space up diagonal strike tan space straight theta end strike over denominator sin space straight theta space cosec space straight theta space up diagonal strike tan space straight theta end strike end fraction space plus space fraction numerator up diagonal strike cot space straight theta end strike over denominator up diagonal strike cot space straight theta end strike end fraction
space space space space space space space rightwards double arrow space fraction numerator sin space straight theta space cosec space straight theta over denominator sec space straight theta space cos space straight theta end fraction plus 1
We space also space know space that
space space space space space space space space space space space sin space straight theta space equals space fraction numerator 1 over denominator cosec space straight theta end fraction rightwards double arrow space sin space straight theta space cosec space equals space 1 space space minus space circle enclose 8
and space space space cos space straight theta space equals space fraction numerator 1 over denominator sec space straight theta end fraction space rightwards double arrow sec space straight theta space cos space straight theta space equals space 1 space space space minus space circle enclose 9
From space circle enclose 7 comma circle enclose 8 comma circle enclose 9
rightwards double arrow space we space get
space space space space space space space space space fraction numerator sin space straight theta space cosec space straight theta over denominator cos space straight theta space sec space straight theta end fraction plus 1
space space rightwards double arrow space 2
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 23

begin mathsize 11px style If space straight theta space and space 2 straight theta space minus space 45 to the power of straight o space are space acute space angles space such space that space sin space straight theta space equals space cos space left parenthesis 2 straight theta space minus space 45 to the power of straight o right parenthesis comma space then space tanθ space is space equal space to
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space minus 1 space
left parenthesis straight c right parenthesis space square root of 3
left parenthesis straight d right parenthesis space fraction numerator 1 over denominator square root of 3 end fraction end style

Solution 23

begin mathsize 11px style space space space space space space space space space space space space We space know space cos space left parenthesis 90 space minus space straight theta right parenthesis space equals space sin space straight theta space space minus space circle enclose 1
space space space space space space space space space space space space rightwards double arrow Given space space space space space space space sin space straight theta space equals space cos space left parenthesis 2 straight theta space minus space 45 to the power of straight o right parenthesis space minus space circle enclose 2
from space circle enclose 1 space and space circle enclose 2
space space space space space space space space space space space cos space left parenthesis 90 space minus space straight theta right parenthesis space equals space cos space left parenthesis 2 straight theta space minus space 45 to the power of straight o right parenthesis
space space space space space rightwards double arrow space 90 space minus space straight theta space equals space 2 straight theta space minus 45 to the power of straight o
space space space space space rightwards double arrow 90 to the power of straight o space plus space 45 to the power of straight o space equals space 3 straight theta
space space space space space space space rightwards double arrow 3 straight theta space equals space 135 to the power of straight o
space space space space space space space rightwards double arrow box enclose straight theta space equals space 45 to the power of straight o end enclose
Then space tan space straight theta
space space space space space space rightwards double arrow tan space 45 to the power of straight o
space space space space space space rightwards double arrow space 1
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 24

begin mathsize 11px style If space 5 straight theta space and space 4 straight theta space are space acute space angles space satisfying space sin space 5 straight theta space equals space cos space 4 straight theta comma space then space 2 space sin space 3 straight theta minus square root of 3 space tan 3 straight theta space is space equal space to
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space 0
left parenthesis straight c right parenthesis space minus 1
left parenthesis straight d right parenthesis space 1 space plus space square root of 3 end style

Solution 24

begin mathsize 11px style space space space space space space We space know
space space space space space space space space space space space space space space space space space space sin space left parenthesis 90 space minus space 4 straight A right parenthesis space equals space cos space 4 straight A space minus space circle enclose 1
space space space space given space space space space sin space 5 straight theta space space equals space cos space 4 straight theta space space space space minus space circle enclose 2
From space circle enclose 1 space end enclose space and space circle enclose 2
space space space space space space space space space space space space space space space space sin space left parenthesis 5 straight theta right parenthesis space equals space sin space left parenthesis 90 space minus space 4 straight theta right parenthesis
space space space space space space rightwards double arrow space space space space space space space 5 straight theta space equals space 90 space minus space 4 straight theta
space space space space space space space rightwards double arrow space space space space space space 9 straight theta equals space 90
space space space space space space space rightwards double arrow space space box enclose straight theta space equals space 10 to the power of straight o end enclose
To space find space 2 space sin space 3 straight theta space minus space square root of 3 space tan space 3 straight theta
space space space space space space space rightwards double arrow space 2 space sin space 30 to the power of straight o space minus space square root of 3 space end root space tan space 30 to the power of straight o
space space space space space space space rightwards double arrow 2 space open parentheses 1 half close parentheses space minus space square root of 3 open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
space space space space space space space rightwards double arrow space 1 space minus space 1 space equals space 0
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 25

begin mathsize 11px style If space straight A space plus space straight B space equals space 90 to the power of straight o comma space then space fraction numerator tan space straight A space tan space straight B space plus space tan space straight A space cot space straight B over denominator sin space straight A space sec space straight B end fraction minus fraction numerator sin squared straight B over denominator cos squared straight A end fraction space is space equal space to
left parenthesis straight a right parenthesis space cot squared straight A
left parenthesis straight b right parenthesis space cot squared straight B
left parenthesis straight c right parenthesis space minus space tan squared straight A
left parenthesis straight d right parenthesis space minus space cot squared straight A end style

Solution 25

begin mathsize 11px style space space space space space space space Given space straight A space plus space straight B space equals space 90 to the power of straight o
space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space straight A equals space 90 to the power of straight o space minus space straight B space minus space circle enclose 1
space space space space Apply space sin space both space side space in space circle enclose 1
space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space sin space straight A space equals space space sin space left parenthesis 90 to the power of straight o space minus space straight B right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space box enclose sin space straight A space equals space cos space straight B end enclose space space minus space circle enclose 2
space space space Apply space cos space both space side space in space circle enclose 1
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space cos space straight A space equals space cos space left parenthesis 90 to the power of straight o minus straight B right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space box enclose cos space straight A space equals space sin space straight B end enclose space minus space circle enclose 3
space space space Apply space cosec space both space side space in space circle enclose 1
space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space cosec space straight A space equals space cosec space left parenthesis 90 space minus space straight B right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow box enclose cosec space straight A space equals space sec space straight B end enclose space minus space circle enclose 4
To space find space colon thin space space fraction numerator tan space straight A space tan space straight B space plus space tan space straight A space cot space straight B over denominator space space space space sin space straight A space sec space straight B end fraction space minus space fraction numerator sin squared straight B over denominator cos squared straight A end fraction
space space space space space space space space space space space space space space space space space rightwards double arrow fraction numerator open parentheses begin display style fraction numerator sin space straight A over denominator cos space straight A end fraction end style close parentheses open parentheses begin display style fraction numerator sin space straight B over denominator cos space straight B end fraction end style close parentheses plus open parentheses begin display style fraction numerator sin space straight A over denominator cos space straight A end fraction end style close parentheses open parentheses begin display style fraction numerator cos space straight B over denominator sin space straight B end fraction end style close parentheses over denominator sin space straight A. space cosec space straight A end fraction space space minus fraction numerator sin squared straight B over denominator cos squared straight A end fraction
space space space space space space space space space space space space space space space space space With space help space of space circle enclose 2 comma circle enclose 3 comma circle enclose 4
space space space space space space space rightwards double arrow fraction numerator 1 plus begin display style fraction numerator sin squared straight A over denominator cos squared straight A end fraction end style over denominator sin space straight A. open parentheses begin display style fraction numerator 1 over denominator sin space straight A end fraction end style close parentheses end fraction minus 1
space space space space space space space equals 1 space space plus space tan squared straight A space minus space 1
space space space space space space space equals tan squared straight A
space space space space space space space equals open square brackets tan space left parenthesis 90 minus straight B right parenthesis close square brackets squared space space space space space space.... open curly brackets straight A space equals space 90 minus straight B close curly brackets
space space space space space space space equals space open square brackets cot space straight B close square brackets squared
space space space space space space space equals cot squared straight B
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. space space space space space space space space space space space end style

Question 26

begin mathsize 11px style fraction numerator 2 space tan space 30 to the power of straight o over denominator 1 space plus space tan space squared 30 to the power of straight o end fraction space is space equal space to
left parenthesis straight a right parenthesis space sin space 60 to the power of straight o
left parenthesis straight b right parenthesis space cos space 60 to the power of straight o
left parenthesis straight c right parenthesis space tan space 60 to the power of straight o
left parenthesis straight d right parenthesis space sin space 30 to the power of straight o end style

Solution 26

begin mathsize 11px style We space know
space space space space space space space space space space space space space tan space 30 to the power of straight o space equals space fraction numerator 1 over denominator square root of 3 end fraction
space space To space find space colon space space fraction numerator 2 space tan 30 to the power of straight o over denominator 1 plus tan squared 30 to the power of straight o end fraction
space space space space space space space space space space space space rightwards double arrow fraction numerator 2 open parentheses begin display style fraction numerator 1 over denominator square root of 3 end fraction end style close parentheses over denominator 1 plus open parentheses begin display style 1 third end style close parentheses end fraction equals space fraction numerator begin display style fraction numerator 2 over denominator square root of 3 end fraction end style over denominator begin display style 4 over 3 end style end fraction
space space space space space space space space space space space space space rightwards double arrow fraction numerator square root of 3 over denominator 2 end fraction
Value space of space sin space 60 to the power of straight o space equals space fraction numerator square root of 3 over denominator 2 end fraction
space space space space space space space space space space space cos space 60 to the power of straight o space equals space 1 half
space space space space space space space space space space space tan space 60 to the power of straight o space equals space square root of 3
space space space space space space space space space space space sin space 30 to the power of straight o space equals space 1 half
Hence space correct space option space is space left parenthesis straight a right parenthesis end style

Question 27

begin mathsize 11px style fraction numerator 1 minus tan squared 45 to the power of straight o over denominator 1 plus tan squared 45 to the power of straight o end fraction space is space equal space to
left parenthesis straight a right parenthesis space tan space 90 to the power of straight o
left parenthesis straight b right parenthesis space 1
left parenthesis straight c right parenthesis space sin space 45 to the power of straight o
left parenthesis straight d right parenthesis space sin space 0 degree end style

Solution 27

begin mathsize 11px style tan space 45 to the power of straight o space equals space 1
To space find space colon space minus space fraction numerator 1 minus tan squared 45 to the power of straight o over denominator 1 plus tan squared 45 to the power of straight o end fraction
space space space space space space space space space space space space space space space space space rightwards double arrow fraction numerator 1 space minus space 1 over denominator 1 space plus space 1 end fraction equals 0
We space know space sin space left parenthesis 0 to the power of straight o right parenthesis space equals space 0 end style

So, the correct option is (d).Question 28

Sin 2A = 2 sin A is true when A = 

(a) 0o

(b) 30o

(c) 45o

(d) 60oSolution 28

begin mathsize 11px style We space know space
space space space space space space space space space space space space space space sin space 2 straight A space equals space 2 sin space straight A space cos space straight A space minus space circle enclose 1
Given space space sin space 2 straight A space equals space 2 space sin space straight A space minus space circle enclose 2
space space space space from space circle enclose 1 space and space circle enclose 2
space space space space space space space rightwards double arrow 2 space sin space straight A space cos space straight A space equals space 2 space sin space straight A
space space space space space space space rightwards double arrow 2 space sin space straight A space left parenthesis cos space straight A space minus space 1 right parenthesis space equals space 0
space space space space space space space rightwards double arrow sin space straight A space equals space 0 space space space space space space or space cos space straight A space equals space 1
space We space knows space sin space 0 to the power of straight o space equals space 0 space and space cos space 0 to the power of straight o space equals space 1
space space space space space space space Hence space box enclose straight A space equals space 0 to the power of straight o end enclose end style

So, the correct option is (a).Question 29

begin mathsize 11px style fraction numerator 2 space tan space 30 to the power of straight o over denominator 1 minus tan squared 30 to the power of straight o end fraction space is space equal space to
left parenthesis straight a right parenthesis space cos space 60 to the power of straight o
left parenthesis straight b right parenthesis space sin space 60 to the power of straight o
left parenthesis straight c right parenthesis space tan space 60 to the power of straight o
left parenthesis straight d right parenthesis space sin space 30 to the power of straight o end style

Solution 29

begin mathsize 11px style We space know comma space tan space 30 to the power of straight o space equals space fraction numerator 1 over denominator square root of 3 end fraction
space space space space space Given comma space fraction numerator 2 space tan space 30 to the power of straight o over denominator 1 minus space tan squared 30 end fraction
space space space space space space space space space space space rightwards double arrow fraction numerator 2 open parentheses begin display style fraction numerator 1 over denominator square root of 3 end fraction end style close parentheses over denominator 1 minus open parentheses begin display style 1 third end style close parentheses end fraction
space space space space space space space space space space space rightwards double arrow fraction numerator begin display style fraction numerator 2 over denominator square root of 3 end fraction end style over denominator begin display style 2 over 3 end style end fraction
space space space space space space space space space space space rightwards double arrow square root of 3
We space also space know space that space tan space 60 to the power of straight o space equals space square root of 3
So comma space correct space answer space is space left parenthesis straight c right parenthesis end style

Question 30

begin mathsize 11px style if space straight A comma straight B space and space straight C space are space interior space angles space of space straight a space triangle space ABC comma space then space sin space open parentheses fraction numerator straight B space plus space straight C over denominator 2 end fraction close parentheses equals
left parenthesis straight a right parenthesis space sin space straight A over 2
left parenthesis straight b right parenthesis space cos space straight A over 2
left parenthesis straight c right parenthesis space minus space sin space straight A over 2
left parenthesis straight d right parenthesis space minus space cos space straight A over 2 end style

Solution 30

begin mathsize 11px style We space know comma space if space straight A comma straight B comma straight C space are space angles space of space straight a space triangle space then
space space space space space straight A space plus space straight B space plus space straight C space equals space 180 to the power of straight o
space space rightwards double arrow space straight B space plus thin space straight C space equals space 180 to the power of straight o space minus space straight A
space space rightwards double arrow fraction numerator straight B plus straight C over denominator 2 end fraction equals 90 to the power of straight o space minus straight A over 2
space space space rightwards double arrow sin space open parentheses fraction numerator straight B plus straight C over denominator 2 end fraction close parentheses equals sin space open parentheses 90 to the power of straight o minus straight A over 2 close parentheses
space space space space rightwards double arrow sin space open parentheses fraction numerator straight B plus straight C over denominator 2 end fraction close parentheses space equals space cos space open parentheses straight A over 2 close parentheses
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 31

begin mathsize 11px style If space cos space straight theta space equals space 2 over 3 comma space then space 2 space sec squared straight theta space plus space 2 space tan squared straight theta minus space 7 space is space equal space to
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space 0
left parenthesis straight c right parenthesis space 3
left parenthesis straight d right parenthesis space 4 end style

Solution 31

Error converting from MathML to accessible text.
begin mathsize 11px style space space space space space space tan space straight theta space equals space fraction numerator square root of 5 over denominator 2 end fraction
space space space space space space space sec space straight theta space equals space 3 over 2
To space find space colon space space 2 space sec squared straight theta space plus space 2 space tan squared straight theta space minus space 7
space space space space space space space space space space space space space space space space rightwards double arrow 2 space open parentheses 3 over 2 close parentheses squared space space plus space 2 open parentheses fraction numerator square root of 5 over denominator 2 end fraction close parentheses squared space minus space 7
space space space space space space space space space space space space space space space rightwards double arrow 9 over 2 space plus space 5 over 2 space minus space 7
space space space space space space space space space space space space space space rightwards double arrow space 7 space minus space 7
space space space space space space space space space space space space space space rightwards double arrow space 0 space
space So comma space the space correct space answer space is space left parenthesis straight b right parenthesis. end style

Question 32

begin mathsize 11px style tan space 5 to the power of straight o space cross times space tan 30 to the power of straight o space cross times space 4 space tan space 85 to the power of straight o space is space equal space to space
left parenthesis straight a right parenthesis space fraction numerator 4 over denominator square root of 3 end fraction
left parenthesis straight b right parenthesis space 4 square root of 3
left parenthesis straight c right parenthesis space 1
left parenthesis straight d right parenthesis space 4 end style

Solution 32

begin mathsize 11px style We space know space tan space left parenthesis 90 minus straight theta right parenthesis space equals space cot space straight theta space minus space circle enclose 1
and space space space cot space straight theta space equals space fraction numerator 1 over denominator tan space straight theta end fraction space space minus space circle enclose 2
from space circle enclose 1 space and space circle enclose 2
tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space fraction numerator 1 over denominator tan space straight theta end fraction
rightwards double arrow tan space left parenthesis straight theta right parenthesis space tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space 1
for space straight theta space equals space 5 to the power of straight o
space space space space space space rightwards double arrow box enclose tan space left parenthesis 5 to the power of straight o right parenthesis space tan space left parenthesis 85 to the power of straight o right parenthesis space equals space 1 end enclose space space space space minus space circle enclose 3
Also space space tan space 30 to the power of straight o space equals space fraction numerator 1 over denominator square root of 3 end fraction space space minus space circle enclose 4
To space find colon space tan space 5 to the power of straight o space cross times space tan space 30 to the power of straight o space cross times space 4 space tan space 85 to the power of straight o
space space space space space space space space rightwards double arrow space tan space 5 to the power of straight o space tan space 85 to the power of straight o space cross times space 4 space tan space 30 to the power of straight o
space space space space space space space space rightwards double arrow 1 space cross times space 4 space cross times space fraction numerator 1 over denominator square root of 3 end fraction
space space space space space space space space space rightwards double arrow fraction numerator 4 over denominator square root of 3 end fraction
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Chapter 5 Trigonometric Ratios Exercise 5.59

Question 33

begin mathsize 11px style The space value space of space fraction numerator tan space 55 to the power of straight o over denominator cot space 35 to the power of straight o end fraction space plus space cot space 1 to the power of straight o space cot space 2 to the power of straight o space straight _ space straight _ space straight _ space straight _ space straight _ thin space straight _ space space cot space 90 to the power of straight o comma space is
left parenthesis straight a right parenthesis space minus 2 space
left parenthesis straight b right parenthesis space 2
left parenthesis straight c right parenthesis space 1
left parenthesis straight d right parenthesis space 0 end style

Solution 33

begin mathsize 11px style We space know space tan space left parenthesis 90 minus straight theta right parenthesis space equals space cot space straight theta
space space space For space straight theta space equals space 35 to the power of straight o space rightwards double arrow box enclose tan space left parenthesis 55 to the power of straight o right parenthesis space equals space cot space left parenthesis 35 to the power of straight o right parenthesis end enclose space minus space circle enclose 1
Also space cot space 90 to the power of straight o space equals space 0 space space minus space circle enclose 2
To space find space colon negative space fraction numerator tan space 55 to the power of straight o over denominator cot space 35 to the power of straight o end fraction plus cot space 1 to the power of straight o space cot space 2 to the power of straight o space straight _ space straight _ thin space straight _ space straight _ thin space straight _ space cot space 90 to the power of straight o
space space space space space space space space space rightwards double arrow space from space circle enclose 1 space and space circle enclose 2
space space space space space space space space space rightwards double arrow space 1 space plus space 0 space equals space 1 end style

So, the correct option is (c).Question 34

begin mathsize 11px style In space the space figure comma space the space value space of space cos space straight capital phi space is space
left parenthesis straight a right parenthesis space 5 over 4
left parenthesis straight b right parenthesis space 5 over 3
left parenthesis straight c right parenthesis space 3 over 5
left parenthesis straight d right parenthesis space 4 over 5 end style

Solution 34

begin mathsize 11px style ECB space is space straight a space straight space line
so space straight ϕ space plus space 90 to the power of straight o space plus space straight theta space equals space 180 to the power of straight o
space space space space space rightwards double arrow straight ϕ space plus space straight theta space equals space 90 to the power of straight o
space space space space space space rightwards double arrow straight ϕ space equals space 90 minus straight theta
space space space space space space rightwards double arrow cos space left parenthesis straight ϕ right parenthesis space equals space cos space left parenthesis 90 space minus straight theta right parenthesis
space space space space space space space space space space cos space straight ϕ space equals space sin space straight theta space space space space minus space circle enclose 1
In space increment space ABC
space space space space space space space space space sin space straight theta space equals space 4 over 5 space space space space space minus space circle enclose 2
from space circle enclose 1 space and space circle enclose 2
space space space space space space space space space space rightwards double arrow box enclose cos space straight ϕ space equals space 4 over 5 end enclose
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 35

begin mathsize 11px style In space the space figure comma thin space AD space equals space 4 space cm space BD space equals space 3 space cm space and space CB space equals space 12 space cm comma space find space cot space straight theta.
left parenthesis straight a right parenthesis space 12 over 5
left parenthesis straight b right parenthesis space 5 over 12
left parenthesis straight c right parenthesis space 13 over 12
left parenthesis straight d right parenthesis space 12 over 13 end style

Solution 35

begin mathsize 11px style In space increment space ABD
AB squared space equals space BD squared space plus space AD squared
space space space space space space space space space space space equals space 3 squared space plus space 4 squared
space space space space space space space space space space space space equals space 25
space space space space AB space equals space 5 space cm
In space increment space ABC
AC squared space equals space AB squared space plus space BC squared
rightwards double arrow space AC squared space equals space 5 squared space plus space 12 squared
space space space space space space space space space space space space space space space equals space 169
rightwards double arrow AC space equals space 13 space cm
space cot space straight theta space equals space BC over AB space equals space 12 over 5
box enclose cot space straight theta space equals space 12 over 5 end enclose
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style
Read More

RD SHARMA SOLUTION CHAPTER- 4 Triangles| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 4 – Quadratic Equations Exercise Ex. 4.1

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 1 (v)

Solution 1 (v)

Question 1(vi)

Solution 1(vi)

Question 1 (vii)

Solution 1 (vii)

Question 1 (viii)

Solution 1 (viii)

Question 1 (ix)

Solution 1 (ix)

Question 1 (x)

Solution 1 (x)

Question 1 (xi)

Solution 1 (xi)

Question 1 (xii)

Solution 1 (xii)

Question 1 (xiii)

Solution 1 (xiii)

Question 1 (xiv)

Solution 1 (xiv)

Question 1 (xv)

Is X(x+1)+8=(x+2)(x-2) a quadratic equation?Solution 1 (xv)

Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Solution 2 (iii)

Question 2 (iv)

Solution 2 (iv)

Question 2 (v)

Are x = 2 and x = 3, solutions of the equation 2x2 – x + 9 = x2 + 4x + 3 , Solution 2 (v)

= 2x– x + 9 – x+ 4x + 3

= x2 – 5x + 6 = 0

Here, LHS = x2 – 5x + 6 and RHS = 0

Substituting x = 2 and x = 3

= x2 – 5x + 6

= (2)2 – 5(2) + 6

=10-10

=0

= RHS

= x2 – 5x + 6

= (3)2 – 5(3) + 6

= 9 – 15 + 6

=15 – 15

=0

= RHS

x = 2 and x = 3 both are the solutions of the given quadratic equation.Question 2 (vi)

Solution 2 (vi)

Question 2 (vii)

Solution 2 (vii)

Question 3 (i)

Solution 3 (i)

Question 3 (ii)

Solution 3 (ii)

Question 3 (iii)

Solution 3 (iii)

Question 3 (iv)

Solution 3 (iv)

Question 4

Solution 4

Question 5

Solution 5

Chapter 4 – Quadratic Equations Exercise Ex. 4.2

Question 1

The product of two consecutive positive integers is 306. Form the quadratic equation to find the integers, if x denotes the smaller integer.Solution 1

Question 2

John and Jivanti together have 45 marbles. Both of them lost 5 marbles each, and the product of the number of marbles they now have is 128. Form the quadratic equation to find how many marbles they had to start with, if John had x marbles.Solution 2

Question 3

A cottage industry produces a certain number of toys in a day. The cost of production of each toy (in rupees) was found to be 55 minus the number of articles produced in a day. On a particular day, the total cost of production was Rs. 750. If x denotes the number of toys produced that day, form the quadratic equation to find x.Solution 3

Question 4

The height of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, form the quadratic equation to find the base of the triangle.Solution 4

Question 5

An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore. If the average speed of the express train is 11 km/hr more than that of the passenger train, form the quadratic equation to find the average speed of express train.Solution 5

Question 6

A train travels 360 km at a uniform speed. If the speed had been 5 km/hr more, it would have taken 1 hour less for the same journey. Form the quadratic equation to find the speed of the train.Solution 6

Chapter 4 – Quadratic Equations Exercise Ex. 4.3

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solve the following quadratic equation by factorisation:

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solve the following quadratic equation by factorisation:

Solution 15

Question 16

Solution 16

Question 17

9x– 6b2x – (a4 – b4) = 0Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solve the following quadratic equation by factorisation:

2x+ ax – a2 = 0Solution 20

Question 21

Solve the following quadratic equation by factorisation:

Solution 21

Question 22

Solve the following quadratic equations by factorization:

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solve the following quadratic equation by factorisation:

Solution 29

Question 30

Solve the following quadratic equation by factorisation:

Solution 30

Question 31

Solve the following quadratic equation by factorisation:

Solution 31

Question 32

Solve the following quadratic equation by factorisation:

Solution 32

Question 33

Solve the following quadratic equation by factorisation:

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

Solution 36

Question 37

Solution 37

Question 38

Solve the following quadratic equation by factorisation:

Solution 38

Question 39

Solution 39

Question 40

Solution 40

Question 41

Solution 41

Question 42

Solution 42

Question 43

Solve the following quadratic equations by factorization:

Solution 43

Question 44

Solution 44

Question 45

Solution 45

Question 46

Solution 46

Question 47

Solve the following quadratic equations by factorization:

Solution 47

Question 48

Solve the following quadratic equations by factorization:

Solution 48

Question 49

Solution 49

Question 50

Solution 50

Question 51

Solution 51

Question 52

Solution 52

Question 53

Solution 53

Question 54

Solution 54

Question 55

Solution 55

Question 56

Solution 56

Question 57

Solution 57

Question 58

Solve the following quadratic equation by factorisation:

Solution 58

Question 59

Solve the following quadratic equation by factorisation:

Solution 59

Question 60

Solve the following quadratic equation by factorisation:

Solution 60

Question 61

Solution 61

Question 62

Solution 62

Chapter 4 – Quadratic Equations Exercise Ex. 4.4

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Find the roots of the following quadratic equations (if they exist) by the method of completing the square

x2 – 8x + 18 = 0Solution 6

Given equation is x2 – 8x + 18 = 0

x2 – 2 × x × 4 + + 42 – 42 + 18 = 0

(x – 4)2 – 16 + 18 = 0

(x – 4)2 = 16 – 18

(x – 4)2 = -2

Taking square root on both the sides, we get 

Therefore, real roots does not exist.Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Chapter 4 – Quadratic Equations Exercise Ex. 4.5

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1(iii)

Solution 1(iii)

Question 1 (iv)

Solution 1 (iv)

Question 1(v)

Solution 1(v)

Question 1(vi)

Solution 1(vi)

Question 1 (vii)

Write the discriminant of the following quadratic equations:

(x + 5)2 = 2(5x – 3)Solution 1 (vii)

x2 + 2 × x × 5 + 52 = 10x – 6

x2 + 10x + 25 = 10x – 6

x2 + 31 = 0

Here, a = 1, b = 0 and c = 31

Therefore, the discriminant is

D = b2 – 4ac

 = 0 – 4 × 1 × 31

 = -124Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Solution 2 (iii)

Question 2 (iv)

Solution 2 (iv)

Question 2 (v)

Solution 2 (v)

Question 2 (vi)

Solution 2 (vi)

Question 2 (vii)

Solution 2 (vii)

Question 2 (viii)

Solution 2 (viii)

Question 2 (ix)

Solution 2 (ix)

Question 2(x)

Solution 2(x)

Question 2(xi)

Solution 2(xi)

Question 2(xii)

3x2 – 5x + 2 = 0Solution 2(xii)

Question 3(i)

Solution 3(i)

Question 3(ii)

Solve for x:

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solve for x:

Solution 3(iv)

Question 3(v)

Solve for x:

Solution 3(v)

Chapter 4 – Quadratic Equations Exercise Ex. 4.6

Question 1(i)

Determine the nature of the roots of the following quadratic equations:

2x2 – 3x + 5 = 0Solution 1(i)

Question 1(ii)

Determine the nature of the roots of the following quadratic equations:

2x2 – 6x + 3 = 0Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 1 (vi)

Determine the nature of the roots of the following quadratic equations:

Solution 1 (vi)

Given quadratic equation is 

Here, 

Therefore, we have

As D = 0, roots of the given equation are real and equal.Question 2(i)

Solution 2(i)

Question 2(ii)

Solution 2(ii)

Question 2(iii)

Solution 2(iii)

Question 2(iv)

Solution 2(iv)

Question 2(v)

Solution 2(v)

Question 2(vi)

Solution 2(vi)

Question 2(vii)

Solution 2(vii)

Question 2(viii)

Solution 2(viii)

Question 2(ix)

Solution 2(ix)

Question 2(x)

Solution 2(x)

Question 2(xi)

Solution 2(xi)

Question 2(xii)

Solution 2(xii)

Question 2(xiii)

Solution 2(xiii)

Question 2(xiv)

Solution 2(xiv)

Question 2(xv)

Solution 2(xv)

Question 2(xvi)

Solution 2(xvi)

Question 2(xvii)

Solution 2(xvii)

Question 2(xviii)

Find the values of k for which the roots are real and equal in each of the following equations:

4x2 – 2 (k + 1)x + (k + 1) = 0 Solution 2(xviii)

4x2 – 2 (k + 1)x + (k + 1) = 0 Comparing with ax2 + bx + c = 0, we get a = 4, b = -2(k + 1), c = k + 1 According to the question, roots are real and equal. Hence, b2 – 4ac = 0 Question 3(i)

Solution 3(i)

Question 3(ii)

In the following, determine the set of values of k for which the given quadratic equation has real roots:

2x2 + x + k = 0Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 3(v)

Solution 3(v)

Question 4(i)

Solution 4(i)

Question 4(ii)

Solution 4(ii)

Question 4(iii)

Solution 4(iii)

Question 4(iv)

Find the values of k for which the following equations have real and equal roots:

x2 + k(2x + k – 1) + 2 = 0 Solution 4(iv)

x2 + k(2x + k – 1) + 2 = 0 x2 + 2kx + k(k – 1) + 2 = 0 Comparing with ax2 + bx + c = 0, we get a = 1, b = 2k, c = k(k – 1) + 2 According to the question, roots are real and equal. Hence, b2 – 4ac = 0 Question 5(i)

Find the values of k for which the roots are real and equal in each of the following equations:

2x2 + kx + 3 = 0Solution 5(i)

Question 5(ii)

Find the values of k for which the roots are real and equal in each of the following equations:

kx (x – 2) + 6 = 0Solution 5(ii)

Question 5(iii)

Find the values of k for which the roots are real and equal in each of the following equations:

x2 – 4kx + k = 0Solution 5(iii)

Question 5(iv)

Find the value of k for which the roots are real and equal in the following equation:

Solution 5(iv)

Question 5(v)

Find the value of p for which the roots are real and equal in the following equation:

px(x – 3) + 9 = 0Solution 5(v)

Question 5(vi)

Find the values of k for which the following equations have real roots.

4x2 + kx + 3 = 0 Solution 5(vi)

4x2 + kx + 3 = 0 Comparing with ax2 + bx + c = 0, we get a = 4, b = k, c = 3 According to the question, roots are real and equal. Hence, b2 – 4ac = 0 Question 6 (i)

Solution 6 (i)

Question 6 (ii)

Solution 6 (ii)

Question 7

Solution 7

Question 8

Solution 8

Question 9(i)

Find the values of k for which the quadratic equation (3k + 1)x2 + 2(k + 1)x + 1 = 0 has equal roots. Also, find the roots.Solution 9(i)

Question 9 (ii)

Write all the values of k for which the quadratic equation x2 + kx + 16 = 0 has equal roots. Find the roots of the equation so obtained.Solution 9 (ii)

Given quadratic equation is x2 + kx + 16 = 0

As it has equal roots, the discriminant will be 0.

Here, a = 1, b = k, c = 16

Therefore, D = k2 – 4(1)(16) = 0

i.e. k2 – 64 = 0

i.e. k = ± 8

When k = 8, the equation becomes x2 + 8x + 16 = 0

 or x2 – 8x + 16 = 0

As D = 0, roots of the given equation are real and equal.Question 10

Find the values of p for which the quadratic equation (2p + 1)x2 – (7p + 2)x + (7p – 3) = 0 has equal roots. Also, find these roots.Solution 10

Question 11

 If -5 is a root of the quadratic equation, 2x2 + px – 15 = 0, and the quadratic equation p(x2 + x) + k = 0 has equal roots, find the value of k.Solution 11

Question 12

 If 2 is a root of the quadratic equation 3x2 + px – 8 = 0 and the quadratic equation 4x2 – 2px + k = 0 has equal roots, find the value of k.Solution 12

Question 13

If 1 is root of the quadratic equation 3x2 + ax – 2 = 0 and the quadratic equation a(x2 + 6x) – b = 0 has equal roots, find the value of b.Solution 13

Question 14

Find the value of p for which the quadratic equation (p + 1)x2 – 6(p + 1)x + 3(p + 9) = 0, p ≠ -1 has equal roots. Hence, find the roots of equation.Solution 14

Question 15(i)

Solution 15(i)

Question 15(ii)

Solution 15(ii)

Question 15(iii)

Solution 15(iii)

Question 15(iv)

Solution 15(iv)

Question 16(i)

Solution 16(i)

Question 16(ii)

Solution 16(ii)

Question 16(iii)

Solution 16(iii)

Question 16(iv)

Solution 16(iv)

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Chapter 4 – Quadratic Equations Exercise Ex. 4.7

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

The sum of a number and its square is 63/4. Find the numbers.Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

A natural number when increased by 12 equals 160 times its reciprocal. Find the number.Solution 24

Let x be the natural number.

As per the question, we have

Therefore, x = 8 as x is a natural number.

Hence, the required natural number is 8.Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

The difference of the squares of two positive integers is 180. The square of the smaller number is 8 times the larger, find the numbers.Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

The sum of two numbers is 9. The sum of their reciprocals is 1/2. Find the numbers.Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Find two consecutives odd positive integers, sum of whose squares is 970.Solution 34

Question 35

The difference of two natural numbers is 3 and the difference of their reciprocal is  . Find the numbers.Solution 35

Question 36

The sum of the squares of two consecutive odd numbers is 394. Find the numbers.Solution 36

Question 37

The sum of the squares of two consecutive multiples of 7 is 637. Find the multiples.Solution 37

Question 38

The sum of the squares of two consecutive even numbers is 340. Find the numbers.Solution 38

Question 39

The numerator of a fraction is 3 less than the denominator. If 2 is added to both the numerator and the denominator, then the sum of the new fraction and the original fraction is . Find the original fraction.Solution 39

Question 40

Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number.Solution 40

Chapter 4 – Quadratic Equations Exercise Ex. 4.8

Question 1

Solution 1

Question 2

A train, travelling at a uniform speed for 360 km, would have taken 48 minutes less to travel the same distance if its speed were 5 km/hr more. Find the original speed of the train.Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

A train travels at a certain average speed for a distance 63 km and then travels a distance of 72 km at an average speed of 6 km/hr more than the original speed, If it takes 3 hours to complete total journey, what is its original average speed?Solution 8

Question 9

Solution 9

Question 10

Solution 10

Concept Insight: Use the relation s =d/t to crack this question and remember here distance is constant so speed and time will vary inversely.Question 11

Solution 11

Question 12

An aeroplane left 50 minutes later than its scheduled time, and in order to reach the destination, 1250 km away, in time, it had to increase its speed by 250 km/hr from its usual speed. Find its usual speed.Solution 12

Question 13

While boarding an aeroplane, a passenger got hurt. The pilot showing promptness and concern, made arrangements to hospitalize the injured and so the plane started late by 30 minutes to reach the destination, 1500 km away in time, the pilot increased the speed by 100 km/hr. Find the original speed/hour of the plane.Solution 13

Question 14

A motor boat whose speed in still water is 18 km/hr takes 1 hour more to go 24 km up stream than to return downstream to the same spot. Find the speed of the stream.Solution 14

Question 15

A car moves a distance of 2592 km with uniform speed. The number of hours taken for the journey is one-half the number representing the speed, in km/hour. Find the time taken to cover the distance.Solution 15

Let the speed of a car be x km/hr. According to the question, time is  hr. Distance = Speed × Time 2592 =     x = 72 km/hr Hence, the time taken by a car to cover a distance of 2592 km is 36 hrs.Question 16

A motor boat whose speed instill water is 9 km/hr, goes 15 km downstream and comes back to the same spot, in a total time of 3 hours 45 minutes. Find the speed of the stream.Solution 16

Let x km/hr be the speed of the stream.

Therefore, we have

Downstream speed = (9 + x) km/hr

Upstream speed = (9 – x) km/hr

Distance covered downstream = distance covered upstream

Total time taken = 3 hours 45 minutes =  hours

Therefore, x = 3 as the speed can’t be negative.

Hence, the speed of the motor boat is 3 km/hr.

Chapter 4 – Quadratic Equations Exercise Ex. 4.9

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

If Zeba were younger by 5 years than what she really is, then the square of her age (in years) would have been 11 more than 5 times her actual age. What is her age now?Solution 8

Question 9

At present Asha’s age (in years) is 2 more than the square of her daughter Nisha’s age. When Nisha grows to her mother’s present age, Asha’s age would be one year less than 10 times the present age of Nisha. Find the present ages of both Asha and Nisha.Solution 9

Chapter 4 – Quadratic Equations Exercise Ex. 4.10

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the difference of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible to do so? If yes, at what distances from the two gates should the pole be erected?Solution 4

Chapter 4 – Quadratic Equations Exercise Ex. 4.11

Question 1

Solution 1

Question 2

Solution 2

Question 3

Two squares have sides x cm and (x + 4) cm. The sum of their areas is 656 cm2. Find the sides of the squares.Solution 3

Question 4

Solution 4

Question 5

Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is 800 m2? If so, find its length and breadth.Solution 5

Question 6

Solution 6

Question 7

Sum of the areas of two squares is 640 m2. If the difference of their perimeter is 64 m, find the sides of the two squares.Solution 7

Question 8

Sum of the areas of two squares is 400 cm2. If the difference of their perimeters is 16 cm, find the sides of two squares.Solution 8

Question 9

The area of a rectangular plot is 528 m2. The length of the plot (in meters) is one meter more than twice its breadth. Find the length and the breadth of the plot.Solution 9

Question 10

In the centre of a rectangular lawn of dimension 50 m × 40 m, a rectangular pond has to be constructed so that the area of the grass surrounding the pond would be 1184 m2. Find the length and breadth of the pond.Solution 10

Chapter 4 – Quadratic Equations Exercise Ex. 4.12

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

To fill a swimming pool two pipes are used. If the pipe of larger diameter used for 4 hours and the pipe of smaller diameter for 9 hours, only half of the pool can be filled. Find, how long it would take for each pipe to fill the pool separately, if the pipe of smaller diameter takes 10 hours more than the pipe of larger diameter to fill the pool?Solution 5

Let us assume that the larger pipe takes ‘x’ hours to fill the pool.

So, as per the question, the smaller pipe takes ‘x + 10’ hours to fill the same pool.

Question 6

Two water taps together can fill a tank in   hours. The tap with longer diameter takes 2 hours less than the tap with the smaller one to fill the tank separately. Find the time in which each tap can fill the tank separately. Solution 6

Let the tap with smaller diameter takes x hours to completely fill the tank.

So, the other tap takes (x – 2) hours to fill the tank completely.

Total time taken to fill the tank   hours

As per the question, we have

When x = 5, then (x – 2) = 3

When   which can’t be possible as the time becomes negative.

Hence, the smaller diameter tap fills in 5 hours and the larger diameter tap fills in 3 hours.

Chapter 4 – Quadratic Equations Exercise Ex. 4.13

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

In a class test, the sum of the marks obtained by P in Mathematics and Science is 28. Had he got 3 marks more in Mathematics and 4 marks less in Science. The product of his marks, would have been 180. Find his marks in the two subjects.Solution 9

Question 10

Solution 10

Question 11

A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs 90, find the number of articles produced and the cost of each article.Solution 11

Question 12

At t minutes past 2 pm the time needed by the minutes hand and a clock to show 3 pm was found to be 3 minutes less than   minutes. Find t.Solution 12

Chapter 4 – Quadratic Equations Exercise 4.82

Question 1

If the equation x2 + 4x + k = 0 has real and distinct root, then

(a) k < 4

(b) k > 4

(c) k ≥ 4

(d) k ≤ 4Solution 1

We know for the quadratic equation

ax2 + bx + c = 0

condition for roots to be real and distinct is

D = b2 – 4ac > 0       ……….(1)

for the given question

x+ 4x + k = 0

a = 1, b = 4, c = k

from (1)

16 – 4k > 0

k < 4

So, the correct option is (a).

Chapter 4 – Quadratic Equations Exercise 4.83

Question 2

If the equation x2 – ax + 1 = 0 has two distinct roots, then

(a) |a| = 2

(b) |a| < 2

(c) |a| > 2

(d) None of theseSolution 2

For the equation x2 – ax + 1 = 0 has two distinct roots, condition is

(-a)– 4 (1) (1) > 0

a– 4 > 0

a> 4

|a| > 2

So, the correct option is (c).Question 3

begin mathsize 12px style If space the space equation space 9 x squared space plus space 6 kx space plus space 4 space equals space 0 space has space equal space roots comma space then space the space roots space are space both space equal space to
left parenthesis straight a right parenthesis space plus-or-minus space 2 over 3
left parenthesis straight b right parenthesis space plus-or-minus space 3 over 2
open parentheses straight c close parentheses space 0
open parentheses straight d close parentheses space plus-or-minus space 3 end style

Solution 3

begin mathsize 12px style For space quadratic space equation
ax squared space plus space bx space plus space straight c space equals space 0
condition space for space equal space roots space is
straight D space equals space straight b squared space minus space 4 ac space equals space 0 space space space space space space space space space space space.......... open parentheses 1 close parentheses
For space the space given space question
9 straight x squared space plus space 6 kx space plus space 4 space equals space 0
straight a space equals space 9 comma space space space straight b space equals space 6 straight k comma space space space space straight c space equals space 4
from space open parentheses 1 close parentheses
open parentheses 6 straight k close parentheses squared space minus space 4 space open parentheses 9 close parentheses space open parentheses 4 close parentheses space equals space 0
36 straight k squared space minus space 36 space cross times space 4 space equals space 0
36 space open parentheses straight k to the power of 2 space end exponent minus space 4 close parentheses space equals space 0
straight k squared space equals space 4
straight k space equals space plus-or-minus 2
Now comma space equation space is space 9 straight x squared space plus space 6 kx space plus space 4 space equals space 0
rightwards double arrow space 9 straight x squared space plus-or-minus space 12 straight x space plus space 4 space equals 0
rightwards double arrow open parentheses 3 straight x space plus-or-minus space 2 close parentheses squared space equals space 0
rightwards double arrow straight x space equals space plus-or-minus 2 over 3
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 4

begin mathsize 12px style If space ax squared space plus space bx space plus space straight c space equals 0 space has space equal space roots comma space then space straight c space equals
left parenthesis straight a right parenthesis space fraction numerator negative straight b over denominator 2 straight a end fraction
left parenthesis straight b right parenthesis space fraction numerator straight b over denominator 2 straight a end fraction
open parentheses straight c close parentheses space fraction numerator negative straight b squared over denominator 4 straight a end fraction
open parentheses straight d close parentheses space fraction numerator straight b squared over denominator 4 straight a end fraction end style

Solution 4

begin mathsize 12px style If space ax squared space plus space bx space plus space straight c space equals space 0 space has space equal space roots
then
straight b squared space minus space 4 ac space equals space 0
straight b squared space equals space 4 ac
straight c space equals space fraction numerator straight b squared over denominator 4 straight a end fraction
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 5

If the equation ax2 + 2x + a = 0 has two distinct roots, if

(a) a = ± 1

(b) a = 0

(c) a = 0, 1

(d) a = -1, 0Solution 5

For any quadratic equation

ax + bx + c = 0

having two distinct roots, condition is

b2 – 4ac > 0

For the equation ax2 + 2x + a = 0 to have two distinct roots,

(2)2 – 4 (a) (a) > 0

4 – 4a2 > 0

4(1 – a2) > 0

1 – a2 > 0 since 4 > 0

that is, a2 – 1 < 0

Hence -1 < a < 1, only integral solution possible is a = 0

So, the correct option is (b).Question 6

The positive value of k for which the equation x2 + kx + 64 = 0 and x2 – 8x + k = 0 will both have real roots, is

(a) 4

(b) 8

(c) 12

(d) 16Solution 6

For any quadratic equation

ax2 + bx + c = 0

having real roots, condition is

b2 – 4ac ≥ 0     …….(1)

According to question 

x+ kx + 64 = 0 have real root if

k– 4 × 64 ≥ 0

k2 ≥ 256

|k|≥ 16             ……..(2)

Also, x2 – 8x + k = 0 has real roots if

64 – 4k ≥ 0

k ≤ 16    ………(3)

from (2), (3) the only positive solution for k is

k = 16

So, the correct option is (d).Question 7

begin mathsize 12px style The space value space of space square root of 6 space plus square root of 6 space plus square root of 6 space plus space...... end root end root end root is
left parenthesis straight a right parenthesis space 4
left parenthesis straight b right parenthesis space 3
left parenthesis straight c right parenthesis space minus 2
left parenthesis straight d right parenthesis space 3.5 end style

Solution 7

begin mathsize 12px style Let space straight x space equals space square root of 6 space plus square root of 6 space plus square root of 6 space plus space...... end root end root end root space space space space space space space space space space space space space space space space....... left parenthesis 1 right parenthesis
On space squaring space both space sides
straight x squared space equals space 6 space plus space square root of 6 space plus square root of 6 space plus space..... end root end root space space space space space space space space space space space space space space space space space space space space space space space space space space....... left parenthesis 2 right parenthesis
From space left parenthesis 1 right parenthesis space & space left parenthesis 2 right parenthesis
straight x squared space equals space 6 space plus space straight x
straight x squared space minus space straight x space minus space 6 space equals space 0
straight x squared space minus space 3 straight x space plus space 2 straight x space minus space 6 space equals space 0
straight x space open parentheses straight x space minus space 3 close parentheses space plus space 2 left parenthesis straight x space minus space 3 right parenthesis space equals space 0
left parenthesis straight x space plus space 2 right parenthesis space left parenthesis straight x space minus space 3 right parenthesis space equals space 0
straight x space equals space minus 2 space or space straight x space equals space 3
but space straight x space can apostrophe straight t space be space negative comma space hence
box enclose straight x space equals space 3 end enclose
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 8

If 2 is a root of the equation x+ bx + 12 = 0 and the equation x2 + bx + q = 0 has equal roots, then q =

(a) 8

(b) -8

(c) 16

(d) -16Solution 8

It is given that 2 is a root of equation x + bx + 12 = 0

Hence

(2)+ b(2) + 12 = 0

4 + 2b + 12 = 0

2b + 16 = 0

b = -8        ………(1)

It is also given that x2 + bx + q = 0 has equal root 

so, b2 – 4(q) = 0         ……..(2)

from (1) & (2)

(-8)– 4q =0

q = 16

So, the correct option is (c).Question 9

begin mathsize 12px style If space the space equation space open parentheses straight a squared space plus space straight b squared close parentheses space straight x squared space minus space 2 open parentheses ac space plus space bd close parentheses space straight x space plus space straight c squared space plus space straight d squared space equals space 0 space has space equal space roots comma space then space
open parentheses straight a close parentheses space ab space equals space cd
open parentheses straight b close parentheses space ad space equals space bc
open parentheses straight c close parentheses space ad space equals space square root of bc
open parentheses straight d close parentheses space ab space equals space square root of cd end style

Solution 9

For any quadratic equation

ax2 + bx + c = 0

Having equal roots, the condition is

b – 4ac = 0

For the equation

(a2 + b2) x2 – 2 (ac + bd)x + c2 + d= 0

to have equal roots, we have

(-2(ac + bd))– 4 (c+ d2) (a+ b2) = 0

4 (ac + bd)– 4 (a2c+ b2c2 + d2a+ b2d2) = 0

(a2c+ b2d2 + 2abcd) – (a2c+ b2c2 + a2d2+ b2d2) = 0

2abcd – b2c2 – a2d2 = 0

b2c2 – a2d– 2abcd = 0

(bc – ad)= 0

bc = ad

So, the correct option is (b).Question 10

begin mathsize 12px style If space the space roots space of space the space equation space left parenthesis straight a squared plus space straight b squared right parenthesis straight x squared space minus space 2 straight b left parenthesis straight a space plus space straight c right parenthesis straight x space plus space left parenthesis straight b squared plus space straight c squared right parenthesis space equals space 0 space are space equal comma space then
left parenthesis straight a right parenthesis space 2 straight b space equals space straight a space plus space straight c
open parentheses straight b close parentheses space straight b squared space equals space ac
open parentheses straight c close parentheses space straight b space equals fraction numerator 2 ac over denominator straight a space plus space straight c end fraction
open parentheses straight d close parentheses space straight b space equals space ac end style

Solution 10

For any quadratic equation

ax+ bx + c = 0

having equal roots, condition is

b2 – 4ac = 0

According to question, quadratic equation is

(a2 + b2)x2 – 2b(a + c)x + b2 + c= 0

having equal roots, so

(2b(a + c))2 – 4(a2 + b2) (b2 + c2) = 0

4b2 (a + c)2 – 4(a2b2 + a2c+ b4 + b2c2) = 0

b2(a2 + c2 + 2ac) – (a2b2 + a2c+ b2c2 + b4) = 0

a2b2 + b2c2 + 2acb2 – a2b2 – a2c– b2c2 – b4 = 0

2acb2 – a2c2 – b4 = 0

a2c2 + b4 – 2acb2 = 0

(ac – b2)2 = 0

ac = b2

So, the correct option is (b).Question 11

If the equation x2 – bx + 1 = 0 does not possess real roots, then

(a) -3 < b < 3

(b) -2 < b < 2

(c) b < 2

(d) b < -2Solution 11

For any quadratic equation ax2 + bx + c = 0 having no real roots, condition is

b2 – 4ac < 0

For the equation, x2 – bx + 1 = 0 having no real roots

b2 – 4 < 0

b2 < 4

-2 < b < 2

So, the correct option is (b).Question 12

If x = 1 is a common root of the equations ax2 + ax + 3 = 0 and x2 + x + b = 0, then ab =

(a) 3

(b) 3.5

(c) 6

(d) -3Solution 12

begin mathsize 12px style If space straight x space equals space 1 space is space root space of space ax squared space plus space ax space plus space 3 space equals space 0
then
straight a open parentheses 1 close parentheses squared space plus space straight a open parentheses 1 close parentheses space plus space 3 space equals space 0
2 straight a space plus space 3 space equals space 0
straight a space equals space fraction numerator negative 3 over denominator 2 end fraction space space space space space space space space space space space space...... left parenthesis 1 right parenthesis
and space straight x space equals space 1 space is space also space root space of space straight x squared space plus space straight x space plus space straight b space equals 0
then
open parentheses 1 close parentheses squared space plus space open parentheses 1 close parentheses space plus space straight b space equals space 0
straight b space equals space minus 2 space space space space space space space space space.... left parenthesis 2 right parenthesis
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
ab space equals space open parentheses fraction numerator negative 3 over denominator 2 end fraction close parentheses open parentheses negative 2 close parentheses
ab space equals 3
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 13

If p and q are the roots of the equation x-px + q = 0, then

(a) p = 1, q = -2

(b) b = 0, q = 1

(c) p = -2, q = 0

(d) p = -2, q = 1Solution 13

If p, q are the roots of equation x– px + q = 0, then p and q satisfies the equation

Hence

(p)– p(p) + q = 0

p– p+ q = 0

q = 0

and (q)– p(q) + q = 0

q– p(q) + q = 0

0 = 0

p can take any value

p = -2 and q = 0

So, the correct option is (c).Question 14

If a and b can take values 1, 2, 3, 4. Then the number of the equations of the form ax2 + bx + 1 = 0 having real roots is

(a) 10

(b) 7

(c) 6

(d) 12Solution 14

For the ax+ bx + 1 = 0 having real roots condition is

b– 4(a) (1) ≥ 0

b2 ≥ 4a

For a = 1

b2 ≥ 4

b ≥ 2

b can take value 2, 3, 4

Here, 3 possible solutions are possible            …….(1)

For a = 2

b2 ≥ 8

Here, b can take value 3, 4            ……(2)

Here, 2 solutions are possible

For a = 3

b≥ 12

possible value of b is 4

Hence, only 1 possible solution      ……(3)

For a = 4

b2 ≥ 16

possible value of b is 4

Hence, only 1 possible solution    …….(4)

from (1), (2), (3), (4)

Total possible solutions are 7

So, the correct option is (b).Question 15

The number of quadratic equations having real roots and which do not change by squaring their roots is

(a) 4

(b) 3

(c) 2

(d) 1Solution 15

Any quadratic equation having roots 0 or 1 are only possible quadratic equation because on squaring 0 or 1, it remains same.

Hence, 2 solutions are possible, one having roots 1 and 1, while the other having roots 0 and 1.

So, the correct option is (c).

Chapter 4 – Quadratic Equations Exercise 4.84

Question 16

If (a+ b2) x+ 2(ab + bd) x + c2 + d= 0 has no real roots, then

(a) ad = bc

(b) ab = cd

(c) ac = bd

(d) ad ≠ bcSolution 16

If any quadratic equation ax+ bx + c has no real roots then b– 4ac < 0    ……(1)

According to the question, the equation is

(a+ b2) x+ 2(ac + bd) x + c2 + d= 0

from (1)

4(ac + bd)– 4(a2 + b2) (c2 + d2) < 0

a2c2 + b2d2 + 2abcd – (a2c2 + a2d2 + b2c2 + b2d2) < 0

a2c2 + b2d2 + 2abcd – a2c2 – a2d2 – b2c2 – b2d2 < 0

2abcd – a2d2 – b2c2 < 0

-(ad – bc)< 0

(ad – bc)> 0

For this condition to be true ad ≠ bc

So, the correct option is (d).Question 17

begin mathsize 12px style If space the space sum space of space the space roots space of space the space equation space straight x squared space minus space straight x space equals space straight lambda space open parentheses 2 straight x space minus space 1 close parentheses space is space zero comma space then space straight lambda space equals
open parentheses straight a close parentheses space minus 2
open parentheses straight b close parentheses space 2
open parentheses straight c close parentheses space fraction numerator negative 1 over denominator 2 end fraction
open parentheses straight d close parentheses space 1 half end style

Solution 17

begin mathsize 12px style We space know space for space any space quadratic space equation
ax squared space plus space bx space plus space straight c space equals space 0
sum space of space roots space equals fraction numerator negative straight b over denominator straight a end fraction
Now comma space according space to space the space question
straight x squared space minus space straight x space equals space straight lambda space open parentheses 2 straight x space minus space 1 close parentheses
straight x squared space minus space straight x space minus space 2 λx space plus space straight lambda space equals space 0
straight x squared space minus space straight x space open parentheses 1 space plus space 2 straight lambda close parentheses space plus space straight lambda space equals space 0
given space sum space of space roots space of space this space equation space is space zero
Hence comma space fraction numerator negative open parentheses negative open parentheses 1 space plus space 2 straight lambda close parentheses close parentheses over denominator 1 end fraction space equals space 0
space space space space space space space space space space space space space space space space space space 1 space plus space straight lambda 2 space equals space 0
space space space space space space space space space space space space space space space space space space space straight lambda space equals space fraction numerator negative 1 over denominator 2 end fraction
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 18

If x = 1 is a common root of ax+ ax + 2 = 0 and x+ x + b = 0 then, ab =

(a) 1

(b) 2

(c) 4

(d) 3Solution 18

It is given that x = 1 is root of equation ax2 + ax + 2 = 0

Hence, a(1)2 + a(1) + 2 = 0

           2a + 2 = 0

           a = -1         ……(1)

It is given that x = 1 is also root of x2 + x + b = 0

Hence, (1)+ (1) + b = 0

           b = -2     ……(2)

from (1) & (2)

ab = (-1) (-2)

ab = 2

So, the correct option is (b).Question 19

begin mathsize 12px style The space value space of space straight c space for space which space the space equation space ax squared plus space 2 bx space plus space straight c space equals space 0 space has space equal space roots space is
left parenthesis straight a right parenthesis space straight b squared over straight a
left parenthesis straight b right parenthesis space fraction numerator straight b squared over denominator 4 straight a end fraction
open parentheses straight c close parentheses space straight a squared over straight b
open parentheses straight d close parentheses space fraction numerator straight a squared over denominator 4 straight b end fraction end style

Solution 19

begin mathsize 12px style For space any space quadratic space equation space ax squared space plus space bx space plus space straight c space equals space 0 space having space equal space roots space condition space is
straight b squared space minus space 4 ac space equals space 0 space space space space space space space space space..... open parentheses 1 close parentheses
According space to space the space question comma space the space quadratic space equation space is
ax squared space plus space 2 bx space plus space straight c space equals space 0
from space left parenthesis 1 right parenthesis
open parentheses 2 straight b close parentheses squared space minus space 4 ac space equals space 0
4 straight b squared space minus space 4 ac space equals space 0
straight b squared space equals space ac
straight c space equals space straight b squared over straight a
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 20

begin mathsize 12px style If space straight x squared space plus space straight k left parenthesis 4 straight x space plus space straight k space minus space 1 right parenthesis space plus space 2 space equals space 0 space has space equal space roots comma space then space straight k space equals
left parenthesis straight a right parenthesis space fraction numerator negative 2 over denominator 3 end fraction comma space 1
open parentheses straight b close parentheses space 2 over 3 comma space minus 1
open parentheses straight c close parentheses space 3 over 2 comma space 1 third
open parentheses straight d close parentheses space fraction numerator negative 3 over denominator 2 end fraction comma space fraction numerator negative 1 over denominator 3 end fraction end style

Solution 20

begin mathsize 12px style For space equation comma space straight x squared space plus space straight k open parentheses 4 straight x space plus space straight k space minus space 1 close parentheses space plus space 2 space equals space 0
space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight x squared space plus space 4 kx space plus space straight k open parentheses straight k space minus space 1 close parentheses space plus space 2 space equals space 0
Condition space for space equal space roots space is comma
open parentheses 4 straight k close parentheses squared space minus space 4 space open parentheses straight k open parentheses straight k space minus space 1 close parentheses space plus space 2 close parentheses space equals space 0
16 straight k squared space minus space 4 open parentheses straight k squared space minus space straight k space plus space 2 close parentheses space equals space 0
4 straight k squared space minus space open parentheses straight k squared space minus space straight k space plus space 2 close parentheses space equals space 0
4 straight k squared space minus space straight k squared space plus space straight k space minus space 2 space equals space 0
3 straight k squared space plus space straight k space minus 2 space equals space 0
3 straight k squared space plus space 3 straight k space minus space 2 straight k space minus space 2 space equals space 0
3 straight k space open parentheses straight k space plus space 1 close parentheses space minus space 2 open parentheses straight k space plus space 1 close parentheses space equals space 0
open parentheses 3 straight k space minus space 2 close parentheses space open parentheses straight k space plus space 1 close parentheses space equals space 0
straight k space equals space minus 1 space or space straight k space equals space 2 over 3
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 21

begin mathsize 12px style If space the space sum space and space product space of space the space roots space of space the space equation space kx squared space plus space 6 straight x space plus 4 straight k space equals space 0 space are space equal comma space then space straight k space equals
open parentheses straight a close parentheses space fraction numerator negative 3 over denominator 2 end fraction
open parentheses straight b close parentheses space 3 over 2
open parentheses straight c close parentheses space 2 over 3
open parentheses straight d close parentheses space fraction numerator negative 2 over denominator 3 end fraction end style

Solution 21

begin mathsize 12px style For space any space quadratic space equation space ax squared space plus space bx space plus space straight c space equals space 0
sum space of space roots space equals space fraction numerator negative straight b over denominator straight a end fraction space and space product space of space roots space equals space straight c over straight a
For space equation comma space kx squared space plus space 6 straight x space plus space 4 straight k space equals space 0 comma space given space sum space and space product space of space roots space of space this space equation space are space equal comma
Hence comma
fraction numerator negative open parentheses 6 close parentheses over denominator straight k end fraction space equals space fraction numerator 4 straight k over denominator straight k end fraction
4 straight k space equals space minus 6
straight k space equals space fraction numerator negative 3 over denominator 2 end fraction
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 22

If sin α and cos α are the roots of the equation ax+ bx + c = 0, then b2 = 

(a) a– 2ac

(b) a+ 2ac

(c) a– ac

(d) a+ acSolution 22

begin mathsize 12px style ax squared space plus space bx space plus space straight c space equals space 0
sin space straight alpha space plus space cos space straight alpha space equals space fraction numerator negative straight b over denominator straight a end fraction space space..... open parentheses 1 close parentheses space space space space and
sin space straight alpha space cosα space equals space straight c over straight a space space space space space space space...... open parentheses 2 close parentheses
On space squaring space we space get comma
open parentheses sin space straight alpha space plus space cos space straight alpha close parentheses squared space equals space straight b squared over straight a squared
sin squared straight alpha space plus space cos squared straight alpha space plus space 2 space sinα space cosα space equals space straight b squared over straight a squared space space space space space space space space space space space space.... open parentheses 3 close parentheses
We space know space sin squared space straight alpha space plus space cos squared space straight alpha space equals space 1 space space space space space space space..... open parentheses 4 close parentheses
from space open parentheses 2 close parentheses comma space open parentheses 3 close parentheses comma space open parentheses 4 close parentheses
1 space plus space 2 open parentheses straight c over straight a close parentheses space equals space straight b squared over straight a squared
straight b squared over straight a squared space equals space fraction numerator straight a space plus space 2 straight c over denominator straight a end fraction
straight b squared space equals straight a to the power of 2 space end exponent plus space 2 ac
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 23

If 2 is a root of the equation x+ ax + 12 = 0 and the quadratic equation x + ax + q = 0 has equal roots, then q =

(a) 12

(b) 8

(c) 20

(d) 16Solution 23

Given, 2 is a root of equation x+ ax + 12 = 0

so (2)+ a(2) + 12 = 0

4 + 2a + 12 = 0

a = -8     …..(1)

Given x+ ax + q = 0 has equal roots so

a– 4q = 0   ……(2)

from (1) & (2)

(-8)– 4q = 0

4q = 64

q = 16

So, the correct option is (d).Question 24

If the sum of the roots of the equation x2 – (k + 6)x + 2(2k – 1) = 0 is equal to half of their product, then k =

(a) 6

(b) 7

(c) 1

(d) 5Solution 24

begin mathsize 12px style For space any space quadratic space equation space straight x squared space minus space left parenthesis straight k space plus space 6 right parenthesis straight x space plus space 2 left parenthesis 2 straight k space minus space 1 right parenthesis space equals space 0
open parentheses sum space of space roots close parentheses space equals space fraction numerator negative open curly brackets negative open parentheses straight k space plus space 6 close parentheses close curly brackets over denominator 1 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals straight k space plus space 6 space space space space space space space......... open parentheses 1 close parentheses
open parentheses product space of space roots close parentheses space equals space fraction numerator 2 open parentheses 2 straight k space minus space 1 close parentheses over denominator 1 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 2 open parentheses 2 straight k space minus space 1 close parentheses space space space space space space space space space space space space space space...... open parentheses 2 close parentheses
Given space that space the space sum space of space roots space of space equation space equals space 1 half open parentheses product space of space roots close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
straight k space plus space 6 space equals space 1 half open parentheses 2 open parentheses 2 straight k space minus space 1 close parentheses close parentheses
straight k space plus space 6 space equals space 2 straight k space minus space 1
box enclose 7 space equals space straight k end enclose
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 25

If a and b are roots of the equation x2 + ax + b = 0, then a + b =

(a) 1

(b) 2

(c) -2

(d) -1Solution 25

If a and b are roots of the equation x+ ax + b = 0

Then, sum of roots = -a

a + b = -a

2a + b = 0          …….(1)

product of roots = b

ab = b

ab – b = 0

b(a – 1) = 0         ……..(2)

from (1) and (2)

-2a(a – 1) = 0…(From (1), we have b = -2a)

a(a – 1) = 0

a = 0 or a = 1

if a = 0 rightwards double arrow b = 0

if a = 1 rightwards double arrow b = -2

Now a and b can’t be zero at same time, so correct solution is

a = 1 and b = -2

a + b = -1

So, the correct option is (d).Question 26

A quadratic equation whose one root is 2 and the sum of whose roots is zero, is

(a) x+ 4 = 0

(b) x– 4 = 0

(c) 4x– 1 = 0

(d) x– 2 = 0Solution 26

Given sum of roots is zero and one root is 2.

So the other root must be -2

so any quadratic equation having root 2 and -2 is

(x – 2) (x – (-2)) = 0

(x – 2) (x + 2) = 0

x– 4 = 0

So, the correct option is (b).Question 27

If one root of the equation ax+ bx + c = 0 is three times the other, then b2 : ac =

(a) 3 : 1

(b) 3 : 16

(c) 16 : 3

(d) 16 : 1Solution 27

begin mathsize 12px style If space straight alpha comma space straight beta space are space roots space of space equation space ax squared space plus space bx space plus space straight c space equals space 0
Then comma space straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space space...... open parentheses 1 close parentheses
and space αβ space equals space straight c over straight a space space space space space space...... open parentheses 2 close parentheses
It space is space given space that space one space root space is space three space times space the space other space one
Let space straight alpha space equals space 3 straight beta space space space space space space space space space....... open parentheses 3 close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 3 close parentheses
4 straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction
straight beta space equals space fraction numerator negative straight b over denominator 4 straight a end fraction space space space space space space space space space space space...... open parentheses 4 close parentheses
from space open parentheses 2 close parentheses space & space open parentheses 3 close parentheses
3 straight beta squared space equals space straight c over straight a space space space space space space space space space.......... open parentheses 5 close parentheses
from space open parentheses 4 close parentheses space & space open parentheses 5 close parentheses
3 open parentheses fraction numerator negative straight b over denominator 4 straight a end fraction close parentheses squared space equals space straight c over straight a
fraction numerator 3 straight b squared over denominator 16 straight a squared end fraction equals straight c over straight a
straight b squared over ac equals space 16 over 3
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 28

If one root of the equation 2x+ kx + 4 = 0 is 2, then the other root is

(a) 6

(b) -6

(c) -1

(d) 1Solution 28

begin mathsize 12px style We space know space that comma space for space straight a space quadratic space equation space ax squared space plus space bx space plus space straight c space equals space 0
product space of space roots space equals space straight c over straight a space space space space space space space space space space space space space........ open parentheses 1 close parentheses
According space to space the space question comma space equation space is space 2 straight x squared space plus space kx space plus space 4 space equals space 0
from space open parentheses 1 close parentheses comma
product space of space roots space equals 4 over 2
αβ space equals space 2 space space space space space space space space space space....... open parentheses 2 close parentheses
given space one space root space is space 2. space Hence space from space open parentheses 2 close parentheses space other space root space is space 1.
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 29

If one root of the equation x2 + ax + 3 = 0 is 1, then its other root is

(a) 3

(b) -3

(c) 2

(d) -2Solution 29

x+ ax + 3 = 0

product of roots = 3

One root is 1. Hence other root is 3.

So, the correct option is (a).

Chapter 4 – Quadratic Equations Exercise 4.85

Question 30

If one root of the equation 4x– 2x + (λ – 4) = 0 is a reciprocal of the other, then λ =

(a) 8

(b) -8

(c) 4

(d) -4Solution 30

begin mathsize 12px style Let space apostrophe straight a apostrophe space be space straight a space space root space of space given space equation.
Then space according space to space the space question comma space other space root space is space 1 over straight a.
4 straight x squared space minus space 2 straight x space plus space open parentheses straight lambda space minus space 4 close parentheses space equals space 0
product space of space roots space equals space fraction numerator straight lambda space minus space 4 over denominator 4 end fraction
straight a space cross times space 1 over straight a space equals space fraction numerator straight lambda space minus space 4 over denominator 4 end fraction
1 space equals fraction numerator space straight lambda space minus space 4 over denominator 4 end fraction
straight lambda space minus space 4 space equals space 4
straight lambda space equals space 8
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 31

begin mathsize 12px style If space straight y space equals space 1 space is space straight a space common space root space of space the space equations space ay squared plus space ay space plus space 3 space equals space 0 space and space straight y squared space plus space straight y space plus straight b space equals space 0 comma space then space ab space equals
open parentheses straight a close parentheses space 3
open parentheses straight b close parentheses space fraction numerator negative 7 over denominator 2 end fraction
open parentheses straight c close parentheses space 6
open parentheses straight d close parentheses space minus 3 end style

Solution 31

begin mathsize 12px style If space straight y space equals space 1 space is space straight a space root space of space equation space ay squared space plus space ay space plus space 3 space equals space 0
Then comma
straight a open parentheses 1 close parentheses squared space plus space straight a open parentheses 1 close parentheses space plus space 3 space equals space 0
2 straight a space plus space 3 space equals space 0
straight a space equals space fraction numerator negative 3 over denominator 2 end fraction space space space space space space space space space space space space space........ open parentheses 1 close parentheses
Also space straight y space equals space 1 space is space straight a space root space of space equation space straight y squared space plus space straight y space plus space straight b space equals space 0
Then comma
open parentheses 1 close parentheses squared space plus space 1 space plus space straight b space equals space 0
box enclose straight b space equals space minus 2 end enclose space space space space space space space space space space space space space space space space...... open parentheses 2 close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
ab space equals space open parentheses fraction numerator negative 3 over denominator 2 end fraction close parentheses open parentheses negative 2 close parentheses
space space space space space space equals space 3
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 32

begin mathsize 12px style The space values space of space straight k space for space which space the space quadratic space equation space 16 straight x squared space plus space 4 kx space plus space 9 space equals space 0 space has space real space and space equal space root space are
open parentheses straight a close parentheses space 6 comma space fraction numerator negative 1 over denominator 6 end fraction
open parentheses straight b close parentheses space 36 comma space minus 36
left parenthesis straight c right parenthesis space 6 comma space minus 6
open parentheses straight d close parentheses space 3 over 4 comma space fraction numerator negative 3 over denominator 4 end fraction end style

Solution 32

Any quadratic equation, ax+ bx + c = 0 has real and equal roots if b– 4ac = 0

For the question, equation is 16x+ 4kx + 9 = 0,

(4k)– 4 × 16 × 9 = 0

16k– 36 × 16 = 0

k2 – 36 = 0

k= 36

k = ± 6

So, the correct option is (c).

Read More

RD SHARMA SOLUTION CHAPTER- 3 Pair of Linear Equations in Two Variables | CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.1

Question 1Akhila went to a fair in her village. She wanted to enjoy rides on the Giant Wheel and play Hoopla (a game in which you throw a rig on the items kept in the stall, and if the ring covers any object completely you get it). The number of times she played Hoopla is half the number of rides she had on the Giant Wheel. Each ride costs Rs 3, and a game of Hoopla costs Rs 4. If she spent Rs 20 in the fair, represent this situation algebraically and graphically.Solution 1

Question 2Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’ this interesting?) Represent this situation algebraically and graphically.Solution 2Let the present age of Aftab and his daughter be x and y respectively.

Seven years ago,
Age of Aftab = x – 7
Age of his daughter = y – 7

According to the given condition,


Three years hence,
Age of Aftab = x + 3
Age of his daughter = y + 3

According to the given condition,

Thus, the given conditions can be algebraically represented as:
x – 7y = -42
x – 3y = 6


Three solutions of this equation can be written in a table as follows:

x-707
y567

Three solutions of this equation can be written in a table as follows:

x630
y0-1-2

The graphical representation is as follows:

Concept insight: In order to represent a given situation mathematically, first see what we need to find out in the problem. Here, Aftab and his daughter’s present age needs to be found so, so the ages will be represented by variables x and y. The problem talks about their ages seven years ago and three years from now. Here, the words ‘seven years ago’ means we have to subtract 7 from their present ages, and ‘three years from now’ or ‘three years hence’ means we have to add 3 to their present ages. Remember in order to represent the algebraic equations graphically the solution set of equations must be taken as whole numbers only for the accuracy. Graph of the two linear equations will be represented by a straight line.Question 3

Solution 3

Question 4

Solution 4

Question 5(i)

Solution 5(i)

Question 5(ii)

Solution 5(ii)

Question 5(iii)

Solution 5(iii)

Question 6(i)

Solution 6(i)

Question 6(ii)

Solution 6(ii)

Question 6(iii)

Solution 6(iii)

Question 7The cost of 2 kg of apples and 1 kg of grapes on a day was found to be Rs 160. After a month, the cost of 4 kg of apples and 2 kg of grapes is Rs 300. Represent the situation algebraically and geometrically.Solution 7Let the cost of 1 kg of apples and 1 kg grapes be Rsx and Rsy.
The given conditions can be algebraically represented as:


Three solutions of this equation can be written in a table as follows:


x
506070
y604020

Three solutions of this equation can be written in a table as follows:


x
708075
y10-100

The graphical representation is as follows:

Concept insight: cost of apples and grapes needs to be found so the cost of 1 kg apples and 1 kg grapes will be taken as the variables. From the given conditions of collective cost of apples and grapes, a pair of linear equations in two variables will be obtained. Then, in order to represent the obtained equations graphically, take the values of variables as whole numbers only. Since these values are large so take the suitable scale.

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Since, the graph of the two lines coincide, the given system of equations have infinitely many solutions.Question 13

Solution 13

Question 14

Solution 14

Question 15Show graphically that each one of the following systems of equations is in-coinsistent (i.e. has no solution):

3x – 5y = 20

6x – 10y = – 40Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19(i)

Solution 19(i)

Question 19(ii)

Solution 19(ii)

Question 20

Solution 20

Question 21(i)

Solution 21(i)

Question 21(ii)

Solution 21(ii)

Question 22(i)

Solution 22(i)

Question 22(ii)

Solution 22(ii)

Question 22(iii)Solve graphically each of the following systems of linear equations. Also find the coordinates of the points where the lines meet axis of y.

2x + y – 11 = 0

x – y – 1 = 0Solution 22(iii)

Question 22(iv)Solve graphically each of the following systems of linear equations. Also find the coordinates of the points where the lines meet axis of y.

x + 2y – 7 = 0

2x – y – 4 = 0Solution 22(iv)

Question 22(v)

Solution 22(v)

Question 22(vi)

Solution 22(vi)

Question 23(i)

Solution 23(i)

Question 23(ii)

Solution 23(ii)

Question 23(iii)

Solution 23(iii)

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28(i)

Solution 28(i)

Question 28(ii)

Solution 28(ii)

Question 28(iii)

Solution 28(iii)

Question 28(iv)

Solution 28(iv)

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Draw the graphs of the equations 5x – y = 5 and 3x – y = 3. Determine the co-ordinates of the vertices of the triangle formed by these lines and the y axis. Calculate the area of the triangle so formed.Solution 32



Three solutions of this equation can be written in a table as follows:

x012
y-505
x012
y-303


The graphical representation of the two lines will be as follows:



It can be observed that the required triangle is ABC.
The coordinates of its vertices are A (1, 0), B (0, -3), C (0, -5).

Area space of space Triangle space increment ABC space equals space 1 half cross times BC cross times AO
equals 1 half cross times 2 cross times 1
equals 1 space sq. space unit

Concept insight: In order to find the coordinates of the vertices of the triangle so formed, find the points where the two lines intersects the y-axis and also where the two lines intersect each other. Here, note that the coordinates of the intersection of lines with y-axis is taken and not with x-axis, this is because the question says to find the triangle formed by the two lines and the y-axis.

Question 33

Form the pair of linear equations in the following problems, and find their solutions graphically.

(i)  10 students of Class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.
(ii)  5 pencils and 7 pens together cost Rs 50, whereas 7 pencils and 5 pens together cost Rs 46. Find the cost of one pencil and that of one pen.

(iii) Champa went to a ‘Sale’ to purchase some pants and skirts. When her friends asked her how many of each she had bought, she answered, “The number of skirts is two less than twice the number of pants purchased. Also, the number of skirts is four less than four times the number of pants purchased”. Help her friends to find how many pants and skirts Champa a bought.Solution 33

(i) Let the number of girls and boys in the class be x and y respectively.
According to the given conditions, we have:
x + y = 10
x – y = 4
x + y = 10  x = 10 – y
Three solutions of this equation can be written in a table as follows:

x456
y654



x – y = 4  x = 4 + y
Three solutions of this equation can be written in a table as follows:

x543
y10-1



The graphical representation is as follows:

From the graph, it can be observed that the two lines intersect each other at the point (7, 3).
So, x = 7 and y = 3.

Thus, the number of girls and boys in the class are 7 and 3 respectively.


(ii)    Let the cost of one pencil and one pen be Rs x and Rs y respectively.

According to the given conditions, we have:
5x + 7y = 50
7x + 5y = 46

Three solutions of this equation can be written in a table as follows:

x310-4
y5010




Three solutions of this equation can be written in a table as follows:

x83-2
y-2512



The graphical representation is as follows:


From the graph, it can be observed that the two lines intersect each other at the point (3, 5).
So, x = 3 and y = 5.

Therefore, the cost of one pencil and one pen are Rs 3 and Rs 5 respectively.



(iii)

Let us denote the number of pants by x and the number of skirts by y. Then the equations formed are:

y = 2x – 2 …(1)

and y = 4x – 4 …(2)

Let us draw the graphs of Equations (1) and (2) by finding two solutions for each of the equations.

They are given in Table

x20
y = 2x – 22-2
x01
y = 4x – 4-40



Plot the points and draw the lines passing through them to represent the equations, as shown in fig.,

The two lines intersect at the point (1,0). So, x = 1, y = 0 is the required solution of the pair of linear equations, i.e., the number of pants she purchased is 1 and she did not buy any skirt.

Concept insight: Read the question carefully and examine what are the unknowns. Represent the given conditions with the help of equations by taking the unknowns quantities as variables. Also carefully state the variables as whole solution is based on it. On the graph paper, mark the points accurately and neatly using a sharp pencil. Also, take at least three points satisfying the two equations in order to obtain the correct straight line of the equation. Since joining any two points gives a straight line and if one of the points is computed incorrect will give a wrong line and taking third point will give a correct line. The point where the two straight lines will intersect will give the values of the two variables, i.e., the solution of the two linear equations. State the solution point.Question 34(i)

Solution 34(i)

Question 34(ii)

Solution 34(ii)

Question 35

Solution 35

Question 36

Given the linear equation 2x + 3y – 8 = 0, write another linear equation in two variables such that the geometrical representation of the pair so formed is:

(i) Intersecting lines

(ii) parallel lines

(iii) Coincident linesSolution 36

(i) For the two lines a1x + b1x + c1 = 0 and a2x + b2x + c2 = 0, to be intersecting, we must have

So, the other linear equation can be 5x + 6y – 16 = 0
 
(ii)  For the two lines a1x + b1x + c1 = 0 and a2x + b2x + c2 = 0, to be parallel, we must have

So, the other linear equation can be 6x + 9y + 24 = 0,

(iii)  For the two lines a1x + b1x + c1 = 0 and a2x + b2x + c2 = 0 to be coincident, we must have

So, the other linear equation can be 8x + 12y – 32 = 0,


Concept insight: In order to answer such type of problems, just remember the conditions for two lines to be intersecting, parallel, and coincident. This problem will have multiple answers as their can be many equations satisfying the required conditions.Question 37(i)

Solution 37(i)

Question 37(ii)

Solution 37(ii)

Question 38

Graphically, solve the following pair of equations:

2x + y = 6

2x – y + 2 = 0

Find the ratio of the areas of the two triangles formed by the lines representing these equations with the x-axis and the lines with the y-axis.Solution 38

The lines AB and CD intersect at point R(1, 4). Hence, the solution of the given pair of linear equations is x = 1, y = 4.

From R, draw RM ⊥ X-axis and RN ⊥ Y-axis.

Then, from graph, we have

RM = 4 units, RN = 1 unit, AP = 4 units, BQ = 4 units

Question 39

Determine, graphically, the vertices of the triangle formed by the lines y = x, 3y = x, x + y = 8.Solution 39

From the graph, the vertices of the triangle AOP formed by the given lines are A(4, 4), O(0, 0) and P(6, 2).Question 40

Draw the graph of the equations x = 3, x = 5 and 2x – y – 4 = 0. Also, find the area of the quadrilateral formed by the lines and the x-axis.Solution 40

The graph of x = 3 is a straight line parallel to Y-axis at a distance of 3 units to the right of Y-axis.

The graph of x = 5 is a straight line parallel to Y-axis at a distance of 5 units to the right of Y-axis.

Question 41

Draw the graphs of the lines x = -2, and y = 3. Write the vertices of the figure formed by these lines, the x-axis and the y-axis. Also, find the area of the figure.Solution 41

The graph of x = -2 is a straight line parallel to Y-axis at a distance of 2 units to the left of Y-axis.

The graph of y = 3 is a straight line parallel to X-axis at a distance of 3 units above X-axis.

Question 42

Draw the graphs of the pair of linear equations x – y + 2 = 0 and 4x – y – 4 = 0. Calculate the area of the triangle formed by the lines so drawn and the x-axis.Solution 42

Question 5

Solve the following equations graphically:

x – y + 1 = 0

3x + 2y – 12 = 0Solution 5

Given equations are:

x – y + 1 = 0 … (i)

3x + 2y – 12 = 0 … (ii)

From (i) we get, x = y – 1

When x = 0, y = 1

When x = -1, y = 0

When x = 1, y = 2

We have the following table:

x0-11
y102

From (ii) we get,   

When x = 0, y = 6

When x = 4, y = 0

When x = 2, y = 3

We have the following table:

x042
y603

Graph of the given equations is:

As the two lines intersect at (2, 3). 

Hence, x = 2, y = 3 is the solution of the given equations.

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.3

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solve the following systems of equation:

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

Solution 36

Question 37

Solution 37

Question 38

Solution 38

Question 39

Solve the pair of equations:

Solution 39

Question 40

Solution 40

fraction numerator 10 over denominator straight x plus straight y end fraction plus fraction numerator 2 over denominator straight x minus straight y end fraction equals 4
fraction numerator 15 over denominator straight x plus straight y end fraction minus fraction numerator 9 over denominator straight x minus straight y end fraction equals negative 2

Let space fraction numerator 1 over denominator straight x plus straight y end fraction equals straight p space and space fraction numerator 1 over denominator straight x minus straight y end fraction equals straight q
10 straight p plus 2 straight q minus 4 equals 0....... left parenthesis straight i right parenthesis
15 straight p minus 9 straight q plus 2 equals 0........ left parenthesis ii right parenthesis

Using space cross minus multiplication space method comma space we space obtain colon
fraction numerator straight p over denominator 4 minus 36 end fraction equals fraction numerator straight q over denominator negative 60 minus 20 end fraction equals fraction numerator 1 over denominator negative 90 minus 30 end fraction
fraction numerator straight p over denominator negative 32 end fraction equals fraction numerator straight q over denominator negative 80 end fraction equals fraction numerator 1 over denominator negative 120 end fraction
fraction numerator straight p over denominator negative 4 end fraction equals fraction numerator straight q over denominator negative 10 end fraction equals fraction numerator 1 over denominator negative 15 end fraction
straight p equals 4 over 15 comma straight q equals 10 over 15 equals 2 over 3

Substituting space the space values space of space straight p space and space straight q comma
straight x plus straight y equals 15 over 4....... left parenthesis straight i right parenthesis space
straight x minus straight y equals 3 over 2...... left parenthesis ii right parenthesis
left parenthesis straight i right parenthesis plus left parenthesis ii right parenthesis rightwards double arrow
2 straight x equals 21 over 4
straight x equals 21 over 8 comma straight y equals 9 over 8

Question 41

Solution 41

Question 42

Solution 42

Question 43

152 x space minus space 378 y space equals space minus 74 space space
minus 378 x space plus space 152 y space equals space minus 604

Solution 43

152 straight x minus 378 straight y equals negative 74....... left parenthesis straight i right parenthesis
minus 378 straight x plus 152 straight y equals negative 604....... left parenthesis ii right parenthesis

Adding space the space equations space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis comma space we space obtain colon
minus 226 straight x minus 226 straight y equals negative 678
rightwards double arrow straight x plus straight y equals 3........... left parenthesis 3 right parenthesis

Subtracting space the space equation space left parenthesis 2 right parenthesis space from space equation space left parenthesis 1 right parenthesis comma space we space obtain colon
530 straight x minus 530 straight y equals 530
rightwards double arrow straight x minus straight y equals 1........... left parenthesis 4 right parenthesis

Adding space equations space left parenthesis 3 right parenthesis space and space left parenthesis 4 right parenthesis comma space we space obtain colon
straight x equals 2
Substituting space straight x equals 2 space in space equation space left parenthesis 3 right parenthesis comma space we space get
straight y equals 1

Question 44

Solution 44

Question 45

Solution 45

Question 46

Solution 46

Question 47

Solution 47

Question 48

Solve the following systems of equation:

21x + 47y = 110

47x + 21y = 162Solution 48

Question 49

If x + 1 is a factor of 2x3 + ax2 + 2bx + 1, the find the values of a and b given that 2a – 3b = 4.Solution 49

Question 50

Find the solution of the pair of equations   and  . Hence, find λ, if y = λx + 5.Solution 50

Question 51

Find the values of x and y in the following rectangle.

Solution 51

Question 52

Write an equation of a line passing through the point representing solution of the pair of linear equations x + y = 2 and 2x – y = 1. How many such lines can we find?Solution 52

Question 53

Write a pair of linear equations which has the unique solution x = -1, y = 3. How many such pairs can you write?Solution 53

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.5

Question 29

Find c if the system of equations cx + 3y + 3 – c = 0, 12x + cy – c = 0 has infinitely many solutions.Solution 29

The given system of equations will have infinite number of solutions if

Question 1

Determine whether the following system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:

x – 3y = 3

3x – 9y = 2Solution 1

Question 2

Determine whether the following system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:

2x + y = 5

4x + 2y = 10Solution 2

Question 3

Determine whether the following system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:

3x – 5y = 20

6x – 10y = 40Solution 3

Question 4

Determine whether the following system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:

x – 2y = 8

5x – 10y = 10Solution 4

Question 5

Find the value of k for which the following system of equations has a unique solution:

kx + 2y = 5

3x + y = 1Solution 5

Question 6Find the value of k for which the following system of equations has a unique solution:

4x + ky + 8 = 0

2x + 2y + 2 = 0Solution 6

Question 7

Find the value of k for which the following system of equations has a unique solution:

4x – 5y = k

2x – 3y = 12Solution 7

Question 8

Find the value of k for which the following system of equations has a unique solution:

x + 2y = 3

5x + ky + 7 = 0Solution 8

Question 9

Find the value of k for which the following systems of equations have infinitely many solutions:

2x + 3y – 5 = 0

6x + ky – 15 = 0Solution 9

Question 10

Find the value of k for which the following systems of equations have infinitely many solutions:

4x + 5y = 3

kx + 15y = 9Solution 10

Question 11

Find the value of k for which the following systems of equations have infinitely many solutions:

kx – 2y + 6 = 0

4x – 3y + 9 = 0Solution 11

Question 12

Find the value of k for which the following systems of equations have infinitely many solutions:

8x + 5y = 9

kx + 10y = 18Solution 12

Question 13

Find the value of k for which the following systems of equations have infinitely many solutions:

2x – 3y = 7

(k + 2)x – (2k + 1)y = 3(2k – 1)Solution 13

Question 14

Find the value of k for which the following systems of equations have infinitely many solutions:

2x + 3y = 2

(k + 2)x + (2k + 1)y = 2(k – 1)Solution 14

Question 15

Find the value of k for which the following systems of equations have infinitely many solutions:

x + (k + 1)y = 4

(k + 1)x + 9y = (5k + 2)Solution 15

Question 16

Find the value of k for which the following systems of equations have infinitely many solutions:

kx + 3y = 2k + 1

2(k + 1)x + 9y = 7k + 1Solution 16

Question 17

Find the value of k for which the following systems of equations have infinitely many solutions:

2x + (k – 2)y = k

6x + (2k – 1)y = 2k + 5Solution 17

Question 18

Find the value of k for which the following systems of equations have infinitely many solutions:

2x + 3y = 7

(k + 1)x + (2k – 1)y = 4k + 1Solution 18

Question 19

Find the value of k for which the following systems of equations have infinitely many solutions:

2x + 3y = k

(k – 1)x + (k + 2)y = 3kSolution 19

Question 20Find the value of k for which the following system of equations has no solution:

kx – 5y = 2

6x + 2y = 7Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Find he value of k for which of the following system of equation has no solution:

kx + 3y = k – 3

12x + ky = 6Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 30

Solution 30

Question 31For what value of k, the following system of equations will represent the coincident lines?

x + 2y + 7 = 0

2x + ky + 14 = 0Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36 (i)

Solution 36 (i)

Question 36 (ii)

Solution 36 (ii)

Question 36 (iii)

Solution 36 (iii)

Question 36 (iv)

Solution 36 (iv)

Question 36 (v)

Find the values of a and b for which the following system of equations has infinitely many solutions:

2x + 3y = 7

(a – b) x + (a + b)y = 3a + b – 2Solution 36 (v)

2 straight x plus 3 straight y minus 7 equals 0
left parenthesis straight a minus straight b right parenthesis straight x plus left parenthesis straight a minus straight b right parenthesis straight y minus left parenthesis 3 straight a plus straight b minus 2 right parenthesis equals 0
Here comma
straight a subscript 1 equals 2 comma space straight b subscript 1 equals 3 comma straight c subscript 1 equals negative 7
straight a subscript 2 equals left parenthesis straight a minus straight b right parenthesis comma straight b subscript 2 equals left parenthesis straight a plus straight b right parenthesis comma straight c subscript 2 equals negative left parenthesis 3 straight a plus straight b minus 2 right parenthesis

straight a subscript 1 over straight a subscript 2 equals fraction numerator 2 over denominator left parenthesis straight a minus straight b right parenthesis end fraction comma space straight b subscript 1 over straight b subscript 2 equals fraction numerator 3 over denominator left parenthesis straight a plus straight b right parenthesis end fraction comma space straight c subscript 1 over straight c subscript 2 equals fraction numerator negative 7 over denominator negative left parenthesis 3 straight a plus straight b minus 2 right parenthesis end fraction equals fraction numerator 7 over denominator left parenthesis 3 straight a plus straight b minus 2 right parenthesis end fraction
For space the space equations space to space have space infinitely space many space solutions comma space we space have
straight a subscript 1 over straight a subscript 2 equals space straight b subscript 1 over straight b subscript 2 equals straight c subscript 1 over straight c subscript 2
fraction numerator 2 over denominator left parenthesis straight a minus straight b right parenthesis end fraction equals fraction numerator 7 over denominator left parenthesis 3 straight a plus straight b minus 2 right parenthesis end fraction
6 straight a plus 2 straight b minus 4 equals 7 straight a minus 7 straight b
straight a minus 9 straight b equals negative 4........... left parenthesis straight i right parenthesis

fraction numerator 2 over denominator left parenthesis straight a minus straight b right parenthesis end fraction equals fraction numerator 3 over denominator left parenthesis straight a plus straight b right parenthesis end fraction
2 straight a plus 2 straight b equals 3 straight a minus 3 straight b
straight a minus 5 straight b equals 0............ left parenthesis ii right parenthesis
Subtracting space left parenthesis straight i right parenthesis space from space left parenthesis ii right parenthesis comma space we space get
4 straight b equals 4
straight b equals 1
Substituting space the space value space of space straight b space in space equation space left parenthesis 2 right parenthesis comma space we space obtain colon
straight a space minus space 5 cross times 1 equals 0
straight a equals 5
Thus space the space values space of space straight a space and space straight b space are space 5 space and space 1 space respectively.

Question 36 (vi)

Solution 36 (vi)

Question 36 (vii)

Solution 36 (vii)

Question 36(viii)

Find the values of a and b for which the following system of equations has infinitely many solutions:

x + 2y = 1

(a – b)x + (a + b)y = a + b – 2Solution 36(viii)

Question 36(ix)

Find the values of a and b for which the following system of equations has infinitely many solutions:

2x + 3y = 7

2ax + ay = 28 – bySolution 36(ix)

Question 37(i)

For which value(s) of λ, do the pair of linear equations λx + y = λ2 and x + λy = 1 have no solution?Solution 37(i)

Question 37(ii)

For which value(s) of λ, do the pair of linear equations λx + y = λ2 and x + λy = 1 have infinitely many solutions?Solution 37(ii)

Question 37(iii)

For which value(s) of λ, do the pair of linear equations λx + y = λ2 and x + λy = 1 have a unique solution?Solution 37(iii)

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.8

Question 9

A fraction becomes 1/3 when 2 is subtracted from the numerator and it becomes 1/2 when 1 is subtracted from the denominator. Find the fraction.Solution 9

Let the fraction be 

According to the given conditions, we have

Subtracting (ii) from (i), we get x = 7

Substituting the value of x in (ii), we get

y = 15Question 1

Solution 1

Question 2A fraction becomes 9/11 if 2 is added to both numerator and the denominator. If 3 is added to both the numerator and the denominator it becomes 5/6. Find the fraction.Solution 2

Question 3

Solution 3

Question 4If we add 1 to the numerator and subtract 1 from the denominator, a fraction becomes 1. It also becomes 1/2 if we only add 1 to the denominator. What is the fraction?Solution 4

Question 5

The sum of the numerator and denominator of a fraction is 12. If the denominator is increased by 3, the fraction becomes 1/2. Find the fraction.Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9Old

Solution 9Old

Question 10

Solution 10

Question 11

Solution 11

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.4

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solve each of the following systems of equations by the method of cross-multiplication:

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.6

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Jamila sold a table and a chair for Rs.1050, thereby making a profit of 10% on a table and 25% on the chair. If she had taken profit of 25% on the table and 10% on the chair she would have got Rs.1065. Find the cost price of each.Solution 7

Question 8

Susan invested certain amount of money in two schemes A and B, which offer interest at the rate of 8% per annum and 9% per annum, respectively. She received Rs.1860 as annual interest. However, had she interchanged the amount of investment in the two schemes, she would have received Rs.20 more as annual interest. How much money did she invest in each scheme?Solution 8

Question 9

The coach of a cricket team buys 7 bats and 6 balls for Rs 3800. Later, he buys 3 bats and 5 balls for Rs 1750. Find the cost of each bat and each ball.Solution 9

Let space the space cost space of space straight a space bat space be space straight x space and space straight y space respectively.
According space to space the space given space information comma
7 straight x plus 6 straight y equals 3800....... left parenthesis 1 right parenthesis
3 straight x plus 5 straight y equals 1750....... left parenthesis 2 right parenthesis
From space left parenthesis 1 right parenthesis comma space we space obtain comma
straight y equals fraction numerator 3800 minus 7 straight x over denominator 6 end fraction........ left parenthesis 3 right parenthesis
Substituting space this space value space in space equation space left parenthesis 2 right parenthesis comma space we space obtain
3 straight x plus 5 open parentheses fraction numerator 3800 minus 7 straight x over denominator 6 end fraction close parentheses equals 1750
3 straight x plus fraction numerator 19000 minus 35 straight x over denominator 6 end fraction equals 1750
3 straight x minus fraction numerator 35 straight x over denominator 6 end fraction equals 1750 minus 19000 over 6
fraction numerator 18 straight x minus 35 straight x over denominator 6 end fraction equals fraction numerator 10500 minus 19000 over denominator 6 end fraction
fraction numerator 17 straight x over denominator 6 end fraction equals 8500 over 6
straight x equals 500........ left parenthesis 4 right parenthesis
Substituting space this space equation left parenthesis 3 right parenthesis comma space we space obtain comma
straight y equals fraction numerator 3800 minus 7 cross times 500 over denominator 6 end fraction
equals 300 over 6 equals 50
Hence comma space the space cost space of space straight a space bat space is space Rs space 500 space and space that space of space straight a space ball space is space Rs space 50.

bold Concept bold space bold Insight colon space Cost space of space bats space and space balls space need space to space be space found space so space the space cost space of space straight a space ball
and space bat space will space be space taken space as space the space variables. space Apply space the space conditions space of space total space cost space of space
bats space and space balls space algebraic space equations space will space be space obtained. space The space pair space of space equations space
can space then space be space solved space by space suitable space substitution.

Question 10

A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs. 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.Solution 10

Question 11

The cost of 4 pens and 4 pencils boxes is Rs.100. Three times the cost of a pen is Rs.15 more than the cost of a pencil box. Form the pair of linear equations for the above situation. Find the cost of a pen and a pencil box.Solution 11

Question 12

One says, “Give me a hundred, friend! I shall then become twice as rich as you”. The other replies, “If you give me ten, I shall be six times as rich as you”. Tell me what is the amount of their (respective) capital?Solution 12

Question 13

A and B each have a certain number of mangoes. A says to B, “if you give 30 of your mangoes, I will have twice as many as left with you. “B replies, “if you give me 10, I will have thrice as many as left with you. “How many mangoes does each have?Solution 13

Question 14

Vijay had some bananas, and he divided them into two lots A and B. He sold first lot at the rate of Rs.2 for 3 bananas and the second lot at the rate of Rs.1 per banana and got a total of Rs.400. If he had sold the first lot at the rate of Rs.1 per banana and the second lot at the rate of Rs.4 per five bananas, his total collection would have been Rs.460. Find the total number of bananas he had.Solution 14

Question 15

Solution 15

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.7

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5The sum of two-digit number and the number formed by reversing the order of digits is 66. If the two digits differ by 2, find the number. How many such numbers are there?Solution 5

Question 6

The space sum space of space two space numbers space is space 1000 space and space the space difference space between space their space squares space is space 256000.
Find space the space numbers.

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14The sum of digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.Solution 14

Question 15

Solution 15

Question 16

Two numbers are in the ratio 5 : 6. If 8 is subtracted from each of the numbers, the ratio becomes 4 : 5. Find the numbers.Solution 16

Question 17

A two-digit number is obtained by either multiplying the sum of the digits by 8 and then subtracting 5 or by multiplying the difference of the digits by 16 and then adding 3. Find the number.Solution 17

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.9

Question 1

Solution 1

Question 2

Solution 2

Question 3

Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu?Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6The present age of a father is three more than three times the age of the son. Three years hence father’s age will be 10 years more than twice the age of the son. Determine their present ages.Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

The ages of two friends Ani and Biju differ by 3 years. Ani’s father Dharam is twice as old as Ani and Biju is twice as old as his sister Cathy. The ages of Cathy and Dharam differs by 30 years. Find the ages of Ani and Biju.Solution 11

The difference between the ages of Ani and Biju is given as 3 years. So, either Biju is 3 years older than Ani or Ani is 3 years older than Biju.

Let the age of Ani and Biju be x years and y years respectively.
Age of Dharam = 2 × x = 2x years
Case I: Ani is older than Biju by 3 years
x – y = 3        … (1)

begin mathsize 12px style 2 straight x minus straight y over 2 equals 30 end style4x – y = 60     ….(2)
Subtracting (1) from (2), we obtain: 3x = 60 – 3 = 57

begin mathsize 12px style straight x equals 57 over 3 equals 19 end style

Age of Ani = 19 years
Age of Biju = 19 – 3 = 16 years

Case II: Biju is older than Ani by 3 years
y – x = 3        … (3)

begin mathsize 12px style 2 straight x minus straight y over 2 equals 30 end style

4x – y = 60        … (4)

Adding (3) and (4), we obtain:
3x = 63
x = 21

Age of Ani = 21 years
Age of Biju = 21 + 3 = 24 years

Concept Insight: In this problem, ages of Ani and Biju are the unknown quantities. So, we represent them by variables x and y. Now, note that here it is given that the ages of Ani and Biju differ by 3 years. So, it is not mentioned that which one is older. So, the most important point in this question is to consider both cases  Ani is older than Biju and  Biju is older than Ani. For second condition the relation  on the ages of Dharam and Cathy can be implemented . Pair of linear equations can be solved using a suitable algebraic method.

Question 12

Two years ago, Salim was thrice as old as his daughter and six years later, he will be four years older than twice her age. How old are they now?Solution 12

Question 13

The age of the father is twice the sum of the ages of his two children. After 20 years, his age will be equal to the sum of the ages of his children. Find the age of the father.Solution 13

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.10

Question 1

Solution 1

Question 2

Solution 2

Question 3The boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km downstream. Determine the speed of stream and that of the boat in still water.Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

A person rowing at the rate of 5 km/h in still water, takes thrice as much time in going 40 km upstream as in going 40 km downstream. Find the speed of stream.Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current.Solution 12

Question 13

A motor boat can travel 30 km upstream and 28 km downstream in 7 hours. It can travel 21 km upstream and return in 5 hours. Find the speed of the boat in still water and the speed of the stream.Solution 13

Question 14

Solution 14

Question 15A train covered a certain distance at a uniform speed. If the train would have been 10 km/h faster, it would have taken 2 hours less than the scheduled time. And if the train were slower by 10 km/h; it would have taken 3 hours more than the scheduled time.  Find the distance covered by the train.Solution 15Let the speed of the train be x km/h and the time taken by train to travel the given distance be t hours and the distance to travel be d km.
Or, d = xt        … (1)

According to the question,

By using equation (1), we obtain:
3x – 10t = 30        … (3)

Adding equations (2) and (3), we obtain:
x = 50
Substituting the value of x in equation (2), we obtain:
(-2) x (50) + 10t = 20
-100 + 10t = 20
10t = 120
t = 12
From equation (1), we obtain:
d = xt = 50 x 12 = 600

Thus, the distance covered by the train is 600 km.

Concept insight: To solve this problem, it is very important to remember the relation . Now, all these three quantities are unknown. So, we will represent these

by three different
variables. By using the given conditions, a pair of equations will be obtained. Mind one thing that the equations obtained will not be linear. But they can be reduced to linear form by using the fact that . Then two linear equations can be formed which can

be solved easily by elimination method.

Question 16Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hours. What are the speeds of two cars?Solution 16

Question 17

Solution 17

Question 18

Solution 18

Chapter 3 Pairs of Linear Equations in Two Variables Exercise Ex. 3.11

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

ABCD is a cyclic quadrilateral such that A = (4y + 20)oB = (3y – 5)oC = (-4x)o and D = (7x + 5)o. Find the four angles.Solution 6

We know that the sum of the measures of opposite angles in a cyclic quadrilateral is 180°.

A + C = 180
4y + 20 – 4x = 180
-4x + 4y = 160
x – y = -40            … (1)
Also, B + D = 180
3y – 5 – 7x + 5 = 180
-7x + 3y = 180        … (2)
Multiplying equation (1) by 3, we obtain:

3x – 3y = -120        … (3)
Adding equations (2) and (3), we obtain:
-4x = 60
x = -15
Substituting the value of x in equation (1), we obtain:
-15 – y = -40
y = -15 + 40 = 25

A = 4y + 20 = 4(25) + 20 = 120o
B = 3y – 5 = 3(25) – 5 = 70o
C = -4x = -4(-15) = 60o
D = -7x + 5 = -7(-15) + 5 = 110o

Concept insight: The most important idea to solve this problem is by using the fact that the sum of the measures of opposite angles in a cyclic quadrilateral is 180o. By using this relation, two linear equations can be obtained which can be solved easily by eliminating a suitable variable.Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Yash space scored space 40 space marks space in space straight a space test comma space getting space 3 space marks space for space each space right space answer space and space
losing space 1 space mark space for space each space wrong space answer. space Had space 4 space marks space been space awarded space for space each
correct space answer space and space 2 space marks space been space deducted space for space each space incorrect space answer comma space then space
Yash space would space have space scored space 50 space marks. space How space many space question space were space there space in space the space test ?

Solution 10

Let space the space number space of space right space answers space and space wrong space answers space be space straight x space and space straight y space respectively.
According space to space the space question comma
3 straight x minus straight y equals 40......... left parenthesis 1 right parenthesis
4 straight x minus 2 straight y equals 50
rightwards double arrow 2 straight x minus straight y equals 25......... left parenthesis 2 right parenthesis
Subtracting space equation space left parenthesis 2 right parenthesis space from space equation space left parenthesis 1 right parenthesis comma space we space obtian colon
straight x equals 15
Substituting space the space value space of space straight x space in space equation space left parenthesis 2 right parenthesis comma space we space obtain colon
30 minus straight y equals 25
straight y equals 5

Thus comma space the space number space of space right space answers space and space the space number space of space wrong space answers space is space 15
and space 5 space respectively. space Therefore space the space total space number space of space questions space is space 20.

Concept space insight colon space In space this space problem comma space the space number space of space write space answers space and space the space
number space of space wrong space answers space answered space by space Yash space are space the space unknown space variable space straight y
has space the space same space coefficient space in space both space the space equations comma space so space it space will space be space easier space to space find space the
solution space by space eliminating space straight y space from space both space the space equations.

Question 11

Solution 11

Question 12The car hire charges in a city comprise of fixed charges together with the charge for the distance covered. For a journey of 12 km, the charge paid is Rs 89 and for a journey of 20 km, the charge paid is Rs. 145. What will a person have to pay for travelling a distance of 30 km?Solution 12

Question 13A part of monthly hostel charges in a college are fixed and the remaining depends on the number of days one has taken food in the mess. When a student A takes food for 20 days, he has to pay Rs 1000 as hostel charges whereas a student B, who takes food for 26 days, pays Rs 1180 as hostel charges. Find the fixed charge and the cost of food per day.Solution 13

Question 14

Solution 14

Question 15The larger of two supplementary angles exceeds the smaller by 18 degrees. Find them.Solution 15

Question 162 Women and 5 men can together finish a piece of embroidery in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone to finish the embroideery, and that taken by 1 man alone.Solution 16

Question 17

Meena went to a bank to withdraw Rs 2000. She asked the cashier to give her Rs 50 and Rs 100 notes only. Meena got 25 notes in all. Find how many notes Rs 50 and Rs 100 she received.Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

The students of a class are made to stand in rows. If 3 students are extra in a row, there would be 1 row less. If 3 students are less in a row there would be 2 rows more. Find number of students in the class.Solution 21

Question 22

One says, “Give me a hundred, friend! I shall then become twice as rich as you”. The other replies, “If you give me ten, I shall be six times as rich as you”. Tell me what is the amount of their (respective) capital?Solution 22

Let the money with the first person and second person be Rs x and Rs y respectively.

According to the question,
x + 100 = 2(y – 100)
x + 100 = 2y – 200
x – 2y = -300        … (1)

6(x – 10) = (y + 10)
6x – 60 = y + 10
6x – y = 70            … (2)

Multiplying equation (2) by 2, we obtain:
12x – 2y = 140        … (3)
Subtracting equation (1) from equation (3), we obtain:
11x = 140 + 300
11x = 440
x = 40
Putting the value of x in equation (1), we obtain:
40 – 2y = -300
40 + 300 = 2y
2y = 340
y = 170

Thus, the two friends had Rs 40 and Rs 170 with them.

Concept insight: This problem talks about the amount of capital with two friends. So, we will represent them by variables x and y respectively. Now, using the given conditions, a pair of linear equations can be formed which can then be solved easily using elimination method.

Question 23

A shopkeeper sells a saree at 8% profit and a sweater at 10% discount, thereby getting a sum of Rs.1008. If she had sold the saree at 10% profit and sweater at 8% discount, she would have got Rs.1028. Find the cost price of the saree and the list price (price before discount) of the sweater.Solution 23

Question 24

In a competitive examination, one mark is awarded for each correct answer while ½ mark is deducted for every wrong answer. Jayanti answered 120 questions and got 90 marks. How many questions did she answer correctly?Solution 24

Question 25

A shopkeeper gives book on rent for reading. She takes a fixed charge for the first two days, and an additional charge for each day thereafter. Latika paid Rs.22 for a book kept for 6 days, while Rs.16 for the book kept for four days. Find the fixed charges and charge for each extraday.Solution 25

Chapter 3 Pairs of Linear Equations in Two Variables Exercise 3.114

Question 1

begin mathsize 11px style The space value space of space straight k space for space which space the space system space of space equations
table attributes columnalign left end attributes row cell table attributes columnalign left end attributes row cell kx minus straight y equals 2 end cell row cell 6 straight x minus 2 straight y equals 3 end cell row cell has text   end text straight a text   end text unique text   end text solution comma text   end text is end cell end table end cell row cell left parenthesis straight a right parenthesis equals 3 space space space space left parenthesis straight b right parenthesis not equal to 3 space space space space space space left parenthesis straight c right parenthesis not equal to 0 space space space left parenthesis straight d right parenthesis 0 space end cell end table end style

Solution 1

begin mathsize 11px style table attributes columnalign left end attributes row cell We text  know , if  a end text subscript text 1 end text end subscript straight x plus straight b subscript 2 straight y plus straight c subscript 1 equals 0 text    ---- end text box enclose 1 end cell row cell text                    a end text subscript 2 straight x plus straight b subscript 2 straight y plus straight c subscript 2 equals 0 text    ---- end text box enclose 2 end cell row cell text for unique solution end text end cell row cell straight a subscript 1 over straight a subscript 2 not equal to straight b subscript 1 over straight b subscript 2 text        ---- end text box enclose 3 end cell row cell text Given equations are end text end cell row cell text kx - y = 2  ---- end text box enclose 4 end cell row cell text 6x - 2y =3 ---- end text box enclose 5 end cell row cell text from  end text box enclose 1 text  &  end text box enclose 4 end cell row cell text a end text subscript text 1 end text end subscript text =k    b end text subscript 1 equals negative 1 end cell row cell from text   end text box enclose 2 text  &  end text box enclose 5 end cell row cell text a end text subscript text 2 end text end subscript text =6    b end text subscript text 2 end text end subscript equals negative 2 end cell row cell from text   end text box enclose 3 end cell row cell straight k over 6 not equal to fraction numerator negative 1 over denominator negative 2 end fraction end cell row cell rightwards double arrow box enclose straight k not equal to 3 end enclose end cell end table end style

So, the correct option is (b).Question 2

begin mathsize 11px style The space value space of space straight k space for space which space the space system space of space equations
table attributes columnalign left end attributes row cell table attributes columnalign left end attributes row cell 2 straight x plus 3 straight y equals 5 end cell row cell 4 straight x plus ky equals 10 end cell row cell has text   end text infinite text   end text number text   end text of text   end text solutions comma text   end text is end cell end table end cell row cell left parenthesis straight a right parenthesis 1 space space text   end text left parenthesis straight b right parenthesis text   end text 3 space space left parenthesis straight c right parenthesis text   end text 6 space space space space left parenthesis straight d right parenthesis text   end text 0 end cell end table end style

Solution 2

begin mathsize 11px style table attributes columnalign left end attributes row cell we text  know, if  a end text subscript text 1 end text end subscript straight x plus straight b subscript 1 straight y plus straight c subscript 1 equals 0 text     --- end text box enclose 1 end cell row cell text                   a end text subscript text 2 end text end subscript straight x plus straight b subscript 2 straight y plus straight c subscript 2 equals 0 text    --- end text box enclose 2 text   end text end cell row cell text for infinite solution  end text end cell row cell text                   end text text a end text subscript text 1 end text end subscript over text a end text subscript text 2 end text end subscript equals straight b subscript 1 over straight b subscript 2 equals straight c subscript 1 over straight c subscript 2 text        --- end text box enclose 3 end cell row cell Given text  equation are end text end cell row cell text                   2x+3y=5     --- end text box enclose 4 end cell row cell text                   4x+ky=10   --- end text box enclose 5 text    end text end cell row cell text from equations   end text box enclose 1 text  &  end text box enclose 4 text  a end text subscript text 1 end text end subscript equals 2 text      end text straight b subscript 1 equals 3 text      end text straight c subscript 1 equals negative 5 end cell row cell text from equations  end text box enclose 2 text  &  end text box enclose 5 text  a end text subscript text 2 end text end subscript equals 4 text      end text straight b subscript 2 equals straight k text      end text straight c subscript 2 equals negative 10 end cell row cell text from equation  end text left parenthesis 3 right parenthesis end cell row cell 2 over 4 text  =  end text 3 over straight k text  =  end text fraction numerator negative 5 over denominator negative 10 end fraction end cell row cell rightwards double arrow 3 over straight k equals 1 half end cell row cell rightwards double arrow box enclose straight k equals 6 end enclose end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 3

begin mathsize 11px style The space value space of space straight k space for space which space the space system space of space equations
table attributes columnalign left end attributes row cell straight x plus 2 straight y minus 3 equals 0 space text   end text and text    end text 5 straight x plus ky plus 7 equals 0 space text   end text has text   end text no text   end text solution comma text   end text is end cell row cell left parenthesis straight a right parenthesis 10 space space space space left parenthesis straight b right parenthesis text   end text 6 space space space space left parenthesis straight c right parenthesis text   end text 3 space space left parenthesis straight d right parenthesis text   end text 1 end cell end table end style

Solution 3

begin mathsize 11px style table attributes columnalign left end attributes row cell We text  know if   a end text subscript text 1 end text end subscript straight x plus straight b subscript 1 straight y plus straight c subscript 1 equals 0 text     ---- end text box enclose 1 end cell row cell text                   a end text subscript 2 straight x plus straight b subscript 2 straight y plus straight c subscript 2 equals 0 text     ---- end text box enclose 2 end cell row cell text for no solution  end text end cell row cell text                   end text text a end text subscript text 1 end text end subscript over text a end text subscript 2 equals text b end text subscript text 1 end text end subscript over text b end text subscript 2 not equal to straight c subscript 1 over straight c subscript 2 text         ---- end text box enclose 3 end cell row cell Given text  equations are end text end cell row cell text                  x+2y-3=0        ---- end text box enclose 4 end cell row cell text                  5x+ky+7=0     ---- end text box enclose 5 end cell row cell text from  end text box enclose 1 text  &  end text box enclose 4 text     a end text subscript text 1 end text end subscript text = 1      b end text subscript text 2 end text end subscript text =2    c end text subscript text 1 end text end subscript equals negative 3 end cell row cell text from  end text box enclose 2 text  &  end text box enclose 5 text     a end text subscript 2 text = 5      b end text subscript text 2 end text end subscript text =k    c end text subscript 2 equals 7 end cell row cell text from  end text box enclose 3 text   end text 1 fifth equals 2 over straight k not equal to fraction numerator negative 3 over denominator 7 end fraction end cell row cell rightwards double arrow box enclose straight k equals 10 end enclose end cell row cell text  So, the correct option is (a). end text end cell end table end style

Question 4

begin mathsize 11px style table attributes columnalign left end attributes row cell table attributes columnalign left end attributes row cell The text   end text value text   end text of text   end text straight k text   end text for text   end text which text   end text the text   end text system text   end text of text   end text equations end cell row cell table attributes columnalign left end attributes row cell 3 straight x plus 5 straight y equals 0 text   end text and space text    end text kx plus 10 straight y equals 0 space text   end text has text   end text straight a text   end text non minus zero text   end text solution comma text   end text end cell row is end table end cell end table end cell row cell left parenthesis straight a right parenthesis 0 space space space space left parenthesis straight b right parenthesis 2 space space space space left parenthesis straight c right parenthesis text   end text 6 space space text    end text left parenthesis straight d right parenthesis 8 end cell end table end style

Solution 4

begin mathsize 11px style table attributes columnalign left end attributes row cell text if the equations are   a end text subscript text 1 end text end subscript straight x plus straight b subscript 1 straight y plus straight c subscript 1 equals 0 text     ---- end text box enclose 1 end cell row cell text                a end text subscript 2 straight x plus straight b subscript 2 straight y plus straight c subscript 2 equals 0 text     ---- end text box enclose 2 end cell row blank row cell text for infinite solutions   end text end cell row cell text                   end text text a end text subscript text 1 end text end subscript over text a end text subscript 2 equals text b end text subscript text 1 end text end subscript over text b end text subscript 2 text         ---- end text box enclose 3 end cell row blank row cell Given text  equations are end text end cell row cell text                  3x + 5y = 0        ---- end text box enclose 4 end cell row cell text                  kx + 10y = 0     ---- end text box enclose 5 end cell row blank row cell on text   end text comparing text    end text box enclose 1 text ,  end text box enclose 2 text ,  end text box enclose 4 text ,  end text box enclose 5 end cell row cell text   end text rightwards double arrow text     a end text subscript text 1 end text end subscript text  = 3      b end text subscript text 1 end text end subscript text = 5     end text end cell row cell text           a end text subscript 2 equals straight k text       b end text subscript 2 text = 10 end text end cell row blank row cell text from  end text box enclose 3 text      end text 3 over straight k equals 5 over 10 end cell row cell rightwards double arrow box enclose straight k equals 6 end enclose text   end text end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 5

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text the space system text   end text of text   end text equations end cell row cell 2 straight x plus 3 straight y text   end text equals text   end text 7 end cell row cell left parenthesis straight a plus straight b right parenthesis straight x text   end text plus text   end text left parenthesis 2 straight a minus by right parenthesis equals 21 text   end text end cell row cell has text   end text infinitely text   end text many text   end text solutions comma text   end text then end cell row cell left parenthesis straight a right parenthesis space straight a equals 1 text   end text comma space text    end text straight b equals 5 space space space space space left parenthesis straight b right parenthesis text   end text straight a equals 5 comma text   end text straight b equals 1 space space space space end cell row cell left parenthesis straight c right parenthesis space straight a text  = - end text 1 comma text   end text straight b equals 5 space space space space space left parenthesis straight d right parenthesis text   end text straight a equals 5 comma space text   end text straight b equals negative text   end text 1 end cell end table end style

Solution 5

begin mathsize 11px style table attributes columnalign left end attributes row cell for text   end text infinite text  solution end text end cell row cell straight a subscript 1 over straight a subscript 2 equals straight b subscript 1 over straight b subscript 2 equals straight c subscript 1 over straight c subscript 2 end cell row cell rightwards double arrow text   end text fraction numerator 2 over denominator straight a plus straight b end fraction text   end text equals text   end text fraction numerator 3 over denominator 2 straight a minus straight b end fraction text   end text equals text   end text 7 over 21 end cell row cell rightwards double arrow text   end text fraction numerator 2 over denominator straight a plus straight b end fraction text   end text equals text   end text 7 over 21 text      &     end text fraction numerator 3 over denominator 2 straight a minus straight b end fraction text   end text equals text   end text 7 over 21 end cell row cell rightwards double arrow straight a text   end text plus text   end text straight b equals 6 text    -- end text box enclose 1 text            end text rightwards double arrow 9 text   end text equals text  2 end text straight a minus straight b text    -- end text box enclose 2 end cell row cell text on adding  end text box enclose 1 text   &   end text box enclose 2 end cell row cell rightwards double arrow 3 straight a equals 15 end cell row cell rightwards double arrow box enclose straight a equals 5 end enclose text     &    end text box enclose straight b equals 1 end enclose text      end text end cell row cell So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end cell end table end style

Chapter 3 Pairs of Linear Equations in Two Variables Exercise 3.115

Question 6

begin mathsize 11px style If space the space system space of space equations space
table attributes columnalign left end attributes row cell table attributes columnalign left end attributes row cell 3 straight x text   end text plus text   end text straight y text   end text equals text   end text 1 end cell row cell left parenthesis 2 straight k minus 1 right parenthesis straight x text   end text plus left parenthesis straight k minus 1 right parenthesis text   end text equals text   end text 2 straight k plus 1 end cell row cell is text   end text inconsistent comma text   end text then text   end text straight k equals end cell end table end cell row cell left parenthesis straight a right parenthesis 1 space space space text   end text left parenthesis straight b right parenthesis 0 space space text    end text left parenthesis straight c right parenthesis minus 1 space space space text   end text left parenthesis straight d right parenthesis text   end text 2 end cell end table end style

Solution 6

begin mathsize 11px style table attributes columnalign left end attributes row cell if text        end text straight a subscript 1 straight x text  + b end text subscript text 1 end text end subscript text y + c end text subscript text 1 end text end subscript text =0   --- end text box enclose 1 end cell row cell text          end text straight a subscript 2 straight x text  + b end text subscript 2 text y + c end text subscript 2 text =0   --- end text box enclose 2 end cell row blank row cell text for inconsistent solution end text end cell row cell text         end text straight a subscript 1 over straight a subscript 2 text  =   end text straight b subscript 1 over straight b subscript 2 text     --- end text box enclose 3 end cell row cell text Given equations are end text end cell row cell text            3x + y =1   --- end text box enclose 4 text   end text end cell row cell text             end text left parenthesis 2 straight k minus 1 right parenthesis text x +  end text left parenthesis straight k minus 1 right parenthesis text y = 2k+1   --- end text box enclose 5 end cell row cell text from  end text left parenthesis 1 right parenthesis text   &  end text left parenthesis 4 right parenthesis end cell row cell rightwards double arrow text  a end text subscript text 1 end text end subscript text  = 3       b end text subscript text 1 end text end subscript equals 1 text      c end text subscript text 1 end text end subscript equals negative 1 end cell row cell from text    end text left parenthesis 2 right parenthesis text   &  end text left parenthesis 5 right parenthesis end cell row cell text        end text straight a subscript 2 equals 2 straight k minus 1 text      b end text subscript text 2 end text end subscript equals straight k minus 1 text     c end text subscript 2 text = 2k+1 end text end cell row cell text from  end text box enclose 3 end cell row cell text                 end text fraction numerator 3 over denominator 2 straight k minus 1 end fraction equals fraction numerator 1 over denominator straight k minus 1 end fraction end cell row cell text          end text rightwards double arrow text   3k - 3 = 2k-1 end text end cell row cell text          end text rightwards double arrow text     end text box enclose straight k equals 2 end enclose end cell row cell text  So, the correct option is (d). end text end cell end table end style

Question 7

If   am ≠ bl, then the system of equations

ax + by = c

lx + my = n

(a)  has a unique solution        

(b) has no solution

(c) has infinite many solution    

(d) may or may not have a solutionSolution 7

begin mathsize 11px style table attributes columnalign left end attributes row cell for text  unique solution end text end cell row cell text             end text straight a over straight l not equal to straight b over straight m end cell row cell text          end text rightwards double arrow text am  end text not equal to text  bl end text end cell row cell text which is the given condition  end text end cell row cell text Hence the given equation end text end cell row cell text            am end text not equal to text bl end text end cell row cell text is the condition to a unique solution. end text end cell end table end style

So, the correct option is (a).Question 8

begin mathsize 11px style If space the space system space of space equations space
table attributes columnalign left end attributes row cell 2 straight x plus 3 straight y equals 7 end cell row cell 2 ax plus left parenthesis straight a plus straight b right parenthesis straight y equals 28 end cell row cell has text  infinite many solutions, then end text end cell row cell left parenthesis straight a right parenthesis text  a = 2b   end text left parenthesis straight b right parenthesis text  b = 2a   end text left parenthesis straight c right parenthesis text  a+2b = 0    end text left parenthesis straight d right parenthesis text  2a+b=0 end text end cell end table end style

Solution 8

begin mathsize 11px style table attributes columnalign left end attributes row cell if text   a end text subscript text 1 end text end subscript straight x plus text  b end text subscript text 1 end text end subscript straight y plus straight c subscript 1 equals 0 text     --- end text box enclose 1 end cell row cell text     a end text subscript text 2 end text end subscript straight x plus text  b end text subscript 2 straight y plus straight c subscript 2 equals 0 text     --- end text box enclose 2 end cell row cell text    for infinite many soluations end text end cell row cell text           end text straight a subscript 1 over text a end text subscript text 2 end text end subscript equals text b end text subscript text 1 end text end subscript over text b end text subscript 2 equals straight c subscript 1 over straight c subscript 2 text      --- end text box enclose 3 end cell row cell Given text  equations are end text end cell row cell text          2x + 3y = 7      --- end text box enclose 4 end cell row cell text          2ax + (a+b)y = 28     --- end text box enclose 5 end cell row cell from text    end text box enclose 1 text   &   end text box enclose 4 end cell row cell text          a end text subscript text 1 end text end subscript text  =  end text 2 text       b end text subscript 1 text  = 3     end text straight c subscript 1 equals text  -7  end text end cell row cell from text    end text box enclose 2 text   &   end text box enclose 5 end cell row cell text          a end text subscript 2 text  =  end text 2 straight a text       b end text subscript 2 text  = a+b    end text straight c subscript 2 equals text  -28 end text end cell row cell text from  end text box enclose 3 text    end text end cell row cell rightwards double arrow text      end text fraction numerator 2 over denominator 2 straight a end fraction text  =  end text fraction numerator 3 over denominator straight a plus straight b end fraction text  =  end text fraction numerator negative 7 over denominator negative 28 end fraction text    end text end cell row cell rightwards double arrow text      end text 1 over straight a text  =  end text fraction numerator 3 over denominator straight a plus straight b end fraction text    end text rightwards double arrow text    end text box enclose 2 straight a equals straight b end enclose end cell end table end style

So, the correct option is (b).Question 9

begin mathsize 11px style The space value space of space straight k space for space which space the space system space of space equations
table attributes columnalign left end attributes row cell straight x plus 2 straight y equals 5 end cell row cell 3 straight x plus ky plus 15 equals 0 end cell row cell has text  no solution is end text end cell row cell left parenthesis straight a right parenthesis text  6      end text left parenthesis straight b right parenthesis text  -6      end text left parenthesis straight c right parenthesis text   end text 3 over 2 text      end text left parenthesis straight d right parenthesis text  none of these end text end cell end table end style

Solution 9

begin mathsize 11px style table attributes columnalign left end attributes row cell for text  equation a end text subscript text 1 end text end subscript straight x plus straight b subscript 1 straight y plus straight c subscript 1 equals 0 text      --- end text box enclose 1 end cell row cell text            a end text subscript 2 straight x plus straight b subscript 2 straight y plus straight c subscript 2 equals 0 text      --- end text box enclose 2 end cell row cell for space no text  solution end text end cell row cell text             end text text a end text subscript text 1 end text end subscript over straight b subscript 2 text  =  end text text a end text subscript text 1 end text end subscript over straight b subscript 2 not equal to text   end text text c end text subscript text 1 end text end subscript over straight c subscript 2 text    --- end text box enclose 3 end cell row cell given text  equations are end text end cell row cell text                    x+2y=5     --- end text box enclose 4 end cell row cell text            3x+ky+15=0     --- end text box enclose 5 end cell row cell from text   end text box enclose 1 text   &   end text box enclose 4 end cell row cell text        a end text subscript text 1 end text end subscript equals 1 text      b end text subscript text 1 end text end subscript text =2      c end text subscript text 1 end text end subscript text  =-5 end text end cell row cell text   end text from text   end text box enclose 2 text   &   end text box enclose 5 end cell row cell text        a end text subscript 2 equals 3 text      b end text subscript 2 text =k      c end text subscript 2 text  =15 end text end cell row cell from text   end text box enclose 3 text    end text end cell row cell text         end text 1 third equals 2 over straight k not equal to fraction numerator negative 5 over denominator 15 end fraction end cell row cell rightwards double arrow box enclose straight k equals 6 end enclose end cell end table end style

So, the correct option is (a).Question 10

If 2x-3y=7 and (a+b)x – (a+b-3)y = 4a+b represent coincident lines than a and b satisfy the equation

(a) a+5b=0    (b) 51+b=0    (c) a-5b=0     (d) 5a-b=0Solution 10

begin mathsize 11px style table attributes columnalign left end attributes row cell for text  conicident lines end text end cell row cell text        end text fraction numerator 2 over denominator straight a plus straight b end fraction text   end text equals text   end text fraction numerator negative 3 over denominator negative left parenthesis straight a plus straight b minus 3 right parenthesis end fraction text  =  end text fraction numerator 7 over denominator 4 straight a plus straight b end fraction end cell row cell rightwards double arrow fraction numerator 2 over denominator straight a plus straight b end fraction equals fraction numerator 7 over denominator 4 straight a plus straight b end fraction end cell row cell rightwards double arrow 8 straight a plus 2 straight b equals 7 straight a plus 7 straight b end cell row cell rightwards double arrow text   end text box enclose straight a equals 5 straight b end enclose end cell end table
rightwards double arrow straight a space minus space 5 straight b equals 0 end style

So, the correct option is (c).Question 11

If a pair of linear equations in two variables is consistent, then the lines represented by two equations are

(a) Intersecting             (b) parallel

(c) always coincident       (d) intersecting or coincidentSolution 11

Consistent solution means either linear equations have unique solutions or infinite solutions.

⇒ In case of unique solution; lines are intersecting

⇒ If solutions are infinite, lines are coincident.

So, lines are either intersecting or coincident

So, the correct option is (d).Question 12

begin mathsize 11px style The space area space of space the space triangle space formed space by space the space line space straight x over straight a plus straight y over straight b equals 1 space
with space the space coordinate space axes space is
left parenthesis straight a right parenthesis text ab      end text left parenthesis straight b right parenthesis text 2ab      end text left parenthesis straight c right parenthesis 1 half ab text        end text left parenthesis straight d right parenthesis 1 fourth ab
end style

Solution 12

begin mathsize 11px style Intercept space on space straight x space minus space axis space equals space straight a
Intercept space on space straight y minus space axis space equals space straight b

table attributes columnalign left end attributes row cell space space space area text   end text of text   end text triangle equals 1 half cross times straight a cross times straight b end cell row cell text                               end text equals 1 half ab end cell end table end style

So, the correct option is (c).Question 13

The area of the triangle formed by the lines

y=x,  x=6, and  y=0  is

(a) 36 sq. units      

(b) 18 sq. units

(c) 9 sq. units         

(d) 72 sq. unitsSolution 13

begin mathsize 11px style table attributes columnalign left end attributes row cell area text  of triangle =  end text 1 half cross times 6 cross times 6 end cell row cell text                             = 18 sq. units    end text end cell end table end style

So, the correct option is (b).Question 14

If the system of equations 2x + 3y=5,  4x + ky =10 has infinitely many solutions, then k=

(a) 1     

(b) begin mathsize 12px style 1 half end style    

(c) 3    

(d) 6Solution 14

begin mathsize 11px style table attributes columnalign left end attributes row cell If text  the equations,       a end text subscript text 1 end text end subscript straight x plus straight b subscript 1 straight y plus straight c subscript 1 equals 0 text       --- end text box enclose 1 end cell row cell text                                 a end text subscript 2 straight x plus straight b subscript 2 straight y plus straight c subscript 2 equals 0 text       --- end text box enclose 2 end cell row cell For space infinitely text   end text many text  solution    end text text a end text subscript blank to the power of text 1 end text end exponent end subscript over straight a subscript 2 equals text b end text subscript blank to the power of text 1 end text end exponent end subscript over straight b subscript 2 equals text c end text subscript blank to the power of text 1 end text end exponent end subscript over straight c subscript 2 text  --- end text box enclose 3 end cell row cell Comparing text  the given equations end text to the power of blank text  to  end text box enclose 1 text   &   end text box enclose 2 end cell row cell We text  get, end text end cell row cell text           a end text subscript text 1 end text end subscript equals 2 text          b end text subscript text 1 end text end subscript equals 3 text          c end text subscript text 1 end text end subscript equals negative 5 end cell row cell text           a end text subscript 2 equals 4 text          b end text subscript 2 equals straight k text          c end text subscript text 1 end text end subscript equals negative 10 end cell row cell rightwards double arrow text     end text from text   end text box enclose 3 end cell row cell text                    end text 2 over 4 equals 3 over straight k equals fraction numerator negative 5 over denominator negative 10 end fraction end cell row cell text               end text rightwards double arrow text   end text 3 over straight k equals 1 half end cell row cell text              end text rightwards double arrow text     end text box enclose straight k equals 6 end enclose end cell end table end style

So, the correct option is (d).Question 15

If the system of equations  kx – 5y = 2,  6x +2y=7 has no solution, then k=

(a) -10     

(b) -5      

(c) -6     

(d)-15Solution 15

begin mathsize 11px style table attributes columnalign left end attributes row cell If text  equations end text to the power of blank text           a end text subscript text 1 end text end subscript straight x text  + b end text subscript text 1 end text end subscript text y + c end text subscript text 1 end text end subscript text  = 0         --- end text box enclose 1 end cell row cell text                      and   a end text subscript 2 straight x text  + b end text subscript 2 text y + c end text subscript text 2 end text end subscript text  = 0         --- end text box enclose 2 end cell row cell have text  no solution, then end text end cell row cell text                  end text straight a subscript 1 over straight a subscript 2 equals straight b subscript 1 over straight b subscript 2 not equal to straight c subscript 1 over straight c subscript 2 text       --- end text box enclose 3 end cell row cell On text  comparing with given equation end text to the power of blank text   to   end text box enclose 1 text    &   end text box enclose 2 end cell row cell we text   end text get end cell row cell text          a end text subscript text 1 end text end subscript equals straight k text        b end text subscript text 1 end text end subscript equals text  -5      c end text subscript text 1  end text end subscript equals text  -2 end text end cell row cell text          a end text subscript 2 equals 6 text        b end text subscript 2 equals text  2      c end text subscript 2 equals text  -7 end text end cell row cell text From equation  end text box enclose 3 end cell row cell text             end text straight k over 6 equals text   end text fraction numerator negative 5 over denominator 2 end fraction text   end text not equal to text   end text 2 over 7 end cell row cell text       end text rightwards double arrow text    end text box enclose straight k equals negative 15 end enclose end cell end table end style

So, the correct option is (d).Question 16

The area of the triangle formed by the lines

x = 3, y = 4 and x = y is

(a) begin mathsize 12px style 1 half end style sq. unit    

(b) 1 sq. unit

(c) 2 sq. unit     

(d) None of theseSolution 16

begin mathsize 11px style table attributes columnalign left end attributes row cell area text  of triangle  =  end text 1 half cross times 1 cross times 1 end cell row cell text                              =  end text 1 half text  sq. unit end text end cell end table end style

So, the correct option is (a).

Chapter 3 – Pairs of Linear Equations in Two Variables Exercise 3.116

Question 17

The area of the triangle formed by the lines

2x + 3y = 12,     x – y – 1= 0  and x = 0

(a) 7 sq. units          

(b) 7.5 sq. units

(c) 6.5 sq. units        

(d) 6 sq. units   Solution 17

begin mathsize 11px style From space figure space shown comma space the space required space triangle space is space as space shown space above.
BD space equals space 5 space Units space space space and space space space space space PO space equals space 3 space Units
table attributes columnalign left end attributes row cell area text   end text of space triangle text   end text equals 1 half cross times 5 cross times 3 end cell row cell text                               =  end text 15 over 2 equals text  7.5 sq. Units end text end cell end table end style

So, the correct option is (b).Question 18

The sum of the digits of a two digit number is 9. If 27 is added to it, the digits of the number get reversed. The number is

  1. 25
  2. 72
  3. 63
  4. 36

Solution 18

Question 19

If x = a, y = b is the solution of the system of equations x – y = 2 and x + y = 4, then the values of a and b are, respectively

  1. 3 and 1
  2. 3 and 5
  3. 5 and 3
  4. -1 and -3

Solution 19

Since x = a and y = b is the solution of given system of equations x – y = 2 and x + y = 4, we have

a – b = 2 ….(i)

a + b = 4 ….(ii)

Adding (i) and (ii), we have

2a = 6 ⇒ a = 3

⇒ b = 4 – 3 = 1

Hence, correct option is (a).Question 20

For what value k, do the equations 3x – y + 8 = 0 and 6x – ky + 16 = 0 represent coincident lines?

  1. 2
  2. -2

Solution 20

Question 21

Aruna has only Rs.1 and Rs.2 coins with her. If the total number of coins that she has is 50 and the amount of money with her is Rs.75, then the number of Rs.1 and Rs.2 coins are, respectively

  1. 35 and 15
  2. 35 and 20
  3. 15 and 35
  4. 25 and 25

Solution 21

Read More

RD SHARMA SOLUTION CHAPTER- 2 Polynomials| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 2 Polynomials Exercise Ex. 2.1

Question 1(i)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

f(x) = x2 – 2x – 8 Solution 1(i)

x2 – 2x – 8 = x2 – 4x + 2x – 8 = x(x – 4) + 2(x – 4) = (x – 4)(x + 2) The zeroes of the quadratic equation are 4 and -2. Let ∝ = 4 and β = -2 Consider f(x) = x2 – 2x – 8 Sum of the zeroes =  …(i) Also, ∝ + β = 4 – 2 = 2 …(ii) Product of the zeroes =  …(iii) Also, ∝ β = -8 …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients isverified.Question 1(ii)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

g(s) = 4s2 – 4s + 1 Solution 1(ii)

4s2 – 4s + 1 = 4s2 – 2s – 2s + 1 = 2s(2s – 1) – (2s – 1) = (2s – 1)(2s – 1) The zeroes of the quadratic equation are  and  . Let ∝ =   and β =   Consider4s2 – 4s + 1 Sum of the zeroes =  …(i) Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 1(iii)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

h (t) = t2 – 15 Solution 1(iii)

h (t) = t2 – 15 = (t + √15)(t – √15)  The zeroes of the quadratic equation are and  . Let ∝ =   and β =   Considert2 – 15 = t2 – 0t – 15 Sum of the zeroes =  …(i) Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 1(iv)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

f(s) = 6x2 – 3 – 7x Solution 1(iv)

f(s) = 0 6x2 – 3 – 7x =0 6x2 – 9x + 2x – 3 = 0 3x (2x – 3) + (2x – 3) = 0 (3x + 1) (2x – 3) = 0 The zeroes of a quadratic equation are   and  . Let ∝ =   and β =   Consider6x2 – 7x – 3 = 0 Sum of the zeroes =  …(i) Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 1(v)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

Solution 1(v)

  The zeroes of a quadratic equation are  and  . Let ∝ =   and β =   Consider  Sum of the zeroes =  …(i) Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 1(vi)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

Solution 1(vi)

  The zeroes of a quadratic equation are  and  . Let ∝ =   and β =   Consider  Sum of the zeroes =  …(i) Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 1(vii)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

Solution 1(vii)

  The zeroes of a quadratic equation are   and 1. Let ∝ =   and β = 1 Consider  Sum of the zeroes =  …(i)  Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 1(viii)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

Solution 1(viii)

   The zeroes of a quadratic equation are a and . Let ∝ = a and β =  Consider  Sum of the zeroes =  …(i)  Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 1(ix)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

Solution 1(ix)

  The zeroes of a quadratic equation are  and  . Let ∝ =   and β =   Consider  Sum of the zeroes =  …(i)  Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 1(x)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

Solution 1(x)

  The zeroes of a quadratic equation are  and  . Let ∝ =   and β =   Consider =0 Sum of the zeroes =  …(i)  Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 1(xi)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

Solution 1(xi)

  The zeroes of a quadratic equation are   and . Let ∝ =   and β =  Consider =0 Sum of the zeroes =  …(i)  Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 1(xii)

Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients:

Solution 1(xii)

  The zeroes of a quadratic equation are   and . Let ∝ =   and β =  Consider =0 Sum of the zeroes =  …(i)  Also, ∝ + β =  …(ii) Product of the zeroes =  …(iii) Also, ∝ β =  …(iv) Hence, from (i), (ii), (iii) and (iv),the relationship between the zeroes and their coefficients is verified.Question 2(i)

For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of these polynomials by factorization.

Solution 2(i)

Question 2(ii)

For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of these polynomials by factorization.

Solution 2(ii)

Question 2(iii)

For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of these polynomials by factorization.

Solution 2(iii)

Question 2(iv)

For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of these polynomials by factorization.

Solution 2(iv)

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

(i)



(ii)



(iii)



(iv)



(v)



(vi)



(vii)



(viii)

 

Chapter 2 Polynomials Exercise Ex. 2.2

Question 1Verify that the numbers given along side of the cubic polynomials below are their zeros. Also, verify the relationship between the zeros and coefficients in each case:


Solution 1

On comparing the given polynomial with the polynomial ax3 + bx2 + cx + d, we obtain a = 2, b = 1, c = -5, d = 2

Thus, the relationship between the zeroes and the coefficients is verified.

On comparing the given polynomial with the polynomial ax3 + bx2 + cx + d, we obtain a = 1, b = -4, c = 5, d = -2.

Thus, the relationship between the zeroes and the coefficients is verified.

Concept insight: The zero of a polynomial is that value of the variable which makes the polynomial 0. Remember that there are three  relationships between the zeroes of a cubic polynomial and its coefficients which involve the sum of zeroes, product of all zeroes and the product of zeroes taken two at a time.

Question 2

Solution 2

Question 3

Find all zeroes of the polynomial 3x3 + 10x2 – 9x – 4, if one of its zeroes is 1.Solution 3

Let f(x) = 3x3 + 10x2 – 9x – 4 

As 1 is one of the zeroes of the polynomial, so (x – 1) becomes the factor of f(x).

Dividing f(x) by (x – 1), we have

Hence, the zeroes are   Question 4

If 4 is a zero of the cubic polynomial x3 – 3x2 – 10x + 24, find its other two zeroes.Solution 4

Let f(x) = x3 – 3x2 – 10x + 24 

As 4 is one of the zeroes of the polynomial, so (x – 4) becomes the factor of f(x).

Dividing f(x) by (x – 4), we have

Hence, the zeroes are 4, -3 and 2.Question 5

Solution 5

Question 6

Solution 6

Chapter 2 Polynomials Exercise Ex. 2.3

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Find all zeros of the polynomial 2x4 – 9x3 + 5x2 + 3x – 1, if two of its zeros are   Solution 11

Let f(x) = 2x4 – 9x3 + 5x2 + 3x – 1 

As   are two of the zeroes of the polynomial, so   becomes the factor of f(x).

Dividing f(x) by   we have

Hence, the other zeros   Question 12

For what value of k, is the polynomial f(x) = 3x4 – 9x3 + x2 + 15x + k completely divisible by 3x2 – 5?Solution 12

Let f(x) = 3x4 – 9x3 + x2 + 15x + k 

As f(x) is completely divisible by 3x2 – 5, it becomes one of the factors of f(x).

Dividing f(x) by 3x2 – 5, we have

As (3x2 – 5) is one of the factors, the remainder will be 0.

Therefore, k + 10 = 0

Thus, k = -10.Question 13

Solution 13

Question 14

Solution 14

Chapter 2 Polynomials Exercise 2.61

Question 1

begin mathsize 12px style If space straight alpha comma space straight beta space are space the space zeros space of space the space polynomial space straight f open parentheses straight x close parentheses space equals space straight x squared space plus space straight x space plus space 1 comma space then space 1 over straight alpha space plus space 1 over straight beta space equals end style

(a) 1

(b) -1

(c) 0

(d) None of theseSolution 1

begin mathsize 12px style We space know comma space for space straight a space quadratic space equation comma space having space roots space straight alpha space and space straight beta
ax squared space plus space bx space plus space straight c space equals space 0 space space space space space space space space space space space space space space space space space........ open parentheses 1 close parentheses
straight alpha space plus space straight beta space equals space fraction numerator negative space straight b over denominator straight a end fraction space and space αβ space equals space straight c over straight a
Now comma space according space to space the space question
straight x squared space plus space straight x space plus space 1 space equals space 0
On space comparison space with space open parentheses 1 close parentheses
box enclose straight a space equals space 1 end enclose space space space space space space box enclose straight b space equals space 1 end enclose space space space space space space space box enclose straight c space equals space 1 end enclose
Hence space box enclose straight alpha space plus space straight beta space equals space minus 1 end enclose space space space space space space....... open parentheses 2 close parentheses space and space box enclose αβ space equals space 1 end enclose space space space space space space space space space space space space....... open parentheses 3 close parentheses
To space find space colon space 1 over straight alpha space plus space 1 over straight beta
space space space space space space space space space space space space space space space rightwards double arrow space fraction numerator straight alpha space plus space straight beta over denominator αβ end fraction
from space eq to the power of straight n space space open parentheses 2 close parentheses space & space open parentheses 3 close parentheses
box enclose 1 over straight alpha space plus space 1 over straight beta space equals space minus 1 end enclose
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 2

begin mathsize 12px style If space straight alpha space and space straight beta space are space zeros space of space the space polynomial space straight p open parentheses straight x close parentheses space equals space 4 straight x squared space plus space 3 straight x space plus space 7 comma space then space 1 over straight alpha space plus space 1 over straight beta is space equal space to
open parentheses straight a close parentheses space 7 over 3
open parentheses straight b close parentheses space fraction numerator negative 7 over denominator 3 end fraction
open parentheses straight c close parentheses space 3 over 7
open parentheses straight d close parentheses space fraction numerator negative 3 over denominator 7 end fraction end style

Solution 2

begin mathsize 12px style We space know space that comma space quadratic space equations space having space roots space straight alpha space and space straight beta
ax squared space plus space bx space plus space straight c space equals space 0 space space space space space space space space space....... open parentheses 1 close parentheses
straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space αβ space equals space straight c over straight a
Now comma space according space to space the space question comma space the space equation space is
4 straight x squared space plus space 3 straight x space plus space 7 space equals space 0
On space comparing space with space equation space left parenthesis 1 right parenthesis comma
box enclose straight a space equals space 4 end enclose space space space space space space space space space space box enclose straight b space equals space 3 end enclose space space space space space space space space space space space space box enclose straight c space equals space 7 end enclose
Hence space box enclose straight alpha space plus space straight beta space equals space fraction numerator negative 3 over denominator 4 end fraction end enclose space space........ left parenthesis 2 right parenthesis space space space space space space space space and space space space space space box enclose αβ space equals space 7 over 4 end enclose space space space....... open parentheses 3 close parentheses
To space find space colon space 1 over straight alpha space plus space 1 over straight beta
space space space space space space space space space space space space rightwards double arrow space fraction numerator straight alpha space plus space straight beta over denominator αβ end fraction
from space eq space open parentheses 2 close parentheses space and space open parentheses 3 close parentheses
1 over straight alpha space plus space 1 over straight beta space equals space fraction numerator negative 3 divided by 4 over denominator 7 divided by 4 end fraction
space space space space space space space space space space space space space space space space space space space space equals space fraction numerator negative 3 over denominator 7 end fraction end style

So, the correct option is (d).Question 3

If one zero of the polynomial f(x) = (k2 + 4)x+ 13x + 4k is reciprocal of the other, then k =

(a) 2

(b) -2

(c) 1

(d) -1Solution 3

begin mathsize 12px style We space know space that comma space for space straight a space quadratic space equation space having space roots space straight alpha space and space straight beta
ax squared space plus space bx space plus space straight c space equals space 0 space space space space space space space space space....... open parentheses 1 close parentheses
straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space space space space space space space space space space space αβ space equals space straight c over straight a space space space space space space space space space...... open parentheses 2 close parentheses
Now comma space according space to space the space question comma space the space equation space is
open parentheses straight k squared space plus space 4 close parentheses space straight x squared space plus space 13 straight x space plus space 4 straight k space equals space 0 space space space space space space....... open parentheses 3 close parentheses
Let space one space root space of space the space equation space is space straight alpha comma space then
according space to space the space question space another space root space of space equation space given space above space is space 1 over straight alpha.
On space comparing space eq space open parentheses 3 close parentheses space with space eq space open parentheses 1 close parentheses
box enclose straight a space equals straight k squared plus space 4 end enclose space space space space space space space space space space space space space box enclose straight b space equals space 13 end enclose space space space space space space space space space box enclose straight c space equals space 4 straight k end enclose
Hence comma
straight alpha space cross times space 1 over straight alpha space equals space fraction numerator 4 straight k over denominator straight k squared space plus space 4 end fraction
rightwards double arrow space straight k squared space plus space 4 space equals space 4 straight k
rightwards double arrow straight k squared space minus space 4 straight k space plus space 4 space equals space 0
rightwards double arrow space open parentheses straight k space minus space 2 close parentheses squared space equals space 0
rightwards double arrow space straight k space equals space 2
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Chapter 2 Polynomials Exercise 2.62

Question 4

If the sum of the zeros of the polynomial f(x) = 2x3 – 3kx2 + 4x – 5 is 6, then value of k is

(a) 2

(b) 4

(c) -2

(d) -4Solution 4

begin mathsize 12px style We space know space that comma space for space straight a space quadratic space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space space space space space space...... open parentheses 1 close parentheses
straight alpha space plus space straight beta space plus space straight gamma space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space....... open parentheses 2 close parentheses
Now comma space according space to space the space question comma space the space equation space is
2 straight x cubed space minus space 3 kx squared space plus space 4 straight x space minus space 5 space equals space 0 space space space space space space space space space space space space space space....... left parenthesis 3 right parenthesis
On space comparing space equation space open parentheses 3 close parentheses space with space equation space open parentheses 1 close parentheses
box enclose straight a space equals space 2 end enclose space space space space space space space space space space box enclose straight b space equals space minus 3 straight k end enclose space space space space space space space space space space space space box enclose straight c space equals space 4 end enclose space space space space space space space box enclose straight d space equals space minus 5 end enclose
According space to space the space question comma space from space equation space open parentheses 2 close parentheses
straight alpha space plus space straight beta space plus space straight gamma space equals space 6
therefore space fraction numerator negative open parentheses negative 3 straight k close parentheses over denominator 2 end fraction equals space 6
space space space space space space space space space space space space space space space space space 3 straight k space equals space 12
space space space space space space space space space space space space space space space space space space space straight k space equals space 4 end style

So, the correct option is (b).Question 5

begin mathsize 12px style If space straight alpha space and space straight beta space are space the space zeros space of space the space polynomial space straight f open parentheses straight x close parentheses space equals space straight x squared space plus space px space plus space straight q comma space then space straight a space polynomial space having space 1 over straight alpha space and space 1 over straight beta space as space its space zeros space is end style

(a) x+ qx + p

(b) x2 – px + q

(c) qx2 + px + 1

(d) px2 + qx + 1Solution 5

begin mathsize 12px style We space know space that comma space quadratic space equation space having space roots space straight alpha space and space straight beta
ax squared space plus space bx space plus space straight c space equals space 0 space space space space space...... open parentheses 1 close parentheses

straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space space...... open parentheses 2 close parentheses
αβ space equals space straight c over straight a space space space space space space space space space space..... open parentheses 3 close parentheses
Eq. space open parentheses 1 close parentheses space can space also space be space written space as
straight x squared space plus space open parentheses straight b over straight a close parentheses straight x space plus space straight c over straight a space equals space 0
straight x to the power of 2 space end exponent space minus space open parentheses fraction numerator negative straight b over denominator straight a end fraction close parentheses straight x space plus space straight c over straight a space equals space 0
straight x squared space minus space open parentheses sum space of space roots close parentheses space straight x space plus space open parentheses product space of space roots close parentheses space equals space 0 space space space space space space space space space..... open parentheses 4 close parentheses
Now comma space according space to space the space question comma space the space equation space is
straight x squared space plus space px space plus space straight q space equals space 0
on space comparing space with space eq. space open parentheses 1 close parentheses
box enclose straight a space equals space 1 end enclose space space space space space space space space box enclose straight b space equals space straight p end enclose space space space space space space space space box enclose straight c space equals space straight q end enclose
Hence comma
straight alpha space plus space straight beta space equals space minus straight p space space space space space space space space space space space space..... open parentheses 5 close parentheses
αβ space equals space straight q space space space space space space space....... open parentheses 6 close parentheses
According space to space eq space open parentheses 4 close parentheses space equation space having space roots space 1 over straight alpha space and space 1 over straight beta
rightwards double arrow space straight x squared space minus space open parentheses 1 over straight alpha space plus space 1 over straight beta close parentheses straight x space plus space open parentheses 1 over αβ close parentheses space equals space 0
rightwards double arrow straight x squared space minus space open parentheses fraction numerator straight alpha space plus space straight beta over denominator αβ end fraction close parentheses straight x space plus space open parentheses 1 over αβ close parentheses space equals space 0
rightwards double arrow According space to space eq. space open parentheses 5 close parentheses space and space eq. space open parentheses 6 close parentheses
straight x squared space minus space open parentheses fraction numerator negative straight p over denominator straight q end fraction close parentheses straight x space plus space open parentheses 1 over straight q close parentheses space equals space 0
qx squared space plus space px space plus space 1 space equals space 0
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 6

If α, β are the zeros of polynomial f(x) = x– p(x + 1) – c, then (α + 1) (β + 1) =

(a) c – 1

(b) 1 – c

(c) c

(d) 1 + cSolution 6

begin mathsize 12px style We space know space that comma space for space straight a space space quadratic space equation space having space roots space straight alpha space and space straight beta
ax squared space plus space bx space plus space straight c space equals space 0 space space space space space space space space space space space........ open parentheses 1 close parentheses
straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space...... open parentheses 2 close parentheses
αβ space equals space straight c over straight a space space space space space space space space space space space....... open parentheses 3 close parentheses
Now comma space according space to space the space question comma space the space equation space is
straight x squared space minus space straight p open parentheses straight x space plus space 1 close parentheses space minus space straight c space equals space 0
This space equation space can space also space written space as
straight x squared space minus space px space minus space straight p space minus space straight c space equals space 0
straight x squared space minus space px space minus space open parentheses straight p space plus space straight c close parentheses space equals space 0 space space space space space space space space..... open parentheses 4 close parentheses
Comparing space equation space open parentheses 4 close parentheses space with space equation space open parentheses 1 close parentheses
straight alpha space plus space straight beta space equals space straight p space space space space space space space space space space space.... open parentheses 5 close parentheses
αβ space equals space minus open parentheses straight p space plus space straight c close parentheses space space space space space space space space space space space..... open parentheses 6 close parentheses
Now comma space the space value space of space open parentheses 1 space plus space straight alpha close parentheses space open parentheses 1 space plus space straight beta close parentheses
open parentheses 1 space plus space straight alpha close parentheses space open parentheses 1 space plus space straight beta close parentheses
rightwards double arrow 1 space plus space straight alpha space plus space straight beta space plus space αβ
rightwards double arrow 1 space plus space open parentheses straight alpha space plus space straight beta close parentheses space plus space αβ
According space to space equation space open parentheses 5 close parentheses space & space equation space open parentheses 6 close parentheses
rightwards double arrow 1 space plus space straight p space minus space straight p space minus space straight c
rightwards double arrow space 1 space minus space straight c
Hence comma space value space of space open parentheses 1 space plus space straight alpha close parentheses space open parentheses 1 space plus space straight beta close parentheses space is space 1 space minus space straight c.
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 7

If α, β are the zeros of the polynomial f(x) = x– p(x + 1) – c such that (α + 1) (β + 1) = 0 then c =

(a) 1

(b) 0

(c) -1

(d) 2Solution 7

begin mathsize 12px style We space know space that comma space for space straight a space space quadratic space equation space having space roots space straight alpha space and space straight beta
ax squared space plus space bx space plus space straight c space equals space 0 space space space space space space space space space space space........ open parentheses 1 close parentheses
straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space...... open parentheses 2 close parentheses
αβ space equals space straight c over straight a space space space space space space space space space space space....... open parentheses 3 close parentheses
Now comma space according space to space the space question comma space the space equation space is
straight x squared space minus space straight p open parentheses straight x space plus space 1 close parentheses space minus space straight c space equals space 0
This space equation space can space also space written space as
straight x squared space minus space px space minus space straight p space minus space straight c space equals space 0
straight x squared space minus space px space minus space open parentheses straight p space plus space straight c close parentheses space equals space 0 space space space space space space space space..... open parentheses 4 close parentheses
Comparing space equation space open parentheses 4 close parentheses space with space equation space open parentheses 1 close parentheses
straight alpha space plus space straight beta space equals space straight p space space space space space space space space space space space.... open parentheses 5 close parentheses
αβ space equals space minus open parentheses straight p space plus space straight c close parentheses space space space space space space space space space space space..... open parentheses 6 close parentheses
Now comma space the space value space of space open parentheses 1 space plus space straight alpha close parentheses space open parentheses 1 space plus space straight beta close parentheses
open parentheses 1 space plus space straight alpha close parentheses space open parentheses 1 space plus space straight beta close parentheses
rightwards double arrow 1 space plus space straight alpha space plus space straight beta space plus space αβ
rightwards double arrow 1 space plus space open parentheses straight alpha space plus space straight beta close parentheses space plus space αβ
According space to space equation space open parentheses 5 close parentheses space & space equation space open parentheses 6 close parentheses
rightwards double arrow 1 space plus space straight p space minus space straight p space minus space straight c
rightwards double arrow space 1 space minus space straight c
Hence comma space value space of space open parentheses 1 space plus space straight alpha close parentheses space open parentheses 1 space plus space straight beta close parentheses space is space 1 space minus space straight c. end style

Given that (α + 1) (β + 1) = 0

begin mathsize 12px style therefore space 1 space minus space straight c space equals space 0
space space space space space space space space space space space space space space straight c space equals space 1 end style

So, the correct option is (a).Question 8

If f(x) = ax2 + bx + c has no real zeros and a + b + c < 0, then

(a) c = 0

(b) c > 0

(c) c < 0

(d) None of theseSolution 8

We know that, if the quadratic equation ax2 + bx + c = 0 has no real zeros

then

Case 1:

a > 0, the graph of quadratic equation should not intersect x – axis

It must be of the type

Case 2 :

a < 0, the graph will not intersect x – axis and it must be of type

According to the question,

a + b + c < 0

This means,

f(1) = a + b + c

f(1) < 0

Hence, f(0) < 0 [as Case 2 will be applicable]

begin mathsize 12px style therefore space straight c space less than space 0 end style

 So, the correct option is (c).Question 9

If the diagram in figure show the graph of the polynomial f(x) = ax2 + bx + c then

(a) a < 0, b < 0 and c > 0

(b) a < 0, b < 0 and c < 0

(c) a < 0, b > 0 and c > 0

(d) a < 0, b > 0 and c < 0Solution 9

begin mathsize 12px style We space know space that comma space if space the space graph space of space the space quadratic space equation space is space concave space upward comma space then space the
space box enclose straight a space greater than space 0 end enclose
rightwards double arrow from space the space graph space given space above comma
straight f left parenthesis 0 right parenthesis space greater than space 0 space open square brackets as space graph space intersect space at space positive space straight y minus space axis close square brackets
Hence space box enclose straight c space greater than thin space 0 end enclose
rightwards double arrow As space the space straight x minus coordinate space of space point space Plies space on space the space positive space side space of space the space straight x space minus space axis comma
therefore space fraction numerator negative straight b over denominator 2 straight a end fraction space greater than space 0
Hence space space box enclose straight b space less than space 0 end enclose
therefore space Conditions space from space the space graph space given space above space must space be
rightwards double arrow space straight a space greater than space 0 comma space straight b space less than space 0 space and space straight c space greater than space 0
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 10

Figure shows the graph of the polynomial f(x) = ax2 + bx + c for which

(a) a < 0, b > 0 and c > 0

(b) a > 0, b < 0 and c > 0

(c) a < 0, b < 0 and c < 0

(d) a > 0, b > 0 and c < 0Solution 10

Error converting from MathML to accessible text.

Question 11

begin mathsize 12px style If space the space product space of space zeros space of space the space polynomial space straight f left parenthesis straight x right parenthesis space equals space ax cubed space minus space space 6 straight x squared plus space 11 straight x space minus space 6 space is space 4 comma space then space straight a space equals
left parenthesis straight a right parenthesis space 3 over 2
left parenthesis straight b right parenthesis space fraction numerator negative 3 over denominator 2 end fraction
left parenthesis straight c right parenthesis space 2 over 3
left parenthesis straight d right parenthesis space fraction numerator negative 2 over denominator 3 end fraction end style

Solution 11

begin mathsize 12px style We space know space that comma space for space straight a space cubic space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space space space....... left parenthesis 1 right parenthesis
box enclose αβγ space equals space fraction numerator negative straight d over denominator straight a end fraction end enclose space space space space space space space space space space....... left parenthesis 2 right parenthesis
Now comma space according space to space the space question comma space the space equation space is
ax cubed space minus space 6 straight x squared space plus space 11 straight x space minus space 6 space equals space 0 space space space space space space space space space..... left parenthesis 3 right parenthesis
straight O straight n space comparing space equation space left parenthesis 3 right parenthesis space with space equation space left parenthesis 1 right parenthesis
box enclose straight b space equals space minus 6 end enclose space space space space space space space space space space box enclose straight c space equals space 11 end enclose space space space space space space space space space space space box enclose straight d space equals space minus 6 end enclose
Now comma space according space to space equation space left parenthesis 2 right parenthesis
6 over straight a space equals space 4
straight a space equals space 3 over 2
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 12

If zeros of the polynomial f(x) = x3 – 3px2 + qx – r are in A.P, then

(a) 2p3 = pq – r

(b) 2p3 = pq + r

(c) p3 = pq – r

(d) None of theseSolution 12

begin mathsize 12px style We space know space that comma space for space straight a space space cubic space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space space space space..... left parenthesis 1 right parenthesis
box enclose straight alpha space plus space straight beta space plus straight gamma space equals space fraction numerator negative straight b over denominator straight a end fraction end enclose space space space space space space...... left parenthesis 2 right parenthesis space space space space space space space space space space space space space space space space space space space space space box enclose αβ space plus space βγ space plus space αγ space equals space straight c over straight a end enclose space space space space space space space....... open parentheses 3 close parentheses space space space space space space space space space space space space space space space box enclose αβγ space equals space fraction numerator negative straight d over denominator straight a end fraction space end enclose space space space space space space space........ left parenthesis 4 right parenthesis space space
According space to space the space question comma space roots space are space in space straight A. straight P
Thus comma space let space the space roots space are space space straight s space plus space straight t comma space straight s comma space straight s space minus space straight t
Given space equation space is
straight x cubed space minus space 3px squared space plus space qx space minus space straight r space equals space 0 space space space space space..... left parenthesis 5 right parenthesis
On space comparing space equation space open parentheses 5 close parentheses space with space equation space open parentheses 1 close parentheses
box enclose straight a space equals space 1 end enclose space space space space space space box enclose straight b equals space minus 3 straight p end enclose space space space space space space space space space box enclose straight c space equals space straight q end enclose space space space space space space space space space space box enclose straight d space equals space minus straight r end enclose
Then comma space according space to space the space question
open parentheses straight s space plus space straight t close parentheses space plus space straight s space plus space open parentheses straight s space minus space straight t close parentheses space equals space 3 straight p
3 straight s space equals space 3 straight p
box enclose straight s space equals space straight p end enclose space space space space space space space space space space space space space space space.... open parentheses 6 close parentheses
straight s space open parentheses straight s space plus space straight t close parentheses space left parenthesis straight s space minus space straight t right parenthesis space equals space straight r
straight s space open parentheses straight s squared space minus space straight t squared close parentheses space equals space straight r
straight s cubed space minus space st squared space equals space straight r
from space equation space open parentheses 6 close parentheses
box enclose straight p cubed space minus space pt squared space equals space straight r end enclose space space space space space space space space space space space space space space space space space space space...... open parentheses 7 close parentheses
straight s space open parentheses straight s space plus space straight t close parentheses space plus space open parentheses straight s squared space minus space straight t squared close parentheses space plus space straight s space open parentheses straight s space minus space straight t close parentheses space equals space minus straight q
straight s squared space plus space st space plus space straight s squared space minus space straight t squared space plus space straight s squared space minus space st space equals space minus straight q
3 straight s squared space minus space straight t squared space equals negative straight q
box enclose straight t squared space equals space minus straight q space plus space 3 straight s squared end enclose space space space space space space space space space space space space...... open parentheses 8 close parentheses
Putting space value space of space straight t squared space in space equation space open parentheses 7 close parentheses
straight p cubed space minus space straight p space open parentheses negative straight q space plus space 3 straight p squared close parentheses space equals space straight r
straight p cubed space plus space pq space minus space 3 straight p squared space equals space straight r
box enclose 2 straight p cubed space equals space pq space minus space straight r end enclose
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Chapter 2 Polynomials Exercise 2.63

Question 13

begin mathsize 12px style If space the space product space of space two space zeros space of space polynomial space straight f open parentheses straight x close parentheses space equals space 2 straight x cubed space plus space 6 straight x squared space minus space 4 straight x space plus space 9 space is space 3 comma space then space its space third space zero space is
open parentheses straight a close parentheses space 3 over 2 space
open parentheses straight b close parentheses space fraction numerator negative 3 over denominator 2 end fraction
open parentheses straight c close parentheses space 9 over 2
open parentheses straight d close parentheses space fraction numerator negative 9 over denominator 2 end fraction end style

Solution 13

begin mathsize 12px style We space know space that comma space for space straight a space cubic space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space space space..... open parentheses 1 close parentheses
box enclose αβγ space equals fraction numerator negative straight d over denominator straight a end fraction end enclose space space space space space space space space.... open parentheses 2 close parentheses
According space to space the space question comma space the space equation space is
2 straight x cubed space plus space 6 straight x squared space minus space 4 straight x space plus space 9 space equals space 0 space space space space space space space space..... open parentheses 3 close parentheses
On space comparing space equation space open parentheses 3 close parentheses space with space equation space open parentheses 2 close parentheses
box enclose straight a space equals space 2 end enclose space space space space space box enclose straight b space equals space 6 end enclose space space space space space box enclose straight c space equals space minus 4 end enclose space space space space space space space space box enclose straight d space equals space 9 end enclose
According space to space equation space open parentheses 2 close parentheses
αβγ space equals space fraction numerator negative 9 over denominator 2 end fraction
Given space that space product space of space straight beta space and space straight alpha space is space 3
3 space cross times space straight gamma space equals space fraction numerator negative 9 over denominator 2 end fraction
straight gamma space equals space fraction numerator negative 3 over denominator 2 end fraction end style

So, the correct option is (b).Question 14

begin mathsize 12px style If space the space polynomial space straight f open parentheses straight x close parentheses space equals space ax cubed space plus space bx space minus space straight c space is space divisible space by space the space polynomial space straight g open parentheses straight x close parentheses space equals space straight x squared space plus space bx space plus space straight c comma space then space ab space equals
open parentheses straight a close parentheses space 1
open parentheses straight b close parentheses space 1 over straight c
open parentheses straight c close parentheses space minus 1
open parentheses straight d close parentheses space fraction numerator negative 1 over denominator straight c end fraction end style

Solution 14

Error converting from MathML to accessible text.

Question 15

In Q. No. 14, c =

(a) b

(b) 2b

(c) 2b2

(d) -2bSolution 15

Error converting from MathML to accessible text.

So, the correct option is (c).Question 16

Error converting from MathML to accessible text.

Solution 16

begin mathsize 12px style We space know space that comma space for space straight a space quadratic space equation space having space roots space straight alpha space and space straight beta
ax squared space plus space bx space plus space straight c space equals space 0 space space space space space space.... open parentheses 1 close parentheses
box enclose straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction end enclose space space space space space space space space space.... open parentheses 2 close parentheses
box enclose αβ space equals space straight c over straight a end enclose space space space space space.... open parentheses 3 close parentheses
According space to space the space question comma space the space equation space is
5 straight x squared space plus space 13 straight x space plus space straight k space equals space 0 space space space space...... left parenthesis 4 right parenthesis
comparing space equation space open parentheses 4 close parentheses space with space equation space open parentheses 1 close parentheses
box enclose straight a space equals space 5 end enclose space space space space space space space space space box enclose straight b space equals space 13 end enclose space space space space space space space space box enclose space straight c space equals space straight k end enclose
Given space that space one space root space of space the space polynomial space is space the space reciprocal space of space the space other space root
Let space the space roots space of space equation space be space straight alpha space and space 1 over straight alpha
Hence space according space to space equation space left parenthesis 3 right parenthesis
straight alpha space cross times space 1 over straight alpha space equals space straight k over 5
therefore space straight k space equals space 5
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 17

begin mathsize 12px style If space straight alpha comma space straight beta comma space straight gamma space are space the space zeros space of space the space polynomial space straight f open parentheses straight x close parentheses space equals space ax cubed space plus space bx squared space plus space cx space plus space straight d comma space then space 1 over straight alpha plus space 1 over straight beta space plus space 1 over straight gamma equals
open parentheses straight a close parentheses space fraction numerator negative straight b over denominator straight a end fraction
open parentheses straight b close parentheses space straight c over straight d
open parentheses straight c close parentheses space fraction numerator negative straight c over denominator straight d end fraction
open parentheses straight d close parentheses space fraction numerator negative straight c over denominator straight a end fraction end style

Solution 17

begin mathsize 12px style We space know space that comma space for space straight a space cubic space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space space space space space....... open parentheses 1 close parentheses
box enclose straight alpha space plus space straight beta space plus space straight gamma space equals space fraction numerator negative straight b over denominator straight a end fraction end enclose space space space space space space space space space space space..... open parentheses 2 close parentheses
box enclose αβ space plus space βγ space plus space αγ space equals space straight c over straight a end enclose space space space space space space space..... open parentheses 3 close parentheses
box enclose αβγ space equals space fraction numerator negative straight d over denominator straight a end fraction end enclose space space space space space space space..... open parentheses 4 close parentheses
value space of space 1 over straight alpha space plus space 1 over straight beta space plus space 1 over straight gamma
rightwards double arrow space fraction numerator αγ space plus space βγ space plus space αβ over denominator αβγ end fraction
According space to space equation space open parentheses 3 close parentheses space and space space equation space open parentheses 4 close parentheses
equals space fraction numerator begin display style bevelled straight c over straight a end style over denominator begin display style bevelled fraction numerator negative straight d over denominator straight a end fraction end style end fraction
equals space fraction numerator negative straight c over denominator straight d end fraction
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 18

begin mathsize 12px style If space straight alpha comma space straight beta comma space straight gamma space are space the space zeros space of space the space polynomial space straight f open parentheses straight x close parentheses space equals space ax cubed space plus space bx squared space plus space cx space plus space straight d comma space then space straight alpha squared space plus space straight beta squared space plus space straight gamma squared space equals
open parentheses straight a close parentheses space fraction numerator straight b squared space minus space ac over denominator straight a squared end fraction
open parentheses straight b close parentheses space fraction numerator straight b squared space minus space 2 ac over denominator straight a end fraction space
open parentheses straight c close parentheses space fraction numerator straight b squared space plus space 2 ac over denominator straight b squared end fraction
open parentheses straight d close parentheses space fraction numerator straight b squared space minus space 2 ac over denominator straight a squared end fraction end style

Solution 18

begin mathsize 12px style We space know space that comma space for space straight a space cubic space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space space space..... open parentheses 1 close parentheses
box enclose straight alpha space plus space straight beta space plus space straight gamma space equals space fraction numerator negative straight b over denominator straight a end fraction end enclose space space space space space space space space space space space space space..... open parentheses 2 close parentheses
box enclose αβ space plus space βγ space plus space αγ space equals space straight c over straight a end enclose space space space space space space...... open parentheses 3 close parentheses
box enclose αβγ space equals space fraction numerator negative straight d over denominator straight a end fraction end enclose space space space space space space space space space..... open parentheses 4 close parentheses
We space also space know space that comma
open parentheses straight alpha space plus space straight beta space plus space straight gamma close parentheses squared space equals space straight alpha squared space plus space straight beta squared space plus space straight gamma squared space plus space 2 αβ space plus space 2 space βγ space plus space 2 γα
therefore space straight alpha squared space plus space straight beta squared space plus space straight gamma squared space equals space open parentheses straight alpha space plus space straight beta space plus space straight gamma close parentheses squared space minus space 2 open parentheses αβ space plus space βγ space plus space γα close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses fraction numerator negative straight b over denominator straight a end fraction close parentheses squared space minus space 2 open parentheses straight c over straight a close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator straight b squared space minus space 2 ac over denominator straight a squared end fraction space
So comma space the space correct space option space is space left parenthesis straight d right parenthesis.
end style

Question 19

begin mathsize 12px style If space straight alpha comma space straight beta comma space straight gamma space are space the space zeros space of space polynomial space straight f open parentheses straight x close parentheses space equals space straight x cubed space minus space px squared space plus space qx space minus space straight r comma space then space 1 over αβ space plus space 1 over βγ space plus space 1 over γα equals
open parentheses straight a close parentheses space straight r over straight p
open parentheses straight b close parentheses space straight p over straight r
open parentheses straight c close parentheses space fraction numerator negative straight p over denominator straight r end fraction
open parentheses straight d close parentheses space fraction numerator negative straight r over denominator straight p end fraction end style

Solution 19

begin mathsize 12px style We space know space that comma space for space straight a space cubic space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space..... open parentheses 1 close parentheses
straight alpha space plus space straight beta space plus space straight gamma space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space.... open parentheses 2 close parentheses
αβγ space equals space fraction numerator negative straight d over denominator straight a end fraction space space space space space space space space space..... open parentheses 3 close parentheses
αβ space plus space βγ space plus space αγ space equals space straight c over straight a space space space space space space space...... open parentheses 4 close parentheses
According space to space the space question comma space the space equation space is space
straight x cubed space minus space px squared space plus space qx space minus space straight r space equals space 0 space space space space space space space space space space space.... open parentheses 5 close parentheses
comparing space eq. space open parentheses 5 close parentheses space with space eq. space open parentheses 1 close parentheses
box enclose straight a space equals space 1 end enclose space space space space space box enclose straight b space equals space minus straight p end enclose space space space space space space space space space box enclose straight c equals straight q end enclose space space space space space space space box enclose straight d space equals space minus straight r end enclose
Hence space 1 over αβ space plus space 1 over βγ space plus space 1 over γα
equals space fraction numerator straight alpha space plus space straight beta space plus space straight gamma over denominator αβγ end fraction
equals space straight p over straight r
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 20

begin mathsize 12px style If space space straight alpha comma space straight beta space are space roots space of space polynomial space straight f open parentheses straight x close parentheses space equals space ax squared space plus space bx space plus space straight c space then space 1 over straight alpha squared space plus space 1 over straight beta squared
open parentheses straight a close parentheses space fraction numerator straight b squared space plus space 2 ac over denominator straight a squared end fraction
open parentheses straight b close parentheses space fraction numerator straight b squared space minus space 2 ac over denominator straight c squared end fraction
open parentheses straight c close parentheses space fraction numerator straight b squared space plus space 2 ac over denominator straight a squared end fraction
open parentheses straight d close parentheses space fraction numerator straight b squared space plus space 2 ac over denominator straight c squared end fraction end style

Solution 20

begin mathsize 12px style We space know space that space for space straight a space quadratic space equation space having space roots space straight alpha space and space straight beta
ax squared space plus space bx space plus space straight c space equals space 0 space space space space space space space...... open parentheses 1 close parentheses
box enclose straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction end enclose space space space space space space space space space..... open parentheses 2 close parentheses
box enclose αβ space equals space straight c over straight a end enclose space space space space space..... open parentheses 3 close parentheses
Then comma space value space of space
1 over straight alpha squared plus space 1 over straight beta squared
rightwards double arrow space fraction numerator straight alpha squared space plus space straight beta squared over denominator straight alpha squared straight beta squared end fraction
equals space fraction numerator open parentheses straight alpha space plus space straight beta close parentheses squared space minus space 2 αβ over denominator straight alpha squared straight beta squared end fraction
equals space fraction numerator begin display style straight b squared over straight a squared minus fraction numerator 2 straight c over denominator straight a end fraction end style over denominator begin display style straight c squared over straight a squared end style end fraction
equals space fraction numerator straight b squared space minus space 2 ac over denominator straight c squared end fraction
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 21

If two of the zeros of the cubic polynomial ax + bx2 + cx + d are each equal to zero then the third zero is

begin mathsize 12px style open parentheses straight a close parentheses space fraction numerator negative straight d over denominator straight a end fraction
open parentheses straight b close parentheses space straight c over straight a
open parentheses straight c close parentheses space fraction numerator negative straight b over denominator straight a end fraction
open parentheses straight d close parentheses space straight b over straight a end style

Solution 21

begin mathsize 12px style We space know space that comma space for space straight a space space cubic space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0
box enclose straight alpha space plus space straight beta space plus space straight gamma space equals space fraction numerator negative straight b over denominator straight a end fraction end enclose space space space space space space space space space..... open parentheses 1 close parentheses
Given space that comma space two space of space the space zeros space of space polynomial space are space equal space to space zero
Hence comma space according space to space eq. space open parentheses 1 close parentheses
box enclose straight gamma space equals space fraction numerator negative straight b over denominator straight a end fraction end enclose
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 22

begin mathsize 12px style If space two space zeros space of space straight x cubed space plus space straight x squared space minus space 5 straight x space minus space 5 space are space square root of 5 space and space minus square root of 5 comma space then space its space third space zero space is
open parentheses straight a close parentheses space 1
open parentheses straight b close parentheses space minus 1
open parentheses straight c close parentheses space 2
open parentheses straight d close parentheses space minus 2 end style

Solution 22

begin mathsize 12px style We space know space that comma space for space straight a space cubi c space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space space space space.... open parentheses 1 close parentheses
straight alpha space plus space straight beta space plus space straight gamma space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space.... open parentheses 2 close parentheses
According space to space the space question comma space the space equation space is space
straight x cubed space plus space straight x squared space minus space 5 straight x space minus space 5 space equals space 0 space space space space space space.... open parentheses 3 close parentheses
On space comparing space eq. space open parentheses 3 close parentheses space with space eq. space open parentheses 1 close parentheses
box enclose straight a space equals space 1 end enclose space space space space space space space space space space space space space box enclose straight b space equals space 1 end enclose space space space space space space space space space space space space space box enclose straight c space equals space minus 5 end enclose space space space space space space space space space space space space box enclose straight d space equals space minus 5 end enclose
According space to space equation space open parentheses 2 close parentheses
straight alpha space plus space straight beta space plus space straight gamma space equals space minus 1
Given space that space two space roots space are space square root of 5 space and space minus square root of 5
Hence comma space space square root of 5 space minus space square root of 5 space plus space straight gamma space equals space minus 1
box enclose straight gamma space equals space minus 1 end enclose
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 23

The product of the zeros of x+ 4x2 + x – 6 is 

(a) -4

(b) 4

(c) 6

(d) -6Solution 23

begin mathsize 12px style We space know space that comma space for space straight a space cubic space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space space..... open parentheses 1 close parentheses
αβγ space equals space fraction numerator negative straight d over denominator straight a end fraction space space space space space space.... open parentheses 2 close parentheses
According space to space the space question comma space the space equation space is
straight x cubed space plus space 4 straight x squared space plus space straight x space minus space 6 space equals space 0 space space space space space space space space...... open parentheses 3 close parentheses
On space comparing space eq. space open parentheses 3 close parentheses space with space eq. space open parentheses 1 close parentheses
straight a equals space 1 comma space straight b space equals space 4 comma space straight c space equals space 1 comma space straight d space equals space minus 6
therefore space product space of space roots space equals space 6
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Chapter 2 Polynomials Exercise 2.64

Question 24

What should be added to the polynomial x2 – 5x + 4, so that 3 is the zero of the resulting polynomial ?

(a) 1

(b) 2

(c) 4

(d) 5Solution 24

We know that, if α and β are roots of ax+ bx + c = 0 then they must satisfy the equation.

According to the question, the equation is

x– 5x + 4 = 0

If 3 is the root of equation it must satisfy equation.

x– 5x + 4 = 0

but f(3) = 3– 5(3) + 4 = -2

so, 2 has to be added in the equation.

So, the correct option is (b).Question 25

What should be subtracted to the polynomial x2 – 16x + 30, so that 15 is the zero of resulting polynomial?

(a) 30

(b) 14

(c) 15

(d) 16Solution 25

We know that, if α and β are roots of ax + bx + c = 0, then α and β must satisfy the equation.

According to the question, the equation is

x– 16x + 30 = 0

If 15 is a root, then it must satisfy the equation x– 16x + 30 = 0, 

But f(15) = 15– 16(15) + 30 = 225 – 240 + 30 = 15

and so 15 should be subtracted from the equation.

So, the correct option is (c).Question 26

A quadratic polynomial, the sum of whose zeros is 0 and one zero is 3, is 

(a) x– 9

(b) x2 + 9

(c) x + 3

(d) x– 3Solution 26

begin mathsize 12px style We space know space that comma space quadratic space equation space having space roots space straight alpha space and space straight beta
ax squared space plus space bx space plus space straight c space equals space 0 space space space space.... open parentheses 1 close parentheses
straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space space space..... open parentheses 2 close parentheses
αβ space equals space straight c over straight a space space space space space space space..... open parentheses 3 close parentheses
According space to space question
straight alpha space plus space straight beta space equals space 0
if space straight alpha space equals space 3
then space straight beta space equals space minus 3
So comma space straight alpha space plus space straight beta space equals space 0 space and space αβ equals left parenthesis 3 right parenthesis left parenthesis negative 3 right parenthesis equals negative 9
The space quadratic space equation space in space general space is space straight x squared minus left parenthesis sum space of space the space roots right parenthesis space straight x space plus space product space of space the space roots equals 0
So comma space the space quadratic space equation space is space straight x squared minus left parenthesis 0 right parenthesis straight x space plus space left parenthesis negative 9 right parenthesis equals 0 space rightwards double arrow straight x squared minus 9 equals 0.
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 27

If two zeros of the polynomial x + x– 9x – 9 are 3 and -3, then its third zero is

(a) -1

(b) 1

(c) -9

(d) 9Solution 27

begin mathsize 12px style We space kno w space that comma space for space straight a space cubi c space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space space..... open parentheses 1 close parentheses
straight alpha space plus space straight beta space plus space straight gamma space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space..... open parentheses 2 close parentheses
Acoording space to space the space question comma space the space equation space is space
straight x to the power of 3 space end exponent space plus space straight x squared space minus space 9 straight x space minus space 9 space equals space 0 space space space space space space space space..... open parentheses 3 close parentheses
On space comparing space eq. space open parentheses 3 close parentheses space with space eq. space open parentheses 1 close parentheses
box enclose straight a space equals space 1 end enclose space space space space space space space space space space space space space box enclose straight b space equals space 1 end enclose space space space space space space space space space space space space box enclose straight c space equals space minus 9 end enclose space space space space space space space space space space space box enclose straight d space equals space minus 9 end enclose
Hence comma
straight alpha space plus space straight beta space plus space straight gamma space equals space minus 1
3 space minus space 3 space plus space straight gamma space equals space minus 1
straight gamma space equals space minus 1
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 28

begin mathsize 12px style If space space square root of 5 space and space minus square root of 5 space are space the space zeros space of space the space polynomial space straight x cubed space plus space 3 straight x squared space minus space 5 straight x space minus space 15 comma space then space its space third space zero space is
open parentheses straight a close parentheses space 3
open parentheses straight b close parentheses space minus 3
open parentheses straight c close parentheses space 5
open parentheses straight d close parentheses space minus 5 end style

Solution 28

begin mathsize 12px style We space know space that comma space for space straight a space cubic space equation space having space roots space straight alpha comma space straight beta comma space straight gamma
ax cubed space plus space bx squared space plus space cx space plus space straight d space equals space 0 space space space space space....... open parentheses 1 close parentheses
straight alpha space plus space straight beta space plus space straight gamma space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space space..... open parentheses 2 close parentheses
According space to space the space question comma space the space equation space is space
straight x cubed space plus space 3 straight x to the power of 2 space end exponent minus space 5 straight x space minus space 15 space equals space 0 space space space space space..... open parentheses 3 close parentheses
On space comparing space eq. space open parentheses 3 close parentheses space with space eq. space open parentheses 1 close parentheses
box enclose straight a space equals space 1 end enclose space space space space space space space space space space space space box enclose straight b space equals space 3 end enclose space space space space space space space space space space space space space space box enclose straight c equals space minus 5 end enclose space space space space space space space space space space space space space box enclose straight d space equals space minus 15 end enclose
Hence comma space straight alpha space plus space straight beta space plus space straight gamma space equals space minus 3
Given space that space square root of 5 space and space minus square root of 5 space are space two space roots space of space equation
square root of 5 space minus space square root of 5 space plus space straight gamma space equals space minus 3
straight gamma space equals space minus 3
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 29

If x + 2 is a factor of x + ax + 2b and a + b = 4, then

(a) a = 1, b = 3

(b) a = 3, b = 1

(c) a = -1, b = 5

(d) a = 5, b = -1Solution 29

Error converting from MathML to accessible text.

Question 30

The polynomial which when divided by -x+ x – 1 gives a quotient x – 2 and remainder is 3, is

(a) x3 – 3x2 + 3x – 5

(b) -x3 – 3x2 – 3x – 5

(c) -x3 + 3x2  – 3x + 5

(d) x3 – 3x2 – 3x + 5Solution 30

We know that 

Dividend = Divisor × quotient  + remainder

Then according to question,

Required polynomial

= (-x2 + x – 1) (x – 2) + 3

= -x3 + 2x2 + x2 -2x – x + 2 + 3

= -x3 + 3x2 – 3x + 5

So, the correct option is (c).Question 31

The number of polynomials having zeroes -2 and 5 is

a. 1

b. 2

c. 3

d. more than 3Solution 31

Correct option: (d)

The polynomials having -2 and 5 as the zeroes can be written in the form 

k(x + 2)(x – 5), where k is a constant. 

Thus, number of polynomials with roots -2 and 5 are infinitely many, since k can take infinitely many values.Question 32

If one of the zeroes of the quadratic polynomial (k – 1)x2 + kx + 1 is – 3, then the value of k is

a. 

b. 

c. 

d.  Solution 32

Question 33

The zeroes of the quadratic polynomial x2 + 99x + 127 are

a. Both positive

b. Both negative

c. both equal

d. One positive and one negativeSolution 33

The zeroes of the quadratic polynomial x2 + 99x + 127 are both negative since all terms are positive.

Hence, correct option is (b).Question 34

If the zeroes of the quadratic polynomial x2 + (a + 1)x + b are 2 and -3, then

a. a = -7, b = -1

b. a = 5, b = -1

c. a = 2, b = -6

d. a = 0, b = -6Solution 34

Question 35

Given that one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero, the product of the other two zeroes is

a. 

b. 

c. 0

d.  Solution 35

Question 36

The zeroes of the quadratic polynomial x2 + ax + a, a ≠ 0,

a. cannot both be positive

b. cannot both be negative

c. are always unequal

d. are always equalSolution 36

Question 37

If one of the zeros of the cubic polynomial x3 + ax2 + bx + x is -1, then the product of other two zeroes is

a. b – a + 1

b. b – a – 1

c. a – b + 1

d. a – b – 1Solution 37

Chapter 2 Polynomials Exercise 2.65

Question 38

Given that two of the zeros of the cubic polynomial ax3 + bx2 + cx + d are 0, the third zero is

a. 

b. 

c. 

d.  Solution 38

Question 39

If one zero of the quadratic polynomial x2 + 3x + k is 2, then the value of k is

a. 10

b. -10

c. 5

d. -5Solution 39

Question 40

If the zeros of the quadratic polynomial ax2 + bx + c, c ≠ 0 are equal , then

a. c and a have opposite signs

b. c and b have opposite signs

c. c and a have the same sign

d. c and b have the same signSolution 40

It is given that the zeros of the quadratic polynomial ax2 + bx + c, c ≠ 0 are equal.

⇒ Discriminant = 0

⇒ b2 – 4ac = 0

⇒ b2 = 4ac

Now, b2 can never be negative,

Hence, 4ac also can never be negative.

⇒ a and c should have same sign.

Hence, correct option is (c).Question 41

If one of the zeros of a quadratic polynomial of the form x2 + ax + b is the negative of the other, then it

a. has no linear term and constant term is negative.

b. has no linear term and the constant term is positive

c. can have a linear term but the constant term is negative

d. can have a linear term but the constant term is positiveSolution 41

Question 42

Which of the following is not the graph of a quadratic polynomial?

Solution 42

The graph of a quadratic polynomial crosses X-axis at atmost two points.

Hence, correct option is (d).

Read More

RD SHARMA SOLUTION CHAPTER-1 Real Numbers| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 1 Real Numbers Exercise Ex. 1.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

For any positive integer n, prove that n3 – n divisible by 6.Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Prove that the square of any positive integer is of the form 5q, 5q + 1, 5q + 4 for some integer q.Solution 9

Question 10

Solution 10

Question 11

Show that any positive odd integer is of the form  6q + 1, or  6q + 3, or 6q + 5, where q is some integer.Solution 11

Let a be any odd positive integer we need to prove that a is of the form 6q+1 , or 6q+3 , or 6q+5 , where q is some integer.

Since a is an integer consider b = 6 another integer applying Euclid’s division lemma  we get
a = 6q + r f or some integer q  0, and r = 0, 1, 2, 3, 4, 5  since
0  r < 6.
Therefore, a = 6q or 6q + 1 or 6q + 2 or 6q + 3 or 6q + 4 or 6q + 5
However since a is odd so a cannot take the values 6q, 6q+2 and 6q+4
(since all these are divisible by 2)

Also, 6q + 1 = 2 x 3q + 1 = 2k1 + 1, where k1 is a positive integer
6q + 3 = (6q + 2) + 1 = 2 (3q + 1) + 1 = 2k2 + 1, where k2 is an integer
6q + 5 = (6q + 4) + 1 = 2 (3q + 2) + 1 = 2k3 +  1, where k3 is an integer
Clearly, 6q + 1, 6q + 3, 6q + 5 are of the form 2k + 1, where k is an integer.
Therefore, 6q + 1, 6q + 3, 6q + 5 are odd numbers.

Therefore, any odd integer can be expressed is of the form
6q + 1, or 6q + 3, or 6q + 5 where q is some integer

Concept Insight:  In order to solve such problems  Euclid’s division lemma is applied to two integers a and b the integer b must be taken in accordance with what is to be proved, for example here the integer b was taken 6 because a must  be of the form 6q + 1, 6q + 3, 6q + 5.

Basic definition of even (divisible by 2) and odd numbers (not divisible by 2) and the fact that addition and  multiplication of integers is always an integer are applicable here.Question 12

Prove that one of every three consecutive positive integers is divisible by 3.Solution 12

Let the three consecutive positive integers be m, (m + 1) and (m + 2).

By Euclid’s division lemma, when m is divided by 3, we have

m = 3q + r for some integer q ≥ 0 and r = 0, 1, 2

Case 1: When m = 3q

In this case, clearly, m is divisible by 3.

But, (m + 1) and (m + 2) are not divisible by 3.

Case 2: When m = 3q + 1

In this case, m + 2 = 3(q + 1), which is divisible by 3.

But, m and (m + 1) are not divisible by 3.

Case 3: When m = 3q + 2

In this case, m + 1 = 3(q + 1), which is divisible by 3.

But, m and (m + 2) are not divisible by 3.

Hence, one of m, (m + 1) and (m + 2) is always divisible by 3.Question 13

Show that the square of any positive integer cannot be of the form 6m + 2 or 6m + 5 for any integer m.

[NCERT EXEMPLER]Solution 13

Let x be any positive integer.

When we divide x by 6, the remainder is either 0 or 1 or 2 or 3 or 4 or 5.

So, x can be written as

x = 6a or x = 6a + 1 or x = 6a + 2 or x = 6a + 3 or x = 6a + 4 or x = 6a + 5.

Thus, we have the following cases:

CASE I:

When x = 6a,

x2 = 36a2 = 6(6a2) = 6m, where m = 6a2

CASE II:

When x = 6a + 1,

x2 = (6a + 1)2 = 36a2 + 12a + 1 = 6(6a2 + 2a) + 1 = 6m + 1, where m = 6a2 + 2a

CASE III:

When x = 6a + 2,

x2 = (6a + 2)2 = 36a2 + 24a + 4 = 6(6a2 + 4a) + 4 = 6m + 4, where m = 6a2 + 4a

CASE IV:

When x = 6a + 3,

x2 = (6a + 3)2 = 36a2 + 36a + 9 = (36a2 + 36a + 6) + 3 = 6(6a2 + 6a + 1) + 3 = 6m + 3, where m = 6a2 + 6a + 1

CASE V:

When x = 6a + 4,

x2 = (6a + 4)2 = 36a2 + 48a + 16 = (36a2 + 48a + 6) + 10 = 6(6a2 + 8a + 1) + 10 = 6m + 10, where m = 6a2 + 8a + 10

CASE VI:

When x = 6a + 5,

x2 = (6a + 5)2 = 36a2 + 60a + 25 = (36a2 + 60a + 6) + 19 = 6(6a2 + 10a + 1) + 19 = 6m + 19, where m = 6a2 + 10a + 19

Here, x is of the form 6m or 6m + 1 or 6m + 3 or 6m + 4 or 6m + 10 or 6mn + 19.

So, it cannot be of the form 6m + 2 or 6m + 5.Question 14

Show that the cube of a positive integer is of the form 6q + r, where q is an integer and r = 0, 1, 2, 3, 4, 5.Solution 14

Let x be any positive integer.

Then, it is of the form 6n, 6n + 1, 6n + 2, 6n + 3, 6n + 4 or 6n + 5.

So, we have the following cases:

CASE I:

When x = 6n,

x3 = (6n)3 = 216n3 = 6(36n3) = 6q, where q = 36n3

CASE II:

When x = 6n + 1,

x3 = (6n + 1)3 = 216n3 + 108n2 + 18n + 1 = 6(36n3 + 18n2 + 3n) + 1 = 6q + 1, where q = 36n3 + 18n2 + 3n

CASE III:

When x = 6n + 2,

x3 = (6n + 2)3 = 216n3 + 216n2 + 72n + 8 = 216n3 + 216n2 + 72n + 6 + 2 =6(36n3 + 36n2 + 12n + 1) + 2 = 6q + 2, where q = 36n3 + 54n2 + 12n + 1

CASE IV:

When x = 6n + 3,

x3 = (6n + 3)3 = 216n3 + 324n2 + 162n + 27 = 216n3 + 324n2 + 162n + 24 + 3 =6(36n3 + 54n2 + 27n + 4) + 3 = 6q + 3, where q = 36n3 + 54n2 + 27n + 4

CASE V:

When x = 6n + 4,

x3 = (6n + 4)3 = 216n3 + 432n2 + 288n2 + 64 = 216n3 + 432n2 + 288n + 60 + 4 =6(36n3 + 72n2 + 48n + 10) + 4 = 6q + 4, where q = 36n3 + 72n2 + 48n + 10

CASE VI:

When x = 6n + 5,

x3 = (6n + 5)3 = 216n3 + 540n2 + 450n2 + 125 = 216n3 + 540n2 + 450n + 120 + 5 =6(36n3 + 90n2 + 75n + 20) + 5 = 6q + 5, where q = 36n3 + 72n2 + 48n + 10

Thus, the cube of any positive integer is of the form 6q + r, where q is an integer and r = 0, 1, 2, 3, 4, 5.Question 15

Show that one and only one out of n, n + 4, n + 8, n + 12 and n + 16 is divisible by 5, where n is any positive integer.Solution 15

Given numbers are n, n + 4, n + 8, n + 12 and n + 16.

Let n = 5q + r, where 0 ≤ r < 5

n = 5q, 5q + 1, 5q + 2, 5q + 3 or 5q + 4 for any natural number q.

So, we have the following cases:

CASE I:

When n = 5q

n = 5q is divisible by 5

n + 4 = 5q + 4 is not divisible by 5

n + 8 = 5q + 8 = 5q + 5 + 3 = 5(q + 1) + 3 is not divisible by 5

n + 12 = 5q + 12 = 5q + 10 + 2 = 5(q + 2) + 2 is not divisible by 5

n + 16 = 5q + 16 = 5q + 15 + 1 = 5(q + 3) + 1 is not divisible by 5

CASE II:

When n = 5q + 1

n = 5q + 1 is not divisible by 5

n + 4 = 5q + 1 + 4 = 5q + 5 = 5(q + 1) is divisible by 5

n + 8 = 5q + 1 + 8 = 5q + 9 = 5q + 5 + 4 = 5(q + 1) + 4 is not divisible by 5

n + 12 = 5q + 1 + 12 = 5q + 13 = 5q + 10 + 3 = 5(q + 2) + 3 is not divisible by 5

n + 16 = 5q + 1 + 16 = 5q + 17 = 5q + 15 + 2 = 5(q + 3) + 2 is not divisible by 5

CASE III:

When n = 5q + 2

n = 5q + 2 is not divisible by 5

n + 4 = 5q + 2 + 4 = 5q + 6 = 5q + 5 + 1 = 5(q + 1) + 1 is not divisible by 5

n + 8 = 5q + 2 + 8 = 5q + 10 = 5(q + 2) is divisible by 5

n + 12 = 5q + 2 + 12 = 5q + 14 = 5q + 10 + 4 = 5(q + 2) + 4 is not divisible by 5

n + 16 = 5q + 2 + 16 = 5q + 18 = 5q + 15 + 3 = 5(q + 3) + 3 is not divisible by 5

CASE IV:

When n = 5q + 3

n = 5q + 3 is not divisible by 5

n + 4 = 5q + 3 + 4 = 5q + 7 = 5q + 5 + 2 = 5(q + 1) + 2 is not divisible by 5

n + 8 = 5q + 3 + 8 = 5q + 11 = 5(q + 2) + 1 is not divisible by 5

n + 12 = 5q + 3 + 12 = 5q + 15 = 5(q + 3) is divisible by 5

n + 16 = 5q + 3 + 16 = 5q + 19 = 5q + 15 + 4 = 5(q + 3) + 4 is not divisible by 5

CASE V:

When n = 5q + 4

n = 5q + 4 is not divisible by 5

n + 4 = 5q + 4 + 4 = 5q + 8 = 5q + 5 + 3 = 5(q + 1) + 3 is not divisible by 5

n + 8 = 5q + 4 + 8 = 5q + 12 = 5(q + 2) + 2 is not divisible by 5

n + 12 = 5q + 4 + 12 = 5q + 16 = 5q + 15 + 1 = 5(q + 3) + 1 is not divisible by 5

n + 16 = 5q + 4 + 16 = 5q + 20 = 5(q + 4) is divisible by 5

Hence, in each case, one and only one out of n, n + 4, , n + 8, n + 12 and n + 16 is divisible by 5.Question 16

Show that the square of an odd positive integer can be of the form 6q + 1 or 6q + 3 for some integer q.Solution 16

We know that any positive integer can be of the form 6m, 6m + 1, 6m + 2, 6m + 3, 6m + 4 or 6m + 5 for some integer m.

Thus, an odd positive integer x can be of the form 6m + 1, 6m + 3 or 6m + 5.

Thus, we have

CASE I:

x = 6m + 1

x2 = (6m + 1)2 = 36m2 + 12m + 1 = 6(6m2 + 2m) + 1 = 6q + 1, where q = 6m2 + 2m

CASE II:

x = 6m + 3

x2 = (6m + 3)2 = 36m2 + 36m + 9 = 36m2 + 36m + 6 + 3 = 6(6m2 + 6m + 1) + 3 = 6q + 3, where q = 6m2 + 6m + 1

CASE III:

x = 6m + 5

x2 = (6m + 5)2 = 36m2 + 60m + 25 = 36m2 + 60m + 24 + 1 = 6(6m2 + 10m + 4) + 1 = 6q + 1, where q = 6m2 + 10m + 4

Thus, the square of an odd positive integer can be of the form 6q + 1 or 6q + 3.Question 17

A positive integer is of the form 3q + 1, q being a natural number. Can you write its square in any form other than 3m + 1, 3m or 3m + 2 for some integer m? Justify your answer.Solution 17

By Euclid’s Lemma,

a = bq + r, 0 ≤ r < b

Here, a is any positive integer and b = 3,

a = 3q + r

So, this must be in the form 3q, 3q + 1 or 3q + 2.

Now,

(3q)2 = 9q2 = 3m

(3q + 1)2 = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1 = 3m + 1

(3q + 2)2 = 9q2 + 12q + 4 = 9q2 + 12q + 3 + 1 = 3(3q2 + 4q + 1) + 1 = 3m + 1

Thus, square of a positive integer of the form 3q + 1 is always of the form 3m + 1 or 3m for some integer m.Question 18

Show that the square of any positive integer cannot be of the form 3m + 2, where m is a natural number.Solution 18

Let x be any positive integer.

So, x can be written as

x = 3a or x = 3a + 1 or x = 3a + 2

Thus, we have the following cases:

CASE I:

When x = 3a,

x2 = 9a2 = 3(3a2) = 3m, where m = 3a2

CASE II:

When x = 3a + 1,

x2 = (3a + 1)2 = 9a2 + 6a + 1 = 3(3a2 + 2a) + 1 = 3m + 1, where m = 3a2 + 2a

CASE III:

When x = 3a + 2,

x2 = (3a + 2)2 = 9a2 + 12a + 4 = 9a2 + 12a + 3 + 1 = 3(3a2 + 4a + 1) + 1 = 3m + 1, where m = 3a2 + 4a + 1

Thus, the square of any positive integer cannot be of the form 3m + 2, where m is a natural number.

Chapter 1 Real Numbers Exercise Ex. 1.2

Question 1(i)Find H.C.F. of 32 and 54
Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 1(vi)

Solution 1(vi)

Question 1(vii)

Solution 1(vii)

Question 1(viii)

Solution 1(viii)

Question 1(ix)Find H.C.F. of 100 and 190Solution 1(ix)

Question 1(x)

Solution 1(x)

Question 2(i)

Use Euclid’s division algorithm to find the HCF of: 

135 and 225 

Solution 2(i)

 135 and 225

Step 1: Since 225 > 135, apply Euclid’s division lemma, to a =225 and b=135 to find q and r such that 225 = 135q+r, 0 r

On dividing 225 by 135 we get quotient as 1 and remainder as 90
i.e 225 = 135 x 1 + 90

Step 2: Remainder r which is 90 0, we apply Euclid’s division lemma to a = 135 and b = 90 to find whole numbers q and r such that
135 = 90 x q + r 0 r<90
On dividing 135 by 90 we get quotient as 1 and remainder as 45
i.e 135 = 90 x 1 + 45

Step 3: Again remainder r = 45 0 so we apply Euclid’s division lemma to a = 90 and b = 45 to find q and r such that
90 = 45 x q + r 0 r<45
On dividing 90 by 45 we get quotient as 2 and remainder as 0
i.e 90 = 2 x 45 + 0

Step 4: Since the remainder is zero, the divisor at this stage will be HCF of (135, 225).

Since the divisor at this stage is 45, therefore, the HCF of 135 and 225 is 45.Question 2(iv)

Use Euclid’s division algorithm to find the HCF of

184, 230 and 276Solution 2(iv)

Question 2(v)

Use Euclid’s division algorithm to find the HCF

136, 170 and 255Solution 2(v)

Question 2(vi)

Use Euclid’s division algorithm to find the HCF of

1260 and 7344Solution 2(vi)

Step 1: Since 7344 > 1260, apply Euclid’s division lemma, to a = 7344 and b = 1260 to find q and r such that 7344 = 1260q + r, 0 ≤ r < 1260

On dividing 7344 by 1260 we get quotient as 5 and remainder as

i.e. 7344 = 1260 x 5 + 1044

Step 2: Remainder r which is 1044, we apply Euclid’s division lemma to a = 1260 and b = 1044 to find whole numbers q and r such that

1260 = 1044 x q + r, 0 ≤ r < 1044

On dividing 1260 by 1044 we get quotient as 1 and remainder as 216

i.e. 1260 = 1044 x 1 + 216

Step 3: Again remainder r = 216, so we apply Euclid’s division lemma to a = 1044 and b = 216 to find q and r such that

1044 = 216 x q + r, 0 ≤ r < 216

On dividing 1044 by 216 we get quotient as 4 and remainder as 180

i.e. 1044 = 216 x 4 + 180

Step 4: Again remainder r = 180, so we apply Euclid’s division lemma to a = 216 and b = 180 to find q and r such that

216 = 180 x q + r, 0 ≤ r < 180

On dividing 216 by 180 we get quotient as 1 and remainder as 36

i.e. 216 = 180 x 1 + 36

Step 5: Again remainder r = 36, so we apply Euclid’s division lemma to a = 180 and b = 36 to find q and r such that

180 = 36 x q + r, 0 ≤ r < 36

On dividing 180 by 36 we get quotient as 5 and remainder as 0

i.e. 180 = 36 x 5 + 0

Step 6: Since the remainder is zero, the divisor at this stage will be HCF of (7344, 1260).

Since the divisor at this stage is 36, therefore, the HCF of 7344 and 1260 is 36.Question 2(vii)

Use Euclid’s division algorithm to find the HCF of

2048 and 960Solution 2(vii)

Step 1: Since 2048 > 960, apply Euclid’s division lemma, to a = 2048 and b = 960 to find q and r such that 2048 = 960q + r, 0 ≤ r < 960

On dividing 2048 by 960 we get quotient as 5 and remainder as

i.e. 2048 = 960 x 2 + 128

Step 2: Remainder r which is 128, we apply Euclid’s division lemma to a = 960 and b = 128 to find whole numbers q and r such that

960 = 128 x q + r, 0 ≤ r < 128

On dividing 960 by 128 we get quotient as 7 and remainder as 216

i.e. 960 = 128 x 7 + 64

Step 3: Again remainder r = 64, so we apply Euclid’s division lemma to a = 128 and b = 64 to find q and r such that

128 = 64 x q + r, 0 ≤ r < 64

On dividing 128 by 64 we get quotient as 2 and remainder as 0

i.e. 128 = 64 x 2 + 0

Step 4: Since the remainder is zero, the divisor at this stage will be HCF of (2048, 960).

Since the divisor at this stage is 64, therefore, the HCF of 2048 and 960 is 64.Question 3(i)

Solution 3(i)

Question 3(ii)Find H.C.F. of 592 and 252 and express it as a linear combination of them.Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 4

Find the largest number which divides 615 and 963 leaving remainder 6 in each case.Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Using Euclid’s division algorithm, find the largest number that divides 1251, 9377 and 15628 leaving remainders 1, 2 and 3 respectively.Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

105 goats, 140 donkeys and 175 cows have to be taken across a river. There is only one boat which will have to make many trips in order to do so. The lazy boatman has his own conditions for transporting them. He insists that he will take the same number of animals in every trip and they have to be of the same kind. He will naturally like to take the largest possible number each time. Can you tell how many animals went in each trip?Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 2(ii)

Use Euclid’s division algorithm to find the HCF of: 
 

196 and 38220 

Solution 2(ii)

196 and 38220

Step 1: Since 38220 > 196, apply Euclid’s division lemma
to a =38220 and b=196 to find whole numbers q and r such that
38220 = 196 q + r, 0 r < 196
On dividing 38220 we get quotient as 195 and remainder r as 0
i.e 38220 = 196 x 195 + 0
Since the remainder is zero, divisor at this stage will be HCF
Since divisor at this stage is 196 , therefore, HCF of 196 and 38220 is 196.

NOTE: HCF( a,b) = a if a is a factor of b. Here, 196 is a factor of 38220 so HCF is 196.

Question 2(iii)

Use Euclid’s division algorithm to find the HCF of: 

867 and 255Solution 2(iii)

867 and 255

Step 1: Since 867 > 255, apply Euclid’s division lemma, to a =867 and b=255 to find q and r such that 867 = 255q + r, 0 r<255
On dividing 867 by 255 we get quotient as 3 and remainder as 102
i.e 867 = 255 x 3 + 102

Step 2: Since remainder 102 0, we apply the division lemma to a=255 and b= 102 to find whole numbers q and r such that
255 = 102q + r where 0 r<102
On dividing 255 by 102 we get quotient as 2 and remainder as 51
i.e 255 = 102 x 2 + 51

Step 3: Again remainder 51 is non zero, so we apply the division lemma to a=102 and b= 51 to find whole numbers q and r such that
102 = 51 q + r where 0 r < 51

On dividing 102 by 51 quotient is 2 and remainder is 0
i.e 102 = 51 x 2 + 0
Since the remainder is zero, the divisor at this stage is the HCF
Since the divisor at this stage is 51,therefore, HCF of 867 and 255 is 51.

Concept Insight: To crack such problem remember to apply the Euclid’s division Lemma which states that “Given positive integers a and b, there exists unique integers q and r satisfying a = bq + r, where 0 r < b” in the correct order.

Here, a > b.

Euclid’s algorithm works since Dividing ‘a’ by ‘b’, replacing ‘b’ by ‘r’ and ‘a’ by ‘b’ and repeating the process of division till remainder 0 is reached, gives a number which divides a and b exactly.

i.e HCF(a,b) =HCF(b,r)

Note that do not find the HCF using prime factorisation in this question when the method is specified and do not skip steps.


lemma to a=135 and b=

Chapter 1 Real Numbers Exercise Ex. 1.3

Question 1

Solution 1

Question 2

Solution 2

Question 3Explain why 7 x 11 x 13 + 13 and 7 x 6 x 5 x 4 x 3 x 2 x 1 + 5 are composite numbers.Solution 3Numbers are of two types – prime and composite. Prime numbers has only two factors namely 1 and the number itself  whereas composite numbers have factors other than 1 and itself.

It can be observed that
7 x 11 x 13 + 13 = 13 x (7 x 11 + 1) = 13 x (77 + 1)
= 13 x 78
= 13 x 13 x 6

The given expression has 6 and 13  as its factors. Therefore, it is a composite number.
7 x 6 x 5 x 4 x 3 x 2 x 1 + 5 = 5 x (7 x 6 x  4 x 3 x 2 x 1 + 1)
 = 5 x (1008 + 1)
 = 5 x 1009

1009 cannot be factorised further. Therefore, the given expression has 5 and 1009 as its factors. Hence, it is a composite number.

Concept Insight: Definition of prime numbers and composite numbers is used. Do not miss the reasoning.

Question 4Check whether 6n can end with the digit 0 for any natural number n.Solution 4If any number ends with the digit 0, it should be divisible by 10 or in other words its prime factorisation must include primes 2 and  5 both
Prime factorisation of 6n = (2 x 3)n

By Fundamental Theorem of Arithmetic Prime factorisation of a number is unique. So 5 is not a prime factor of 6n.
Hence, for any value of n, 6n will not be divisible by 5.
Therefore, 6n cannot end with the digit 0 for any natural number n.

Concept Insight: In order solve such problems the concept used is if a number is to end with zero then it must be divisible by 10 and the prime factorisation of a number is unique.

Question 5

Explain why 3 × 5 × 7 + 7 is a composite number.Solution 5

Numbers are of two types – prime and composite. Prime numbers has only two factors namely 1 and the number itself whereas composite numbers have factors other than 1 and itself. It can be observed that 3 × 5 × 7+ 7 = 7 × (3 × 5 + 1) = 7 × (15 + 1) = 7 × 16

The given expression has 7 and 16 as its factors. Therefore, it is a composite number. 

Chapter 1 Real Numbers Exercise Ex. 1.4

Question 1

Solution 1

Question 1(iv)

Find the LCM and HCF of the following pairs of integers and verify that LCM × HCF = Product of the integers: 

404 and 96Solution 1(iv)

404 = 2 × 2 × 3 × 37 = 22 × 101

96 = 2 × 2 × 2 × 2 × 2 × 3 = 25 × 3

H.C.F. = 22 = 4

L.C.M. = 25 × 3 × 101 = 9696

Now, H.C.F. × L.C.M. = 4 × 9696 = 38784

Product of numbers = 404 × 96 = 38784

Hence, H.C.F. × L.C.M. = Product of numbers.Question 2Find the LCM and HCF of the following integers by applying the prime factorisation method:

(i) 12,15 and 21

(ii) 17, 23 and 29

(iii) 8, 9 and 25

(iv) 40, 36 and 126

(v) 84, 90 and 120

(vi) 24, 15 and 36.Solution 2

Concept Insight: HCF is the product of common prime factors of all three numbers  raised to least power, while LCM is product of prime factors of all here  raised to highest power.  Use the fact that HCF is always a factor of the LCM to verify the answer. Note HCF of (a,b,c)  can also be calculated by taking two numbers at a time i.e HCF (a,b) and then HCF (b,c) .Question 3

Given that HCF (306, 657) = 9, find LCM (306, 657).Solution 3



Concept Insight: This problem must be solved using product of two numbers = HCF x LCM rather than prime factorisationQuestion 3(ii)

Write the smallest number which is divisible by both 306 and 657.Solution 3(ii)

The smallest number divisible by both 306 and 657 is the LCM if these numbers.

306 = 2 × 3 × 3 × 17 = 2 × 32 × 17

657 = 3 × 3 × 73 = 32 × 73

L.C.M. = 2 × 32 × 17 × 73 = 22338

Hence, the smallest number which is divisible by both 306 and 657 is 22338. Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Find the least number that is divisible by all the numbers between 1 and 10 (both inclusive).Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

On a morning walk, three persons step out together and their steps measure 30 cm, 36 cm and 40 cm respectively. What is the minimum distance each should walk so that each can cover the same distance in complete steps?Solution 17

Required minimum distance each should walk so that they can cover the distance in complete step is the L.C.M. of 30 cm, 36 cm and 40 cm.

30 = 2 × 3 × 5;

36 = 22× 32;

40 = 23× 5

∴ LCM (30, 36, 40) = 23× 32× 5

∴ LCM = 23× 32× 5 = 360 cm.Question 18

Find the largest number which on dividing 1251, 9377 and 15628 leaves remainders 1, 2 and 3 respectively.Solution 18

Clearly, the required number is the H.C.F of the numbers

 1251 – 1 = 1250, 9377 – 2 = 9375, and 15628 – 3 = 15625.

First we’ll find the H.C.F of 1250 and 9375 by Euclid’s algorithm as given below:

9375 = 1250 × 7 + 625

1250 = 625 × 2 + 0

Clearly, H.C.F of 1250 and 9375 is 625.

Let us now find the H.C.F of 625 and the third number 15625 by Euclid’s algorithm:

15625 = 625 × 25 + 0

Hence, the required number is 625.

Chapter 1 Real Numbers Exercise Ex. 1.5

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 2(i)

Solution 2(i)

Question 2(ii)

Solution 2(ii)

Question 2(iii)

Solution 2(iii)

Question 2(iv)

Solution 2(iv)

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Prove that   is an irrational number.Solution 10

Question 11

Given that   is irrational, prove that   is an irrational number.Solution 11

Let us assume that   is a rational number.

So, there exist co-prime positive integers a and b such that

As  is rational, so   is rational.

Then,   is also rational.

Thus,   is rational.

But this is a contradiction to the fact that   is an irrational number.

Hence,   is an irrational number.Question 12

Prove that   is an irrational number, given that   is an irrational number.Solution 12

Let us assume that   is a rational number.

So, there exist co-prime positive integers a and b such that

As  is rational, so   is rational.

Then,   is also rational.

Thus,   is rational.

But this is a contradiction to the fact that   is an irrational number.

Hence,   is an irrational number.Question 13

Prove that   is an irrational number, given that   is an irrational number.Solution 13

Let us assume that   is a rational number.

So, there exist co-prime positive integers a and b such that

As  is rational, so   is rational.

Then,   is also rational.

Thus,   is rational.

But this is a contradiction to the fact that   is an irrational number.

Hence,   is an irrational number.Question 14

Solution 14

Chapter 1 Real Numbers Exercise Ex. 1.6

Question 1(i)

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion.

Solution 1(i)

Question 1(ii)

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion.

Solution 1(ii)

Question 1(iii)

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion.

Solution 1(iii)

Question 1(iv)

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion.

Solution 1(iv)

Question 1(v)

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion.

Solution 1(v)

Question 1(vi)

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion.

Solution 1(vi)

Question 2

Solution 2

Question 3

Write the denominator of the rational number   in the form 2m × 5n, where m, n are non-negative integers. Hence, write the decimal expansion, without actual division.Solution 3

Question 4

Solution 4

Question 5

A rational number in its decimal expansion is 327.7081. What can you say about the prime factors of q, when this number is expressed in the form ? Give reasons.Solution 5

Chapter 1 Real Numbers Exercise 1.59

Question 1

The exponent of 2 in the prime factorisation of 144, is

(a) 4

(b) 5

(c) 6

(d) 3Solution 1

Factorisation of 144 can be done as follows

so 144 = 2 × 2 × 2 × 2 × 3 × 3

          = 24 × 32

Exponent of 2 in the prime factorisation of 144 is 4.

So, the correct option is (a).Question 2

The LCM of two numbers is 1200. Which of the following cannot be their HCF ?

(a) 600

(b) 500

(c) 400

(d) 200Solution 2

We know that LCM of two numbers is divisible of HCF of these two numbers.

Hence

(a) 1200 is divisible by 600. So 600 can be the HCF.

(b) 500 cannot be the HCF because 1200 is not divisible by 500.

(c) 400 can be the HCF because 1200 is divisible by 400.

(d) 200 can be the HCF because 1200 is divisible by 200.

So, the correct option is (b).Question 3

If n = 2× 34 × 54 × 7, then the number of consecutive zeros in n, where n is a natural number, is

(a) 2

(b) 3

(c) 4

(d) 7Solution 3

n can also be written as

begin mathsize 11px style rightwards double arrow end style34 × 23 × 53 × 5 × 7

begin mathsize 11px style rightwards double arrow end style34 × (2 × 5)3 × 5 × 7

begin mathsize 11px style rightwards double arrow end style34 × 5 × 7 × 103

exponent of 10 in n is 3.

Hence number of consecutive zeros in n is 3.

So, the correct option is (b).Question 4

The sum of the exponents of the prime factors in the prime factorisation of 196, is

(a) 1

(b) 2

(c) 4

(c) 6Solution 4

Factorisation of 196 is

so 196 = 2 × 2 × 7 × 7

           = 22 × 72

exponent of 2 is 2

exponent of 7 is 2

Hence sum of exponents is 4.

So, the correct option is (c).Question 5

begin mathsize 11px style The space number space of space decimal space place s space after space which space the space decimal space expansion space of space the space rational space number space fraction numerator 23 over denominator 2 squared cross times 5 end fraction space will space terminate end style

(a) 1

(b) 2

(c) 3

(d) 4Solution 5

begin mathsize 11px style Given space rational space number space is space fraction numerator 23 over denominator 2 squared space cross times space 5 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space 23 over 20
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space 1.15
Hence space given space rational space number space terminate space after space 2 space decimal space places.
end style

So, the correct option is (b).Question 6

begin mathsize 11px style If space straight P subscript 1 space and space straight P subscript 2 space are space two space odd space prime space numbers space such space that space straight P subscript 1 space greater than space straight P subscript 2 comma space then space straight P subscript 1 superscript 2 space minus space straight P subscript 2 superscript 2 space space is end style

(a) an even number

(b) an odd number

(c) an odd prime number

(d) a prime numberSolution 6

begin mathsize 11px style It space is space given space that space straight P subscript 1 space and space straight P subscript 2 space are space odd space prime space numbers
We space know space square space of space an space odd space number space is space also space odd
rightwards double arrow Hence space straight P subscript 1 superscript 2 space and space straight P subscript 2 superscript 2 space are space odd space numbers.
Also space we space know comma space difference space of space two space odd space numbers space gives space an space even space number
rightwards double arrow space Hence space difference space between space straight P subscript 1 superscript 2 space and space straight P subscript 2 superscript 2 space must space be space an space even space number.
so space straight P subscript 1 superscript 2 space minus space straight P subscript 2 superscript 2 space is space an space even space number.
end style

So, the correct option is (a).Question 7

If two positive integers a and b are expressible in the form a = pqand b = p3q ; p, q being prime numbers,

then LCM (a, b) is

(a) pq

(b) begin mathsize 10px style straight p cubed straight q cubed end style

(c) begin mathsize 10px style straight p cubed straight q squared end style

(d) begin mathsize 10px style straight p squared straight q squared end styleSolution 7

LCM (a, b) is

LCM (a, b) = p × q × q × p2

               = p3q2

So, the correct option is (c).Question 8

In Q. no. 7, HCF (a, b) is

(a) pq

(b) begin mathsize 10px style straight p cubed straight q cubed end style

(c) begin mathsize 10px style straight p cubed straight q squared end style

(d) begin mathsize 10px style straight p squared straight q squared end styleSolution 8

HCF (a, b) is

No further common division is possible

Hence HCF (a, b) = p × q

                         = pq

So, the correct option is (a).

Chapter 1 Real Numbers Exercise 1.60

Question 9

If two positive numbers m and n are expressible in the form m = pq3 and n = p3q2, where p, q are prime numbers,

then HCF (m, n) = 

(a) pq

(b) pq2

(c) p3q3

(d) p2q3Solution 9

HCF of m, n is

No further division is possible

Hence HCF is p × q= pq2

So, the correct option is (b).Question 10

If the LCM of a and 18 is 36 and the HCF of a and 18 is 2, then a =

(a) 2

(b) 3

(c) 4

(d) 1Solution 10

We know,

LCM (a, b) × HCF (a, b) = a × b

So LCM (a, 18) × HCF (a, 18) = a × 18

begin mathsize 11px style rightwards double arrow end style36 × 2 = a × 18

begin mathsize 11px style rightwards double arrow end stylea = 4

So, the correct option is (c).Question 11

The HCF of 95 and 152, is 

(a) 57

(b) 1

(c) 19

(d) 38Solution 11

HCF (95, 152)

No further common division is possible.

Hence HCF (95, 152) is 19.

So, the correct option is (c).Question 12

If HCF (26, 169) = 13, then LCM (26, 169) =

(a) 26

(b) 52

(c) 338

(d) 13Solution 12

We know

LCM (a, b) × HCF (a, b) = a × b

so LCM (26, 169) × HCF (26, 169) = 26 × 169

begin mathsize 12px style LCM space open parentheses 26 comma space 169 close parentheses equals fraction numerator 26 space cross times space 169 over denominator 13 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 338 end style

So, the correct option is (c).Question 13

If a = 23 × 3, b = 2 × 3 × 5, c = 3n × 5 and LCM (a, b, c) = 23 × 32 × 5 then n =

(a) 1

(b) 2

(c) 3

(d) 4Solution 13

LCM (a, b, c) is

LCM (a, b, c) = 3 × 2 × 5 × 22 × 3n – 1

                  = 23 × 3n × 5            ……..(1)

given that 

LCM (a, b, c) = 23 × 32 × 5             ……..(2)

from (1) & (2)

n = 2

So, the correct option is (b).Question 14

begin mathsize 11px style The space decimal space expansion space of space the space rational space number space 14587 over 1250 space will space terminate space after end style

(a) one decimal place

(b) two decimal places

(c) three decimal places

(d) four decimal placesSolution 14

begin mathsize 11px style Decimal space expansion space of space rational space number space 14587 over 1250 space is
equals space 11.6696
so space it space terminate space after space 4 space decimal space places. end style

So, the correct option is (d).Question 15

If p and q are co – prime numbers, then p2 and q2 are

(a) coprime

(b) not coprime

(c) even

(d) oddSolution 15

If p and q are co-prime numbers then

HCF (p, q) = 1

After squaring the numbers, we get pand q

If two numbers have HCF = 1 then after squaring the numbers their HCF remains equal to 1.

Hence HCF (p2 , q2) = 1

so p2 and q2 are co – prime numbers.

Ex : 2 and 3 are co – prime numbers.

HCF (2, 3) = 1

after squaring

HCF (4, 9) = 1

Hence, 4, 9 are also co – prime.

So, squares of two co – prime numbers are also co – prime.

So, the correct option is (a).Question 16

begin mathsize 11px style Which space of space the space following space rational space numbers space have space terminating space decimal ?
open parentheses straight i close parentheses space 16 over 25 space open parentheses ii close parentheses space 5 over 18 space open parentheses iii close parentheses space 2 over 21 space open parentheses iv close parentheses space 7 over 250 end style

(a) (i) and (ii)

(b) (ii) and (iii)

(c) (i) and (iii)

(d) (i) and (iv)Solution 16

begin mathsize 11px style open parentheses straight i close parentheses space 16 over 25 space equals space 0.064
open parentheses ii close parentheses space 5 over 18 space equals space 0.2 7 with bar on top
left parenthesis iii right parenthesis space 2 over 21 space equals 0 space.095238 with bar on top
open parentheses iv close parentheses space 7 over 250 space equals space 0.028
open parentheses ii close parentheses space and space open parentheses iii close parentheses space are space non space minus space terminating space repeating comma space while space left parenthesis straight i right parenthesis space and space open parentheses iv close parentheses space are space terminating space decimal. end style

So, the correct option is (d).

*Note: Since the book has a typo error, the question has been modified.Question 17

If 3 is the least prime factor of number a and 7 is the least prime factor of number b,

then least prime factor of a + b is 

(a) 2

(b) 3

(c) 5

(d) 10Solution 17

It is given that 3 is the least prime factor of number a so a can be 3 (least possible value)

It is given that 7 is the least prime factor of number b so least possible value of b is 7.

Hence a + b = 10 (least possible value)

prime factors of 10 are 2 and 5

Hence the least prime factor of a + b is 2.

So, the correct option is (a).Question 18

begin mathsize 12px style 3.27 with bar on top space is end style

(a) an integer

(b) a rational number

(c) a natural number

(d) an irrational numberSolution 18

We know that decimal expansion of a rational number is either terminating or non-terminating and recurring.

begin mathsize 12px style Given space number space 3.27 with bar on top space is space straight a space non minus terminating space and space recurring space number. space
Hence space it space is space an space rational space number. end style

So the correct option is (b).Question 19

begin mathsize 11px style The space smallest space number space by space which space square root of 27 should space be space multiplied space so space as space to space get space straight a space rational space number space is space end style

(a) begin mathsize 10px style square root of 27 end style

(b) begin mathsize 10px style 3 square root of 3 end style

(c) begin mathsize 10px style square root of 3 end style

(d) 3Solution 19

begin mathsize 12px style The space given space number space square root of 27 can space be space written space as
equals space square root of 27
equals square root of 3 space cross times space 3 space cross times space 3 end root
equals space square root of 3 squared cross times space 3 end root
equals space 3 square root of 3
So space to space make space it space straight a space rational space number semicolon space irrational space term space open parentheses square root of 3 close parentheses space should space be space converted space to space rational comma space for space that space we space have space to space make space it space perfect space square.
Hence space on space multiplying space by space square root of 3
we space get
rightwards double arrow 3 square root of 3 space cross times space square root of 3
rightwards double arrow space 9
So space the space least space number space is space required space is space square root of 3. space
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 20

begin mathsize 12px style The space smallest space rational space number space by space which space 1 third space should space be space multiplied space so space that space its space decimal space expansion
terminate s space after space one space place space of space decimal comma space is
left parenthesis straight a right parenthesis space 3 over 10
left parenthesis straight b right parenthesis space 1 over 10
left parenthesis straight c right parenthesis space 3
left parenthesis straight d right parenthesis space 3 over 100 end style

Solution 20

begin mathsize 12px style open parentheses straight a close parentheses space 1 third space cross times space 3 over 10 equals 1 over 10 equals 0.1
space space space space space space space Terminate space after space 1 space decimal space place
open parentheses straight b close parentheses space 1 third space cross times space 1 over 10 equals space 0.0 3 with bar on top
space space space space space space space Non space minus space terminating
left parenthesis straight c right parenthesis space 1 third space cross times space 3 space equals space 1
space space space space space space space No space decimal space terms
open parentheses straight d close parentheses space 1 third space cross times space 3 over 100 equals space 0.01 space
space space space space space space space terminates space after space 2 space decimal space places
Hence space correct space option space is space open parentheses straight a close parentheses. end style

Question 21

If n is a natural number, then 92n – 42n is always divisible by

(a) 5

(b) 13

(c) both 5 and 13

(d) None of theseSolution 21

We know a2n  – b2n is always divisible by a – b and a + b

On comparing with 92n – 42n, we get a = 9 & b = 4

Hence 92n – 42n  is divisible by 9 – 4 & 9 + 4

                                             = 5 & 13

So, the correct option is (c).

Chapter 1 Real Numbers Exercise 1.61

Question 22

If n is any natural number, then 6 –  5 always ends with

(a) 1

(b) 3

(c) 5

(d) 7Solution 22

6always ends with 6

5n always ends with 5

Hence 6– 5n always with 6 – 5 = 1

So, the correct option is (a).Question 23

The LCM and HCF of two rational numbers are equal, then the numbers must be 

(a) prime

(b) co-prime

(c) composite

(d) equalSolution 23

(a) If two numbers are prime then their HCF must be 1 but LCM can’t be 1

      Example: 2, 3

      LCM (2, 3) = 6

      HCF (2, 3) = 1

(b) If two numbers are co – prime then their HCF must be 1 but LCM can’t be 1.

(c) If two numbers are composite then their LCM and HCF can only be equal if the two numbers are same.

(d) If the numbers are equal.

     Example: 6, 6

      LCM (6, 6) = 6

      HCF (6, 6) = 6

      LCM = HCF

So, the correct option is (d).Question 24

If sum of LCM and HCF of two numbers is 1260 and their LCM is 900 more than their HCF, then the product of two numbers is

(a) 203400

(b) 194400

(c) 198400

(d) 205400Solution 24

Let numbers be a, b

It is given that LCM (a, b) + HCF (a, b) = 1260           ……….(1)

                    LCM (a, b) – HCF (a, b) = 900             ……….(2)

Adding equations (1) and (2), we get 2LCM (a, b) = 2160 

Subtracting equations (1) and (2), we get 2HCF (a, b) = 360 

So, LCM (a, b) = 1080 and

HCF (a, b) = 180

We know LCM (a, b) × HCF (a, b) = ab

ab = 1080 × 180

     = 194400

So, the correct option is (b).Question 25

The remainder when the square of any prime number greater than 3 is divided by 6, is 

(a) 1

(b) 3

(c) 2

(d) 4Solution 25

begin mathsize 12px style Square space of space any space prime space number space greater space than space 3 space is space of space form space 6 straight k space plus space 1 comma space straight k space element of space straight N
Hence space when space divided space by space 6 space we space get space the space remainder space equal space to space 1.
So comma space th e space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 26

For some integer m, every even integer is of the form

  1. m
  2. m + 1
  3. 2m
  4. 2m + 1

Solution 26

m is an integer.

⇒ m = ….., -2, -1, 0, 1, 2, …..

⇒ 2m = ……., -4, -2, 0, 2, 4, ……

Hence, correct option is (c).Question 27

For some integer q, every odd integer is of the form

  1. q
  2. q + 1
  3. 2q
  4. 2q + 1

Solution 27

q is an integer.

⇒ q = ….., -2, -1, 0, 1, 2, …..

⇒ 2q + 1 = ……., -3, -1, 0, 3, 5, ……

Hence, correct option is (d).Question 28

n2 – 1 is divisible by 8, if n is

  1. an integer
  2. a natural number
  3. an odd integer
  4. an even integer

Solution 28

Let a = n2 – 1

Now, when n is odd, i.e. n = 2k + 1, we have

a = (2k + 1)2 – 1 =4k2 + 4k + 1 – 1 = 4k(k + 1)

At k = -1, we get

a = 4(-1)(-1 + 1) = 0, which is divisible by 8.

At k = 0, we get

a = 4(0)(0 + 1) = 0, which is divisible by 8.

At k = 1, we get

A = 4(1)(1 + 1) = 4(2) = 8, which is divisible by 8.

Hence, correct option is (c).Question 29

The decimal expansion of the rational number   will terminate after

  1. one decimal place
  2. two decimal places
  3. three decimal places
  4. more than 3 decimal places

Solution 29

Question 30

If two positive integers a and b are written as a = x3y2 and b = xy3, x, y are prime numbers, then HCF (a, b) is

  1. xy
  2. xy2
  3. x3y3
  4. x2y2

Solution 30

Question 31

The largest number which divides 70 and 125, leaving remainders 5 and 8, respectively, is

  1. 13
  2. 65
  3. 875
  4. 1750

Solution 31

Question 34

Euclid’s division lemma states that for two positive integers a and b, there exist unique integers q and r such that a = bq + r, where r must satisfy

  1. 1 < r < b
  2. 0 < r ≤ b
  3. 0 ≤ r < b
  4. 0 < r < b

Solution 34

Euclid’s division lemma states that for two positive integers a and b, there exist unique integers q and r such that a = bq + r, where r must satisfy 0 ≤ r < b.

Hence, correct option is (c).Question 32

The product of a non-zero rational number and an irrational number is

(a) always irrational

(b) always rational

(c) rational or irrational

(d) oneSolution 32

The product of a non-zero rational number and an irrational number is always irrational. Question 33

The HCF and LCM of 12, 21, 15 respectively are

(a) 3, 140

(b) 12, 420

(c) 3, 420

(d) 420, 3Solution 33

Here, 12 = 22× 3, 21 = 3 × 7 and 15 = 3 × 5

HCF = 3

LCM = 22× 3 × 5 × 7 = 420

Read More

Chapter -4 The Ashes that Made Trees Bloom | Class 7th | NCERT English Honeycomb Solutions | Edugrown

NCERT Solutions for Class 7 English Honeycomb

Here our subject experts provided the Chapter-wise NCERT Solutions for Class 7 English as per the latest cbse guidelines. Students of class 7 can grab this opportunity. Access the links prevailing on this page and dip deep into the chapterwise NCERT English subject solutions and get knowledge on how to present the answer perfectly in the exams. Go ahead and understand how important referring to the NCERT Class 7 English solutions during preparation.

Chapter - 4 The Ashes that Made Trees Bloom

Question 1.
Why did the neighours kill the dog ?
Answer:
The dog did not guide the neighbours to the treasure. So they killed the dog in extreme anger.

Question 2.
Mark the right item
(i) The old farmer and his wife loved the dog
(a) because it helped them in their day-to-day work.
(b) as if it was their own baby.
(c) as they were kind to all living beings.

(ii) When the old couple became rich, they
(a) gave the dog better food.
(b) invited their greedy neighbours to a feast.
(c) lived comfortably and were generous towards their poor neighbours.

(iii) The greedy couple borrowed the mill and the mortar to make
(a) rice pastry and bean sauce.
(b) magic ash to win rewards.
(c) a pile of gold.
(i) The old farmer and his wife loved the dog as if it was their own baby.
(ii) When the old couple became rich, they lived comfortably and were generous towards their poor neighbours.
(iii) The greedy couple borrowed the mill and the mortar to make a pile of gold.

The Ashes that Made Trees Bloom Working with the text (Page-63)

Answer the following questions :

Question 1.
The old farmer is a kind person. What evidence of his kindness do you find in the first two paragraphs.
Answer:
The old farmer is a kind person. He has a pet dog. Having no children, he loves it as if it were his own son. The old couple used to feed him with titbits of fish from their own
chopsticks.

Question 2.
What did the dog do to lead the farmer to the hidden gold ?
Answer:
The dog tried to take him to some spot. He kept on running for some minutes. The old man followed his pet dog. At one place, the dog started scratching the earth. The old man dug the earth and found a pile of gold gleaming before him.

Question 3.
(i) How did the spirit of the dog help the farmer first? ..
Answer:
The dog’s spirit asked his master to cut down the pine tree over his grave to make mortar for his rice pastry and a mill for bean sauce. The old couple made the dough ready for baking. As soon as he started pouring it, it turned into a heap of gold coins.

(ii) How did it help him next ?
Answer:
The dog’s spirit told his master how the wicked neighbours had burned the mill made from the pine tree. He suggested him to take the ash and sprinkle it on the withered trees. It would make them bloom.

Question 4.
Why did the daimio reward the farmer but punish his neighbour for the same act ?
Answer:
The old farmer scattered a pinch of ashes over the tree. It burst into blossom. The daimio was pleased to see and ordered some reward of silk clothes, cake etc to the farmer. But on the other hand the greedy neighbour sprinkled handful of ashes, the wind blew it and straight went into the eyes of the daimios and his wife. He got angry. He ordered to punish the wicked man to death.

The Ashes that Made Trees Bloom Working with language (Page – 64)

Question 1.
Read the following conversation.

Ravi : What are you doing?
Mridu : I’m reading a book.
Ravi : Who wrote it?
Mridu : Ruskin Bond.
Ravi : Where did you find it?
Mridu : In the library.
Notice that ‘what’, ‘who’, ‘where’, are question words. Questions that require information begin with question words. Some other question words are ‘when’, ‘why’, ‘where’, ‘which’ and ‘how’.

Remember that

  • What asks about actions, things, etc.
  • Who asks about people.
  • Which asks about people or things.
  • Where asks about place.
  • When asks about time.
  • Why asks about reason or purpose.
  • How asks about means, manner or degree.
  • Whose asks about possessions.

Read the following paragraph and frame questions on the italicised phrases.

Anil is in school. I am in school too. Anil is sitting in the left row. He is reading a book. Anil’s friend is sitting in the second row. He is sharpening his pencil. The teacher is writing on the blackboard. Children are writing in their copybooks. Some children are looking out of the window.
Answer:
(i) Where is Anil ?
(ii) Where is Anil sitting ?
(iii) What is he doing?
(iv) Where is Anil’s friend sitting ?
(v) What is Anil’s friend doing ?
(vi) Who is writing on the black board ?
(vii) What are some children doing ?

Question 2.
Write appropriate question words in the blank spaces in the following dialogue.
NEHA : ……………… did you get this book ?
SHEELA : Yesterday morning.
NEHA :………….. is your sister crying ?
SHEELA : Because she has lost her doll.
NEHA : ….. room is this, yours or hers ?
SHEELA : It’s ours.
NETA : . ……………. do you go to school ?
SHEELA : We walk to school. It is nearby.
Answer:
When, Why, Whose, How

Question 3.
Fill in the blanks with the words given in the box.

how ,what ,when ,where ,which

(i) My friend lost his chemistry book. Now he doesn’t know……………. to do and …………to look for it.
(ii) There are so many toys in the shops. Neena can’t decide …………. one to buy.
(iii) You don’t know the way to my school. Ask the policeman ……………. to get there.
(iv) You should decide soon ………………… to start building your house.
(v) Do you know …………… to ride a bicycle ? I don’t remember ………….. and I learnt it.
(vi) “You should know ………………. to talk and ……………… to keep your mouth shut,” the teacher advised Anil.
Answer:
(i) what, where
(ii) which
(iii) how
(iv) when
(v) how, when, how.
(vi) where, when

Question 4.
Add im- or in- to each of the following words and use them in place of the italicised words in the sentences given below. patient proper possible sensitive competent
(i) The project appears very difficult at first sight but it can be completed if we work very hard.
(ii) He lacks competence. That’s why he can’t keep any job for more than a year.
(iii) “Don’t lose patience. Your letter will come one day,” the postman told me.
(iv) That’s not a proper remark to make under the circumstances.
(v) He appears to be without sensitivity. In fact, he is very emotional.
Answer:
(i) The project appears impossible at first sight …..
(ii) He is incompetent. That’s why…..
(iii) “Don’t be impatient. Your letter…
(iv) That’s an improper remark to make …………
(v) He appears to be insensitive. In fact.. …………….

Question 5.
Read the following sentences:
It was a cold morning and stars still glowed in the sky. An old man was walking
along the road. The words in italics are articles. ‘A’ and ‘an’ are indefinite articles and ‘the’ is the definite article. ‘A’ is used before a singular countable noun. ‘An’is used before a word that begins with a vowel.

  • a boy
  • an actor
  • a mango
  • an apple
  • a university

an hour Use a, an or the in the blanks.

There was once ………….. play which became very successful. ………….. famous actor was. acting in it. In ………….. play his role was that of ………….. aristocrat who had been imprisoned in ………….. castle for twenty years. In ………….. last act of ………….. play someone would come on ………….. stage with ………….. letter which he would hand over to ………….. prisoner. Even though ………….. aristocrat was not expected to read ………….. letter at each performance, he always insisted that ………….. letter be written out from
beginning to end.
Answer:
a, A, the, an, a the, the, the, a, a, the, the, the.

Question 6.
Encircle the correct article.
Nina was looking for (a / the) job. After many interviews she got (a / the) job she was looking for.

A: Would you like (a / an/ the) apple or (a / an / the) banana ?
B : I’d like (a / an / the) apple, please.
A: Take (a / an / the) red one in (a / an / the) fruit bowl.
You may take (a / an / the) orange also, if you like.
B : Which one?
A : (A / An / The) one beside (a / an / the) banana.
Answer:
A: an, a
B : an A: the, the, an
A : The, the.

The Ashes that Made Trees Bloom Speaking and writing (Page – 67)

Question 1.
Do you remember an anecdote or a story about a greedy or jealous person and the unhappy result of his/her action ? Narrate the story to others in your class. Here is one for you to read.
Seeing an old man planting a fig tree, the king asked why he was doing this. The man replied that he might live to eat the fruit, and, even if he did not, his son would enjoy the figs.
“Well,” said the king, “if you do live to eat the fruit of this tree, please let me know.” The man promised to do so, and sure enough, before too long, the tree grew and bore fruit.
Packing some fine figs in a basket, the old man set out for the palace to meet the king.
The king accepted the gift and gave orders that the old man’s basket be filled with gold.
Now, next door to the old man, there lived a greedy old man jealous of his neighbour’s good fortune. He also packed some figs in a basket and took them to the palace in the hope of getting gold.
The king, on learning the man’s motive, ordered him to stand in the compound and had him pelted with figs. The old man returned home and told his wife the sad story. She consoled him by saying, “You should be thankful that our neighbour did not grow coconuts.”
Answer:
The students must read the above story thoroughly. As you know, greed is a curse. It will provide nothing but a shame. The unhappy result may create something negative in one’s behaviour. Don’t be jealous to others.

Question 2.
Put each of the following in the correct order. Then use them appropriately to fill the blanks in the paragraph that follows. Use correct punctuation marks.

  • English and Hindi/both/in/he writes
  • and only a few short stories/many books in English/ in Hindi
  • is/my Hindi/than my English/much better

Ravi Kant is a writer, and ……..
…………… Of course, he is much happier writing in English than in Hindi. He has written
I find his books a little hard to understand………………..
Answer:
Ravi Kant is a writer, and he writes both in English and Hindi. Of course, he is much happier writing in English than in Hindi: He has written many books in English and only a few short stories in Hindi. I find his books a little hard to understand. My Hindi is much better than my English.

Question 3.
Are you fond of reading stories ? Did you read one last month? If not, read one or two and then write a paragraph about the story. Use the following hints.

  • title of the story
  • name of author
  • how many characters
  • which one you liked
  • some details of the story
  • main point(s) as you understand it

Tell your friends why they should also read it.
Answer:
Read some story book yourself and describe the story you read in short by using the hints given above. Of course, I am fond of reading.

The Ashes that Made Trees Bloom Introduction

The story highlights the time of 19th century Japan where an old couple was so pathetic for the others proving an example. However, their neighbours were troublesome. The old couple had a pet dog who dies a sad death one day. But the spirit of the dog gives solace and support to his master in unexpected ways. The greedy neighbours pay the price of their greed and beaten to death.

The Ashes that Made Trees Bloom Word Notes

NCERT Solutions for Class 7 English Honeycomb Chapter 4 The Ashes that Made Trees Bloom 1
NCERT Solutions for Class 7 English Honeycomb Chapter 4 The Ashes that Made Trees Bloom 2

The Ashes that Made Trees Bloom Complete hindi translation

This is ……… ……… ways. (Page 55)

यह कहानी एक ईमानदार तथा परिश्रमी वृद्ध दम्पत्ति व उनके पालतू कुत्ते की है। पड़ौसी झगड़ालू हैं, और कुत्ता एक आकस्मिक उदास मौत मर जाता है। कुत्ते की आत्मा अनायास तरीकों में अपने मालिक को शांति एवम् सहायता प्रदान करता है।

Part-I

1. In the ……. …. birds. (Pages 55-56)

डाइमियास के पुराने अच्छे दिनों में, एक वृद्ध दम्पत्ति रहता था जिनका केवल एक पालतू कुत्ता था। अपनी कोई औलाद न होने के कारण वे उसे अपने बच्चे की भांति प्यार करते थे। बूढ़ी औरत ने उसके लिए एक नीली गद्दी बनाई हुई थी जिस पर भोजन के समय मूको-जो उसका नाम था–उस पर एक बिल्ली की भांति बैठ जाता था। वे दयालु लोग उसे अपनी चोपस्टिक से मछली के टुकड़े और जितने चावल वह खा सकता था, वे खिलाते। इस व्यवहार के कारण, वह गूंगा जानवर अपने रक्षकों को अपनी आत्मा से चाहता था।

बूढ़ा व्यक्ति जो चावल उगाने वाला किसान था, वह अपने फावड़े के साथ अपने खेतों को जाता था, सख्त मेहनत करता-सुबह से सूर्य टलने तक। प्रतिदिन कुत्ता काम पर उसके पीछे-पीछे जाता बिना किसी सफेद बगुले को नुकसान पहुँचाये, जो किसान के पैरों के निशानों पर चलकर कीड़े मकौड़े ढूढ़ते थे। वह बूढ़ा व्यक्ति बेहद दयावान था और हर प्राणी के साथ दयाभाव रखता था। वह पक्षियों को दाना खिलाने के लिए धरती को उलट पलट कर देता था।

2. One day…… ………………him. (Page 56)

एक दिन कुत्ता उसकी ओर दौड़ता हुआ आया, अपने पंजे उसकी टांगों के बीच में रखते हुए उसने अपने सिर से पीछे की ओर इशारा किया। बूढ़े व्यक्ति ने सोचा कि उसका पालतू जानवर सिर्फ खेल रहा है, अतः उसने ध्यान नहीं दिया। पर कुत्ता कुछ पलों के लिए कराहता रहा तथा यहाँ वहाँ दौड़ता रहा। तब बूढ़े व्यक्ति ने उसके कदमों का पीछा किया जहाँ पर वह कुत्ता जमीन कुरेदने लगा। उसने सोचा कि शायद कोई हड्डी अथवा मछली का टुकड़ा होगा, पर अपने पालतू जानवर को खुश करने के लिए उसने धरती को फावड़े से खोदा। लो! उसके सामने सोने का ढेर चमक रहा था।

3. Thus in an hour …. ……………. beneath. (Page 57)

इस प्रकार वृद्ध दम्पत्ति एक घंटे में अमीर हो गये। उन अच्छे लोगों ने जमीन का एक टुकड़ा खरीदा और अपने दोस्तों को दावत दी और अपने गरीब पड़ोसियों को बहुत सा दान दिया। जहाँ तक कुत्ते की बात थी, उन्होंने कुत्ते को अपनी दयालुता से ढक लिया। उसी गाँव में एक दुष्ट बूढ़ा व्यक्ति अपनी पत्नी के साथ रहता था, जो न समझदार था न दयालु, और हमेशा सभी कुत्तों को लात मारता, फटकारता जो भी उनके घर के पास आते-जाते थे।

अपने पड़ोसियों की अच्छी किस्मत के बारे में सुनकर, उन्होंने उनके कुत्ते को बहलाकर अपने बगीचे में बुला लिया और उसके सामने मछली के टुकड़े और अन्य स्वादिष्ट चीजें रखीं, इस आशा के साथ कि वह उन्हें भी खजाने का पता बताएगा। परंतु उनसे डरते हुए कुत्ते ने न तो खाया और न ही हिला। फिर वे उसे खींचकर घर के बाहर ले गए और फावड़ा लेकर उसके पीछे-पीछे हो लिए। जल्द ही कुत्ते ने बगीचे में एक खजूर के पेड़ के नीचे खोदना शुरू किया मानो कोई बेशकीमती खजाना उसके नीचे गढ़ा हो।

4. “Quick, wife…. ……….alive. (Pages 57-58)

“शीघ्रता करो, प्रिय। मुझे फावड़ा दो!” लालची बूढ़े मूर्ख ने प्रसन्नता से नाचते हुए कहा। फिर उस लालची बूढ़े ने फावड़े से और बूढ़ी औरत ने कुदाल से खोदना शुरू किया; परन्तु वहाँ पर कुछ नहीं था सिवाय एक बिल्ली के मरे हुए बच्चे थे जिसकी दुर्गध के कारण उन्होंने अपनी नाक बन्द कर ली। कुत्ते पर गुस्से के कारण, बूढ़े आदमी ने उसे लात मारी और पीट-पीट कर मार डाला, और बूढ़ी औरत ने उसका सिर कुदाल से काटकर उसका कार्य समाप्त कर दिया। उन्होंने फिर उसे एक गड्ढे में डालकर उसके शरीर पर मिट्टी डाल दी।

कुत्ते के मालिक को जब उसके पालतू कुत्ते की मौत के बारे में पता चला, तो वह उसके लिए, अपने बच्चे की भांति शोकाकुल होकर, रात को उस खजूर के वृक्ष के नीचे गया। उसने बांस की कुछ लकड़ियाँ धरती पर इकट्ठा की, जैसे मकबरे के सामने करते हैं और उस पर ताजे सफेद फूल चढ़ा दिये। फिर उसने एक कप पानी और एक प्लेट भोजन उसकी कब्र पर रखा और कुछ महंगी अगरबत्तियाँ जलाईं। वह बहुत देर तक अपने पालतू कुत्ते के दुख में शोक व्यक्त करता रहा और उसे भिन्न-भिन्न प्यार के नामों से पुकारता रहा, जैसे कि वह अभी भी जीवित हो।

5. That night………. (Pages 58-59)

उस रात कुत्ते की आत्मा उसके सपने में आई और बोली, “मेरी कब्र के ऊपर वाले खजूर के पेड़ को काट दो और अपने चावल पीसने के लिए ओखल तथा फलियों की चटनी के लिए चक्की बना लो।” अतः बूढ़े व्यक्ति ने पेड़ को काट डाला और पेड़ के तने के बीच से दो फुट लम्बा हिस्सा काटा। काफी परिश्रम करके, कुछ जलाकर, कुछ छीलकर उसने एक छोटे से कटोरे जितनी खाली जगह बनाई। फिर उसने लम्बे हत्थे वाला एक हथौड़ा बनाया; जिसे वह चावल पीसने के लिए प्रयोग कर सकता था।

जब नया वर्ष नजदीक आया, उसके मन में चावल की पेस्ट्री बनाने को आया। जब चावल उबल गये, बुढ़िया ने उन्हें ओखल में डाला, बूढ़े व्यक्ति ने उन्हें कूटकर आटा बनाने के लिए हथौड़ा उठाया और तेजगति से तब तक मारता रहा जब तक पेस्ट्री सेंकने के लिए तैयार नहीं हुई। अचानक सारा ढेर सोने के सिक्कों में बदल गया। जब बूढ़ी औरत ने हाथ-चक्की उठाई और फलियों की चटनी पीसने के लिए भरी, सोना वर्षा की तरह गिरने लगा।

6. Meanwhile…. …………firewood. (Page 59)

उस दौरान ईर्ष्यालु पड़ोसी खिड़की से झाँक रहे थे जब उसने उबली हुई फलियाँ पीसने के लिए डालीं। “हे ईश्वर!” बुढ़िया चिल्लायी, जैसे ही उसने चटनी की प्रत्येक बूंद को पीले सोने में तब तक बदलते देखा जब तक कुछ क्षणों में चक्की का बर्तन सोने से नहीं भर गया। अतः वृद्ध दम्पत्ति फिर अमीर हो गया। अगले दिन कंजूस व धूर्त पड़ौसी बहुत सारी फलियाँ लेकर आया और ओखल व जादुई उधार माँगी। उन्होंने एक को उबले चावल से तथा दूसरी को फलियों से भर दिया। फिर वह बूढ़ा आदमी कूटने लगा और वह औरत पीसने लगी। परंतु पहली चोट के बाद पेस्ट्री और चटनी एक बदबूदार कीड़ों के ढेर में परिवर्तित हो गए। और अधिक नाराज होकर, उन्होंने उस चक्की को छोटे-छोटे टुकड़ों में काट दिया ताकि ईंधन के प्रयोग में लाया जाए।

Part-II

7. Not long ………. ……………pieces. (Page 60)

कुछ समय बाद ही अच्छे बूढ़े व्यक्ति ने फिर सपना देखा, और कुत्ते की आत्मा उससे बोली कि किस प्रकार उन धूर्त लोगों ने खजूर के पेड़ से बनी चक्की को जला दिया। “चक्की की राख को ले आओ, उसे मुरझाए हुए पेड़ों पर छिड़क दो, और वे फिर से खिल जाएँगे,” कुत्ते की आत्मा ने कहा। बूढ़ा व्यक्ति उठा और उसी समय धूर्त पड़ोसियों के घर गया, जहाँ उसने देखा कि वह दुखी बूढ़ा जोड़ा आग जलाने वाले एक चौरस स्थल के किनारे बैठे हुक्का पी रहे हैं और चरखा कात रहे थे। समय-समय पर वे उस चक्की की आग से अपने हाथ और पैर सेंक रहे थे, जबकि उनके पीछे टूटे हुए टुकड़ों को ढ़ेर पड़ा था।

8. The good …………………………….blossom. (Page 61)

अच्छे बूढ़े व्यक्ति ने विनम्रतापूर्वक राख मांगी। यद्यपि उस लालची जोड़े ने अपनी नाक-भौं सिकोड़ी और उसे इस प्रकार फटकारा कि मानो वह कोई चोर हो, परन्तु उन्होंने उसे एक टोकरी भर राख ले जाने दी। घर वापिस लौटने पर, बूढ़े व्यक्ति ने अपने पत्नी को साथ लिया और बगीचे में आ गया। सर्दी होने के कारण उनका पसंदीदा चेरी का पेड़ मुरझा गया था। उसने चुटकी भर राख उस पर छिड़की और वह एकाएक खिल उठा, जब तक गुलाबी कलियों का सुगंध भरा बादल न बन गया हो। इस बात की खबर सारे गाँव में फैल गई और सभी इस चमत्कार को देखने दौड़ पड़े। लालची वृद्ध जोड़े ने जब यह सुना तो बाकी बची राख इकट्ठी करके मुरझाये पेड़ों को पुनः खिल जाने के लिए रख ली।

9. The kind .. ………….wayside. (Pages 61-62)

दयालु वृद्ध दम्पत्ति ने जब यह सुना कि उनका राजा, द डाइमियो गाँव की मुख्य सड़क से गुजरने वाला था, उसे देखने के लिए अपनी राख की टोकरी लेकर चल पड़ा। जैसे ही गाड़ी पहुँची, वह एक बूढ़े मुरझाये हुए चैरी के पेड़ पर चढ़ गया जो सड़क के किनारे खड़ा था। 10.

10. Now, in…….. ….blossom. (Page 62)

डाइमियोस के दिनों में यह नीति थी कि जब भी राजा वहाँ से गुजरता था तो लोग अपनी दूसरी मंजिल की खिड़कियाँ बन्द कर देते थे। यहाँ तक कि खिड़कियों को कागज के टुकड़े भी चिपका देते थे ताकि वह राजा को देखने की अशिष्टता न कर बैठें। सभी लोग सड़क पर साष्टांग दंडवत की स्थिति में तब तक रहते जब तक कारवां गुजर नहीं जाता था। . गाड़ी पास आई।

एक लम्बा व्यक्ति कदम मिलाते हुए आगे बढ़ा। वह रास्ते पर चीखते हुए बढ़ रहा था। “घुटनों के बल बैठ जाओ। घुटनों के बल बैठ जाओ।” और जुलूस के निकलते समय सभी झुक गये।। – एकाएक वैन के नेता की दृष्टि पेड़ पर चढ़े बूढ़े व्यक्ति पर पड़ी। वह उसे क्रोधपूर्वक बुलाने ही वाला था, जब उसने देखा कि वह इतना बूढ़ा था, उसने ऐसा दिखाया कि उसने उसकी तरफ ध्यान नहीं दिया था। और वह वहाँ से निकल गया जब डाइमियोस की पालकी नजदीक आई तो बूढ़े व्यक्ति ने चुटकी भर राख टोकरी से निकालकर पेड़ पर यहाँ वहाँ गिरा दी। क्षणभर में ही पेड़ पूरी तरह खिल उठा था।

11. The delighted …. …… old wife. (Page 62)

प्रसन्नचित्त राजा ने गाड़ी को रुकवाने का आदेश दिया और उस चमत्कार को देखने बाहर आया। बूढ़े व्यक्ति को अपने पास बुलाते हुए उसने उसको धन्यवाद और उसे रेशमी कपड़ों, केक, पंखे और अन्य पुरस्कार प्रदान करने का आदेश दिया। उसने उसे अपने किले पर आने को भी आमंत्रित किया। अतः बूढ़ा व्यक्ति खुशी-खुशी अपनी प्रसन्नता अपनी पत्नी से बाँटने घर पहुंचा।

12. But when.. ……………. age. (Page 63)

परंतु जब उस लालची पड़ौसी ने यह सुना तो उसने कुछ जादुई राख लो और मुख्य मार्ग की ओर चल पड़ा। उसने वहाँ राजा की गाड़ी के आने की प्रतीक्षा की और, भीड़ की तरह घुटने के बल न बैठकर, वह एक मुरझाये चेरी के पेड़ पर चढ़ गया। जब डाइमियोस विल्कल उसके नीचे पहँचा उसने मट्ठी भर राख पेड़ पर फैकी जिसने एक भी कण में परिवर्तन नहीं किया। हवा से उड़कर राख डाइमियोस तथा उसकी पत्नी के नाक व आंखों में घुस गई। छीकें और गला रुंध गया।

उसने जुलूस की शान और मान खराब कर दी थी। वह व्यक्ति जिसका काम ‘घुटनों के बल बैठ जाओ’ चिल्लाना था, बूढ़े मूर्ख को कॉलर से पकड़कर, पेड़ से नीचे उतारा, खींचते हुए और उस की राख की टोकरी को सड़क किनारे एक गड्ढे में डाल दिया। तब, उसे बुरी तरह पीटते हुए, उसने उसे अधमरा करके छोड़ दिया। इस प्रकार धूर्त बूढ़ा व्यक्ति कीचड़ में ही मर गया, परंतु कुत्ते के दयालु मित्र को शांति तथा समृद्धि प्राप्त हुई, और दोनों वह और उसकी पत्नी लम्बी आयु तक खुशी-खुशी जीते रहे।

 
Read More

Chapter -3 Gopal and the Hilsa-Fish | Class 7th | NCERT English Honeycomb Solutions | Edugrown

NCERT Solutions for Class 7 English Honeycomb

Here our subject experts provided the Chapter-wise NCERT Solutions for Class 7 English as per the latest cbse guidelines. Students of class 7 can grab this opportunity. Access the links prevailing on this page and dip deep into the chapterwise NCERT English subject solutions and get knowledge on how to present the answer perfectly in the exams. Go ahead and understand how important referring to the NCERT Class 7 English solutions during preparation.

Chapter - 3 Gopal and the Hilsa-Fish

Question 1.
Why did the King want no more talk about the Hilsa-fish ?
Answer:
During the season of Hilsa-fish, everybody talked about the fish. The King was fed up.So he did not want to talk more about the fish.

Question 2.
What did the King ask Gopal to do to prove that he was clever ?
Answer:
Gopal could stop everyone from talking about Hilsa-fish for five minutes.

Question 3.
What three things did Gopal do before he went to buy his Hilsa-fish?
Answer:
Gopal covered his half face. He smeared his face with ash. And then he wore disgraceful rags on.

Question 4.
How did Gopal get inside the palace to see the King after he had bought the fish?
Answer:
On reaching the palace he behaved like a mad man. He began to sing and dance loudly. The people took him crazy and forced him to present before the King in the palace.

Question 5.
Explain why no one seemed to be interested in talking about the Hilsa-fish which Gopal had bought.
Answer:
Gopal was ill-dressed and behaved in a crazy way. Everyone took him mad. So, no one seemed to talk about the Hilsa-fish he had bought. Moreover they thought that Gopal
had lost his mind.

Question 6.
Write ‘True’ or ‘False’ against each of the following sentences.
(i) The king lost his temper easily.
(ii) Gopal was a mad man.
(iii) Gopal was a clever man.
(iv) Gopal was too poor to afford decent clothes.
(v) The King got angry when he was shown to be wrong.
Answer:
(i) True
(ii) False
(iii) True
(iv) False
(v) False.

Gopal and the Hilsa-Fish Working with language (Page-42)

Question 1.
Notice how in a comic book, there are no speech marks when characters talk. Instead
what they say is put in speech ‘bubble’. However, if we wish to repeat or “report what they say, we must put it into Reported Speech.
Change the following sentences in the story to reported speech. The first one has been done for you.
(i) How much did you pay for that hilsa ?
The woman asked the man how much he had paid for that hilsa.

(ii) Why is your face half-shaven?
Gopal’s wife asked him ……….

(iii) I accept the challenge, Your Majesty.
Gopal told the king …..

(iv) I want to see the king.
Gopal told the guards

(v) Bring the man to me at once.
The king ordered the guard….
Answer:
(ii) Gopal’s wife asked him why his face was half-shaven.
(iii) Gopal told the king that he accepted the challenge.
(iv) Gopal told the guards that he wanted to see the King.
(v) The King ordered the guard to bring the man to him at once.

Question 2.
Find out the meaning of the following words by looking them up in the dictionary. Then use them in sentences of your own.

challenge   , mystic ,  comical  ,  courtier ,  smearing

Answer:
(i) challenge : an invitation to compete
I accept your challenge now

(ii) mystic : relating to mystery
Gulliver was a mystic character.

(iii) comical : funny
Johny Walker was a comical character in Bollywood.

(iv) courtier : subjects in the court
Birbal was a courtier in the court of Akbar.

(v) smearing : rubbing
He was smearing his body with colours.

Gopal and the Hilsa-Fish Picture Reading (Page-44)

Question 1.
Look at the pictures and read the text aloud.
NCERT Solutions for Class 7 English Honeycomb Chapter 3 Gopal and the Hilsa-Fish 1
NCERT Solutions for Class 7 English Honeycomb Chapter 3 Gopal and the Hilsa-Fish 2

Question 2.
Now ask your partner questions about each picture.
(i) Where is the stag ?
Answer:
The stag is near a pond.

(ii) What is he doing ?
Answer:
He is drinking water.

(iii) Does he like his antlers (horns)?
Answer:
Yes, he does like his antlers.

(iv) Does he like his legs?
Answer:
No, he does not like his legs.

(v) Why is the stag running ?
Answer:
The hunters are chasing him.

(vi) Is he able to hide in the bushes ?
Answer:
No, he is unable to hide in the bushes.

(vii) Where are the hunters now ?
Answer:
The hunters are very near to the stag.

(viii) Are they closing in on the stag ?
Answer:
Yes, they are closing in on the stag.

(ix) Is the stag free?
Answer:
Yes, he is free and out of danger.

(x) What does the stay say about his horns and his legs ?
Answer:
He was proud of his horns. They could have caused him death. But his legs saved his life. Previously, he was ashamed of his legs.

Question 3.
Now write the story in your own words. Give it a title.
Answer:
Once there was a stag. He was drinking water from a pond. He saw his own reflection in the water. He saw his thorns and a smile passed on his lips. He praised them. When he saw his thin legs, he felt ashamed of them. Just then he heard a noise. There were hunters near him. He ran as fast as he could. He had shelter in the bushes. His anters got stick in them. He ran away and in a short while he was out of sight. He thought of his antlers. They could have caused him death but the thin legs which he was ashamed of saved his precious life. He thanked god.
Title : A Vain Stag
or
Every thing has it own importance.

Question 4.
Complete the following word ladder with the help of the clues given below.
NCERT Solutions for Class 7 English Honeycomb Chapter 3 Gopal and the Hilsa-Fish 3
Clues

1. Mother will be very ………….. if you don’t go to school.
2. As soon as he caught ………… of the teacher, Mohan started writing.
3. How do you like my …………….. kitchen garden? Big enough for you, is it ?
4. My youngest sister is now a ………….. old.
5. Standing on the . ………………, he saw children playing on the road.
6. Don’t make such a …………….. Nothing will happen.
7. Don’t cross the ……………….. till the green light comes on.
Answer:
NCERT Solutions for Class 7 English Honeycomb Chapter 3 Gopal and the Hilsa-Fish 4
Gopal and the Hilsa-Fish Introduction

Gopal and the Hilsa-fish is a comic strip. It narrates the intelligence of a courtier Gopal to the king. It is the season of Hilsa-fish. Everybody is talking about it. The king was fed up. How Gopal made the king small before the courtiers and won his admiration is the gist of the story.

Gopal and the Hilsa-Fish Word notes

NCERT Solutions for Class 7 English Honeycomb Chapter 3 Gopal and the Hilsa-Fish 5

Gopal and the Hilsa-Fish Complete hindi translation

Have you …….. ..pictures. (Page 36)

क्या कभी आपने एक चित्रकथा पढ़ी है? एक चित्रकथा में चित्रों के माध्यम से कहानियाँ बताई जाती हैं।

1. It was ………………..(Page 36)

  • हिल्सा मछली का मौसम था। मछुआरे हिल्सा-मछली को छोड़कर कुछ नहीं सोच सकते थे।
  • मछली विक्रेता केवल हिल्सा-मछली बेचते थे।
    “आओ, खरीदो। आज हिल्सा-मछली के दाम गिरे हुए हैं।”
  • सभी घरों में लोग केवल हिल्सा-मछली के बारे में बात करते थे।
    “इस हिल्सा के लिए आपने कितना दाम दिया ?”
    “यदि मैं तुम्हें बताऊँ तो तुम विश्वास नहीं करोगी।”
  • और महल में भी सभासद केवल हिल्सा-मछली के बारे में बात करते थे।
    “महाराज! आपको देखना चाहिए था, मैंने कितनी बड़ी हिल्सा-मछली पकड़ी। वह थी…..”

2. Stop it…….(Page 37)

  • “रोको, इसे!”
    … “आप सभासद हैं या मछुआरे?”
    सभासद ने शर्म से नजरें झुका लीं। राजा ने गलती महसूस की।
    “मुझे खेद है कि मैं अपना नियंत्रण खो बैठा। यह हिल्सा-मछली का
    मौसम है और कोई भी…..
    “न गोपाल भी किसी को हिल्सा-मछली के बारे में बात करने से रोक सकता है। पाँच मिनट के लिए भी नहीं।”
    “ओह! मैं सोचता हूँ कि मैं यह कर सकता हूँ, महाराज।”
    “तो फिर तुम एक बड़ी हिल्सा खरीदकर दरबार में लाओ परन्तु
    किसी को भी उसके बारे में पूछने का मौका दिए बिना।”
    “महाराज, मैं यह चुनौती स्वीकार करता हूँ।”

3. A fews days later……. (Page 38)

  • कुछ दिनों के पश्चात्—…………..
    “आपने आधी दाढ़ी क्यों बनाई है?”
    “मैं मछली खरीदने के लिए मेकअप कर रहा हूँ।”
    “आप के साथ क्या हुआ है? आप चेहरे पर राख क्यों पोत रहे हैं?”
    “मैंने तुम्हें बताया-मैं मछली खरीदने के लिए मेकअप कर रहा हूँ।”
    “सुनो ज़रा। आप इतने भद्दे चीथड़ों में बाहर नहीं जा सकते। आप को क्या हुआ?”
    “कितनी बार तुम्हें बताऊँ, औरत? मैं एक हिल्सा-मछली खरीदने जा रहा हूँ।”
    “इन्हें कुछ हो गया है। पागल हो गए हैं।”

4.’ Gopal bought… (Page 39)

  • गोपाल ने हिल्सा-मछली खरीदी और महल की ओर पैदल ही चल दिया।
    “माँ, देखो इस आदमी को! क्या वह विदूषक नहीं?”
    “वह कोई पागल व्यक्ति ही होगा।”
    “हुश, मैं सोचता हूँ कि वह कोई रहस्यमयी है।”
  • जब गोपाल दरबार में पहुँचा
    “क्या चाहते हो तुम?”
    “मैं राजा से मिलना चाहता हूँ।”
    “तुम राजा से नहीं मिल करते। चले जाओ।”
  • गोपाल ने ऊंचे स्वर में माना तथा नाचना शुरू कर दिया।

5. Inside the palace……….. (Page 40)

  • महल के अन्दर
    “आदमी पागल हो गया है।”
    “बाहर फैंक दो ऐसे तत्काल।”
    “मुझे राजा से मिलना है। मुझे अन्दर जाने दो-।”
    “उस व्यक्ति को तत्काल मेरे पास लाया जाए।”
    “ठीक है, महाराज।”
  • गोपाल को राजा के सामने लाया गया।
    “यह तो गोपाल है।” “आदमी अपने होश खो बैठा है।”
    “मेरा विचार है कि यह उसका कोई मज़ाक हो।”

6. All Right….. (Page 41)

  • “अच्छा, गोपाल! इसके साथ आ गये। तुमने इतना भद्दा फैशन क्यों किया हुआ है?”
    “महाराज, मुझे लगता है कि आप कुछ भूल चुके हैं।”
    “कुछ भूल चुके हैं?”
    “विचित्र बात है, आज कोई भी हिल्सा-मछली की ओर ध्यान नहीं दे रहा। बाजार से महल तक और
    दरबार में भी, किसी भी व्यक्ति ने हिल्सा-मछली के बारे में एक शब्द भी नहीं कहा!”
  • तभी राजा को वह चुनौती याद आई जो उन्होंने गोपाल को दी थी।
    “हा! हा! हा!! बहुत अच्छे, गोपाल बधाई। तुमने एक बार फिर असंभव को प्राप्त कर लिया है।”
Read More

Chapter -2 A Gift of Chappals | Class 7th | NCERT English Honeycomb Solutions | Edugrown

NCERT Solutions for Class 7 English Honeycomb

Here our subject experts provided the Chapter-wise NCERT Solutions for Class 7 English as per the latest cbse guidelines. Students of class 7 can grab this opportunity. Access the links prevailing on this page and dip deep into the chapterwise NCERT English subject solutions and get knowledge on how to present the answer perfectly in the exams. Go ahead and understand how important referring to the NCERT Class 7 English solutions during preparation.

Chapter - 2 A Gift of Chappals

Question 1.
What is the secret that Meena shares with Mridu in the backyard ?
Answer:
Meena tells her that they had found a kitten outside the gate that morning. The small cat was lying inside a torn football lined with sacking and filled with sand. It was a secret that their mother did not know.

Question 2.
How does Ravi get milk for the kitten ?
Answer:
Ravi got the milk from Patti who wanted the tumbler back. Ravi pretended that he would wash it himself. He ran to put the milk in the coconut shell.

Question 3.
Who does he say the kitten’s ancestors are ? Do you believe him ?
Answer:
The kitten’s ancestors were Mahabalipuram Rishi-cat. No, I don’t agree to it.

Question 4.
Ravi has a lot to say about M.P. Poonai. This shows that
(i) he is merely trying to impress Mridu
(ii) his knowledge of history is sound
(iii) he has a rich imagination
(iv) he is an intelligent child.
Which of these statements do you agree/disagree to ?
Answer:
(i) I agree to he is trying to impress Mridu.

Question 5.
What was the noise that startled Mridu and frightened Mahendrar ?
Answer:
Lalli was learning to play on violin. The sound of kreech coming from it startled Mridu and frightened Mahendran.

A Gift of Chappals Comprehension check (Page – 28)

Question 1.
The music master is making lovely music. Read aloud the sentence in the text that expresses this idea.
Answer:
The music-master’s notes seemed to float up and settle perfectly in to the invisible tracks of the melody.

Question 2.
Had the beggar come to Rukku Manni’s house for the first time? Give reasons for your answer.
Answer:
No, he had been there many a time before. Mother was heard telling Ravi to send the beggar away as he had been coming everyday for the past week.

Question 3.
“A sharp V-shaped line had formed between her eyebrows.” What does it suggest to you about Rukku Manni’s mood?
Answer:
Rukku Manni was very angry at the loss of music-master’s chappals. She could make out that the children had played a trick upon her.

A Gift of Chappals Working with the text (Page-29)

Question 1.
Complete the following sentences.
(i) Ravi compares Lalli’s playing the violin to
(ii) Trying to hide beneath the tray of chillies, Mahendran
(iii) The teacher played a few notes on his violin, and Lalli
(iv) The beggar said that the kind ladies of the household
(v) After the lesson was over, the music teacher asked Lalli if
Answer:
(i) ….. the derailing of a train going completely off track.
(ii) …. tipped a few chillies over himself.
(iii) …. stumbled behind him on her violin, which looked quite helpless and unhappy in her hands.
(iv) …. had fed his body and soul together on for a whole week and he could not believe that they would turn him away.
(v) …. she had seen his chappals.

Question 2.
Describe the music teacher, as seen from the window.
Answer:
The music-master had a bald head with a fringe of oiled black hair falling around his ears. He appeared to be a skeleton-like figure. A gold chain shone on his fluffy neck and a diamond ring gleamed on his finger. He was beating his big toe on the floor frequently as the music went on.

Question 3.
(i) What makes Mridu conclude that the beggar has no money to buy chappals?
(ii) What does she suggest to show her concern ?
Answer:
(i) Mridu concluded that the beggar had no money to buy chappals as he was walking barefooted in the scorching sun. There were blisters all over his feet.
(ii) She suggests that old chappals lying in the verandah could be given to the beggar.

Question 4.
“Have you children….” she began, and then, seeing they were curiously quiet, went on more slowly, “seen anyone lurking around the verandah ?”
(i) What do you think Rukku Manni really wanted to ask?
(ii) Why did she change her question ?
(iii) What did she think had happened ?
Answer:
(i) Rukku Manni wanted to ask the children whether they had hidden the chappals anywhere.
(ii) When she saw them extremely quiet, she changed her question.
(iii) She thought that something extreme had happened in the house regarding the chappals.

Question 5.
On getting Gopu Mama’s chappals, the music teacher tried not to look too happy. Why ?
Answer:
The music-master wanted to show that he was angry on the loss of his so called new and expensive chappals. Moreover he was not happy on the behaviour of the naughty children playing in the shade in the garden.

Question 6.
On getting a gift of chappals, the beggar vanished in a minute. Why was he in such a hurry to leave ?
Answer:
He did so as he did not want any of the elder members to come and know about it. He must have feared if anyone came, they would take the chappals back from him.

Question 7.
Walking towards the kitchen with Mridu and Meena, Rukku Manni began to laugh. What made her laugh ?
Answer:
She thought that how her brother would react on knowing that she had given his chappals to the music master.

A Gift of Chappals Working with language (Page – 30)

Question 1.
Read the following sentences:
(a) If she knows we have a cat, Paati will leave the house.
(b) She won’t be so upset if she knows about the poor beggar with sores on his feet.
(c) If the chappals do fit, will you really not mind ? Notice that each sentence consists of two parts. The first part begins with ‘if’. It is known as if-clause.

Rewrite each of the following pairs of sentences as a single sentence. Use ‘if’ at the beginning of the sentence.

(a) Walk fast. You’ll catch the bus.
If you walk fast, you’ll catch the bus.

(b) Don’t spit on the road. You’ll be fined.
If you spit on the road, you’ll be fined.

(i) Don’t tire yourself now. You won’t be able to work in the evening.
(ii) Study regularly. You’ll do well in the examination.
(iii) Work hard. You’ll pass the examination in the first division.
(iv) Be polite to people. They’ll also be polite to you.
(v) Don’t tease the dog. It’ll bite you.
Answer:
(i) If you tire yourself now, you won’t be able to work in the evening.
(ii) If you study regularly, you’ll do well in the examination.
(iii) If you work hard, you’ll pass the examination in the first division.
(iv) If you are polite to people, they’ll also be polite to you.
(v) If you tease the dog, it’ll bite you.

Question 2.
Fill in the blanks in the following paragraph. Today is Sunday. I’m wondering whether I should stay at home or go out.

If I …………. (go) out, I ………….. (miss) the lovely Sunday lunch at home. If I …………….. (stay) for lunch, I………………… (miss) the Sunday film showing at Archana Theatre. I think I’ll go out and see the film, only to avoid getting too fat.
Answer:
Today is Sunday. I’m wondering whether I should stay at home or go out. If I go out, Iwill miss the lovely Sunday lunch at home. If I stay for lunch, I will miss (miss) the Sunday film showing at Archana Theatre. I think I’ll go out and see the film only to avoid getting too fat.

Question 3.
Complete each sentence below by appropriately using any one of the following:

If you want to/if you don’t want to/if you want him to

(i) Don’t go to the theatre……………
(ii) He’ll post your letter…………………..
(iii) Please use my pen …………..
(iv) He’ll lend you his umbrella……..
(v) My neighbour, Ramesh, will take you to the doctor
(vi) Don’t eat it ……
Answer:
(i) if you don’t want to (go)
(ii) if you want him to
(iii) if you want to
(iv) if you want him to
(v) if you want him to
(vi) if you don’t want to

A Gift of Chappals Speaking and Writing (Page – 31)

Question 1.
Discuss in sm all groups.
(i) If you want to give away something of your own to the needy, would it be better to ask your elders first ?
(ii) Is there someone of your age in the family who is very talkative ? Do you find her/ him interesting and impressive or otherwise ? Share your ideas with others in t group.
(iii) Has Rukku Manni done exactly the same as the children? In your opinion, then, is it right for one party to blame the other ?
Answer:
(i) Of course, the elders must be asked before doing a charity whether it is our own as we’re not still earning members of the family. They provide the thing for our own use to give us extra facility.

(ii) Our mama is a talkative fellow, but he is not the headache of the family. His titbits thrill us in our pensive mood sometimes. He narrates us many interesting incidents to feel us light on our work load.

(iii) No doubt Rukku Manni was angry at the children who had given away the chappals to the beggar. To cover it up, she also gave away Gopu Mama’s chappals to the music master. In a sense, she did the same as the children had done. I feel that one party should not blame the other for the same action.

Question 2.
Read the following :

(i) A group of children in your class are going to live in a hostel.
(ii) They have been asked to choose a person in the group to share a room with.
(iii) They are asking each other questions to decide who they would like to share a room with. Ask one another questions about likes/dislikes/preferences/hobbies/personal characteristics. Use the following questions and sentence openings.

(i) What do you enjoy doing after school ?
I enjoy…

(ii) What do you like in general ?
I like…

(iii) Do you play any game?
I don’t like…

(iv) Would you mind if I listened to music after dinner ?
I wouldn’t…

(v) Will it be all right if I… ?
It’s fine with me…

(vi) Is there anything you dislike, particularly ?
Well, I can’t share…

(vii) Do you like to attend parties ?
Oh, I…

(viii) Would you say you are…?
I think…
Answer:
(i) I enjoy going for evening games with the friends.
(ii) I like reading books specially mysterious tales.
(iii) I don’t like to play expensive and outdoor games.
(iv) I wouldn’t mind if you listened to it in a slow volume.
(v) It is fine with me till you listen to cricket commentary.
(vi) Well, I can’t share my views on this topic.
(vii) Oh, I relish parties for the variety of food.
(viii) I think I am a helping hand for the needy students.

A Gift of Chappals Introduction

A gift is some kind of a thing that serves the others’ motive. When we give something to the other needy, we feel that it’ll suit the other person in his need. But it would be better to ask our elders first before we want to give away something of our own to the needy. It is really a touching story of Ravi who gave away the chappals to the beggar.

A Gift of Chappals Word Notes

NCERT Solutions for Class 7 English Honeycomb Chapter 2 A Gift of Chappals 1
NCERT Solutions for Class 7 English Honeycomb Chapter 2 A Gift of Chappals 2
NCERT Solutions for Class 7 English Honeycomb Chapter 2 A Gift of Chappals 3

A Gift of Chappals Complete hindi translation

Mridu …………… and Meena. (Page 18)

मृदु मद्रास (अब चेन्नई) में बड़ी हो रही एक छोटी लड़की है जो तापी, उसकी दादी तथा उसके दादा थाथा के साथ रहती है। एक दोपहर बाद, तापी उसे अपनी मौसी रूक्कू मनी के घर अपनी मौसेरी बहनों लल्ली, रवि व मीना से मिलने ले जाती है।

Part-I

1. A smiling have a cat.” (Pages 18-19)

रूक्कू मनी ने मुस्कुराते हुए दरवाजा खोला। रवि और मीना दौड़कर बाहर आये और रवि ने मृदु को घर में अन्दर खींचा। “ठहरो, मुझे अपनी चप्पलें उतारने दो।” मृदु ने रोका। उसने उन्हें बड़ी सफाई के साथ एक जोड़ी बड़ी चप्पलों के पास रखा।वे रेत के कारण काली पड़ गई थीं। प्रत्येक चप्पल के अग्रभाग पर पंजे के निशान स्पष्ट नजर आ रहे थे। दो बड़े अंगूठों के निशान जो लम्बे तथा पतले थे।

मृदु के पास इस बात को आश्चर्य करने का समय नहीं था कि वे चप्पलें किसकी थीं, क्योंकि रवि उसे खींचते हुए घर के पिछले भाग में यानि कडुवी सरसफल की झाड़ियों के पीछे ले गया था। वहाँ, एक फटी हुई टाट के जोड़ और रेत से भरी हुई एक फुटबाल के अन्दर बिल्ली का बहुत छोटा एक बच्चा लेटा हुआ था, जो नारियल के आधे खोल में से दूध पी रहा था। “हमने सुबह गेट के बाहर पाया था। वह बेचारा म्याऊँ म्याऊँ कर रहा था।” मीना ने कहा। “यह एक रहस्य है। अम्मा कहता है कि पाती (दादी) को यदि पता चला कि हमारे पास बिल्ली का बच्चा है तो वह पढ़े मामा के घर चली जायेगी।”

2. “People are. …..Mahendran.” (Pages 19-20)

“लोग हमेशा हमें कहते हैं कि जानवरों के साथ दया दिखाएँ परन्तु जब हम करते हैं, तो वे चिल्लाते हैं। “ओह, इतने गन्दे जानवर को यहाँ मत लाओ।” रवि बोला। “क्या तुम जानते हो कि रसोई से थोड़ा-सा दूध लाने में कितनी मुश्किल हुई? पाती ने मेरे हाथ में एक गिलास देख लिया था। मैंने उन्हें बताया कि मुझे बहुत भूख लगी है, मैं इसे पीना चाहता हूँ, परन्तु जैसे वह मुझे देख रही थी! मुझे उसका शक दूर करने के लिये काफी सारा पीना पड़ा। फिर वह बर्तन को वापस रखना चाहती थी। “पाती, पाती, मैं इसे अपने आप धो दूंगा, मैं आपको तकलीफ क्यों हूँ। मैंने उसे कहा। मुझे भाग कर वह दूध इस नारियल के खोखे में डालना पड़ा और फिर वापस भागकर उस बर्तन को धोकर और उसे माँ के संदेह करने से पहले वापस रखना पड़ा। अब हमें महेन्द्रन को खिलाने के लिये कोई और तरीका ढूँढ़ना होगा।”

3. Mahendran …………. .Egypt! (Page 20)

“महेन्द्रन ? इस छोटी बिल्ली का नाम महेन्द्रन है?” मृदु प्रभावित हुई थी! यह वास्तविक नाम था-न कि किसी बिल्ली के बच्चे का नाम। “वास्तव में, उसका पूरा नाम महेन्द्र वर्मा पल्लव पुनई है। यदि तुम्हें पसंद हो तो संक्षेप में एम.पी. पुनई। यह बिल्ली की एक शानदार नस्ल है। जरा इसके बाल देखो! शेर के अयाल की तरह! और तुम जानती हो कि पुरातन पल्लव राजाओं का राज चिह्न क्या था, क्या नहीं जानती?” उसने आशापूर्वक मृदु की ओर देखा। “सोचती हो मैं मज़ाक कर रहा हूँ? खैर, जरा रुको।

मैं तुम्हें कुछ दिखाता हूँ। यह स्पष्ट है कि तुम इतिहास के बारे म कुछ भी नहीं जानती। कभी महाबलीपुरम नहीं गई?” उसने रहस्यमय ढंग से पूछा। “खैर, जब हमारी कक्षा महाबलीपुरम गई थी, मैंने इसके थाथा के थाथा के थाथा के थाथा के थाथा आदि-आदि का पुतला देखा था। तथ्य यह है कि महेन्द्रन उसी प्राचीन बिल्ली का उत्तराधिकारी है। एक नज़दीकी रिश्तेदार, वैज्ञानिक तरीके से बोले तो एक शेर की भाँति। एक पल्लव शेर, पल्लव साम्राज्य का प्रतीक।” रवि बोलता रहा, कड़वी-सरसफल झाड़ी के चारों तरफ टहलते हुए, एक टहनी को ऊपर नीचे हिलाते हुए और अपनी आँखों में चमक के साथ। यह बिल्ली और कोई नहीं बल्कि महाबलीपुरम् की ऋषि-बिल्ली की उत्तराधिकारी है। और यदि मैं तुम्हें स्मरण दिला पाऊँ, प्राचीन मिस्र में बिल्लियों को पूजा जाता था।

4. How he…… ….with himself. (Page 21)

अपनी आवाज से कितना प्यार करता था वह! मीना तथा मृदु ने एक दूसरे की ओर देखा। “उसका किसी और चीज से क्या लेना देना?” मृदु ने पूछा। “हूँ…….मैं तुम्हें बता रहा हूँ कि यह बिल्ली उत्तराधिकारी……. मिन के बिल्ली देवता की नहीं। देवी! बास्टेट! हाँतो……..”
“तो?” “खैर, इस बिल्ली-देवी की एक उत्तराधिकारी ने पल्लवों के जहाजों में से एक में छिपकर यात्रा की और उसके उत्तराधिकारी थे महाबलीपुरम के ऋषि-बिल्ली, जिसके उत्तराधिकारी हैं-” रवि ने अपनी टहनी महेन्द्रन की ओर करते हुए कहा, “एम.पी. पुनई। वाह……!!” वह चीखा, अपने आप से बेहद खुश होकर।

5. Mahendran….. ………… off track! (Page 21)

महेन्द्रन ने चौंककर ऊपर देखा। वह अपने पंजे नारियल के खोखे के किनारों पर पैने कर रहा था। परन्तु रवि की घटिया वाह……से ज्यादा बुरी थी एक ‘क्री…….च!’ जो खिड़की से आई। कितनी गंदी आवाज है! यदि मृदु हैरान थी तो एम पी पुनई उसके मज़ाक से डरी थी। बाल के रौंये खड़े करके वह कूदी और लाल मिर्ची भरी बाँस की एक ट्रे जो सूखने के लिए रखी गई थी उसकी ओर दौड़ी। उसके नीचे छिपने के प्रयास में, उसने कुछ मिर्ची अपने ऊपर डालीं। म्याऊँ…..।” वह गुर्रायी। क्रीच की आवाज बढ़ती गई। “यह आवाज कैसी है?” मृदु बोली। “यह लाली है जो वायलिन बजाना सीख रही है।” रवि गुर्रायी सी आवाज में बोला। “वह कभी कुछ नहीं सीख पायेगी। संगीत शिक्षक रेल की सनसनाहट के साथ बजाते ही चले जाते हैं जबकि लाली हर समय पटरी से उतरती रहती है। पथ से हमेशा नीचे उतरी सी रहती है।”

Part-II

1. Mridu crept …….. ……………big toe. (Page 22)

मृदु खिड़की पर रेंगकर गई। लाली कुछ दूरी पर अपने हाथ में विचित्र तरीके से वायलिन और उसकी तार पकड़े हुए, अपनी कोहनियों को बाहर निकालकर और ध्यानपूर्वक अपनी दृष्टि गढ़ाये बैठी थी। उसके सामने अपनी सारी पीठ खिड़की की ओर किए, एक पतला दुबला संगीत शिक्षक बैठा था। उसका सिर गंजा था जिस पर तेल लगे काले बालों की एक झालर (लट) उसके कानों के चारों ओर गिरी थी। उसकी मोटी गर्दन में सोने की चेन चमक रही थी, और हाथ में हीरे की अंगूठी थी-जब वह वायलिन बजाने के लिए अपने हाथ ऊपर नीचे गिराता था। उसकी सुनहरी काली किनारे वाली धोती के नीचे उसका एक बड़ा पाँव नजर आ रहा था, और वह समय-समय पर उस दुबले से पाँव से जमीन को पीटता था।

2. He played …… …Tapi. (Pages 22-24)

उसने कुछ सुर बजाये। लाली ने अपनी वायलिन पर उन्हें उतारने का प्रयास किया जो उसके हाथों में असहाय व नाखुश प्रतीत हो रही थी। कितना अंतर है! संगीत शिक्षक के सुर तैरकर बिल्कुल सही प्रकार संगीत में समाते हुए लगते थे। वे ऐसे लगते थे कि जैसे रेलगाड़ी के पहिए पटरी पर आराम से जम जाते हैं और उसके साथ-साथ चलते हैं, जैसा रवि ने कहा था। मृदु उन अंगूठी वाले बड़े हाथों को वायलिन पर बिना परिश्रम के मधुर संगीत पैदा करते देख रही थी। “लो, लाली फिर पटरी से उतर गई।” “अम्मा!” दरवाजे से एक आवाज आई। “अम्मा-ओ!” “रवि, इस भिखारी को भगा दो!” उसकी माँ पिछवाड़े से चिल्लाई, जहाँ वह तापी के साथ बतिया रही थी। “वह गत सप्ताह से प्रतिदिन चला आ रहा है और अब उसे कोई दूसरे घर से भिक्षा लेनी चाहिए!” पाती ने तापी को विस्तार से समझाया।

3. Mridu and ….. ………………betel-chewing. (Page 24)

मृदु और मीना रवि के पीछे-पीछे बाहर गईं। भिखारी पहले से ही अपने आप को आराम देते हुए बगीचे में बैठ गया था। उसने अपना अंगोछा नीम के पेड़ के नीचे बिछा दिया था और तने के सहारे भीख मिलने के इंतजार में एक छोटी-सी झपकी की तैयारी करने लगा। “चले जाओ!” रवि ने रुखे स्वर से कहा। “मेरी पाती कहती है कि अब समय है कि तुम अपने लिए कोई दूसरा घर ढूँढ़ लो!”

भिखारी ने अपनी आँखें चौड़ी की और एक-एक करके बच्चों को देखने लगा। “इस घर की महिलाएँ,” आखिरकार भावनाओं से आवाज रुद्ध करते हुए बोला, “बहुत दयालु हैं, मैंने पूरे हफ्ते तक अपना शरीर और आत्मा इनके परोपकार पर रखा। मुझे यकीन नहीं हो रहा है कि वे मुझे भगा देगीं।” उसने अपनी आवाज़ ऊँची की। “अम्मा! अम्मा-ओ!” उसकी आवाज़ चाहे उदास हो परन्तु कमज़ोर नहीं। उसके खाली पेट में कहीं ज़ोर से गड़गड़ाहट होने लगी और उसके मुँह से तम्बाकू चबाने से निशान पड़े हुए दाँतों को दिखाते हुए वह बाहर आने लगी।

4. Ravi,…… … and Meena’s. (Pages 24-25)

“रवि, उसे बता दो कि रसोई में कुछ नहीं बचा।” रूक्कू मनी चिल्लाई। “और उसे बता दो कि वह वापस कभी ना आए।” वह चिढ़चिढ़ाते हुए बोली। रवि को फिर से दोहराने की जरूरत नहीं पड़ी। जो उसकी माँ ने कहा वह उन सब को उस नीम के पेड़ के नीचे तक आराम से सुनाई पड़ गया। भिखारी बैठ गया और उच्छवास ली। “मैं चला जाऊँगा! मैं चला जाऊँगा!” उसने क्रोधपूर्वक कहा, “बस मुझे यहाँ पेड़ के नीचे थोड़ा आराम करने दो। सूर्य चमक रहा है, सड़क पर आग बरस रही है। मेरे पाँव में पहले ही छाले पड़े हैं।”

उसने अपने पैर फैलाकर बड़े-बड़े गुलाबी छाले उन पर दिखाये।“मुझे लगता है कि उसके पास चप्पल खरीदने के लिए भी पैसे नहीं हैं,” मृदु ने मीना और रवि को धीरे से कहा “क्या तुम्हारे पास घर में कोई पुरानी जोड़ी चप्पल पड़े हैं?” “मुझे नहीं पता”, रवि बोला, “मेरी चप्पलें उसके पाँवों के लिए काफी छोटी हैं वरना मैं उसे ये दे देता।” और उसके पाँव मृदु और मीना के पाँवों से बड़े थे।

5. The beggar ………. house (Page 25)

भिखारी अपने लबादे को झाड़ते हुए अपनी धोती बांधने लगा। उसने अपनी नजरें उठाईं और भयवश सड़क की ओर देखा, जो दोपहर की गर्मी में चमक रही थी।“उसे अपने पाँवों के लिए कुछ चाहिए।” मीना ने कहा, उसकी बड़ी आँखें भर गईं। “यह ठीक नहीं है।” “श्श!” रवि बोला! “मैं इसके बारे में सोच रहा हूँ। यूँ रोने से यह ठीक नहीं है, यह ठीक नहीं है? इससे कुछ न होगा। अगले दो मिनटों में इसके पाँव सड़कों पर झुलस जायेंगे। इसे जिस चीज की जरूरत है वह एक जोड़ी चप्पल है। कहाँ से मिलेगी हमें? आओ, घर में ढूंढे ।” उसने मृदु और मीना को घर के अन्दर धकेला।

6. Just as….. …………… the garden.(Page 25)

जैसे ही उसने बरामदे में कदम रखा उसकी नजरें उन अजीब सी दिखने वाली चप्पलों पर पड़ी जिन्हें उसने तब देखा था, जब वह आई थी। “रवि!” वह धीरे से बोली, “ये किसकी हैं?”
रवि मुड़ा और भद्दी सी दिखने वाली परन्तु पुरानी मजबूत चप्पलों की तरफ देखा। वह झुका और उसने सिर हिलाया। “ये बिल्कुल सही माप की हैं,” वह उन्हें उठाते हुए बोला। घबराते हुए मृदु और मीना ने उसके पीछे पीछे बगीचे में वापिस कदम रखे।

7. “Here!” said………… …………them. (Page 26)

“लो!” रवि ने भिखारी के सामने चप्पलें फेंकते हुए कहा, “इन्हें पहन लो और फिर वापिस मत आना।” भिखारी ने चप्पलों की ओर देखा, अपना तौलिया जल्दी से कंधे पर डाला, अपने पैर चप्पलों में फंसाये और बच्चों को आशीष देते हुए चला गया। एक मिनट भर में ही वह गली के कोने से गायब हो गया। . संगीत-शिक्षक घर से बाहर आया और तीनों बच्चों की ओर जो पेड़ के नीचे बैठे कंचे खेल रहे थे, रूखी नजरों से देखा। फिर उसने अपनी चप्पलों को वहाँ ढूँढ़ा जहाँ उसने उन्हें उतारा था।

8. “Lalli!”….. …………..following her (Page 26)

“लाली!” उसने कुछ क्षणों बाद पुकारा। वह जल्दी से उसके पास आई। “क्या तुमने मेरी चप्पलें देखी हैं, बेटी? मुझे याद है कि मैंने उन्हें यहाँ उतारा था।” रवि, मृदु और मीना ने चुपचाप लाली को देखा और संगीत शिक्षक ने बरामदे के प्रत्येक कोने को देखा। उसने बुद्धिमानी से चारों ओर देखा, रैलिंग के ऊपर देखा और गमलों के बीच में भी झाँका। “बिल्कुल नई थीं, वे! मैं माउन्ट रोड जाकर उन्हें खरीद कर लाया था।” वह बोलता गया। “तुम्हें पता है वे मुझे पूरे महीने की तनख्वाह के बराबर पड़ी थी।” ।
शीघ्र ही लाली अपनी माँ को यह बताने अन्दर चली गई। परेशान सी रूक्कू मनी आई। उसके साथ पाती भी थी।

9. “Where could…………………………….tell herself. (Pages 26-27)

“वे कहाँ हो सकती हैं? यह सोचना भी सचमुच बेहद दुख की बात है कि किसी ने उन्हें चुराया है। कितने सारे फेरीवाले दरवाजे पर आते रहते हैं,” पाती ने चिन्ता की। रूक्कू मनी ने रवि, मृदु और मीना को पेड़ के नीचे बैठे देखा। “बच्चो, क्या तुमने ……” उसने कहना शुरू किया, वह तब उन्हें अत्यधिक चुप देखकर धीरे से बोली, “किसी को बरामदे में घूमते हुए देखा है?” उसकी पलकों के बीच एक वी-आकार उभर आया। उसके नर्म सुन्दर मुख की बजाय एक सीधा कसा हुआ मुख उभर आया। रूक्कू मनी गुस्से में थी। मृदु ने काँपते हुए सोचा। वह बुरा नहीं मानेगी, यदि उसे पता चलेगा कि उस गरीब भिखारी के घाव भरे पाँवों के बारे में जानेगी, उसने स्वयं बताने की कोशिश की।

10. Taking a deep…. ……………his own.” (Page 27)

गहरी साँस लेकर, वह बोली, “रूक्कू मनी, यहाँ एक भिखारी आया था। बेचारे के पाँव में इतने छाले थे!” “तो?” रूक्कू मनी ने गंभीर होकर रवि की ओर मुड़ते हुए कहा, “तुमने संगीत शिक्षक की चप्पलें उस भिखारी को दे दी जो यहाँ आया था?” “बच्चो, आजकल……,” पाती गुर्रायी। ‘अम्मा, क्या आपने हमें कर्ण के बारे में नहीं बताया था जिसने अपनी सारी चीजें, सोने के अपने कुंडल भी दान में दे दिए थे, वह कितना दयालु और परोपकारी थी।” “बेवकूफ!” रूक्कू मनी चिल्लायी, “कर्ण ने किसी दूसरे की चीजें दान में नहीं दी थीं, वह केवल अपनी ही चीजें देता था।”

11. “But my chappals…….. ……….minute.” (Page 27)

“परंतु मेरी चप्पलें भिखारी को पूरी नहीं आती….।” रवि ने जल्दी में कहा। “और अम्मा, यदि वे आ जाती तो क्या आप बुरा नहीं मानती?” “रवि!” रूक्कू मनी अब अधिक क्रोध में थी, “इसी समय अंदर जाओ।” .

12. She hurried….. ………..leave quickly. (Pages 27-28)

वह शीघ्रता से अन्दर गई और गोपू मामा की, कभी-कभार पहनी हुई, नई चप्पलें ले आई। “ये आपको आ जानी चाहिए, सर। कृपया इन्हें पहन लीजिए। मुझे माफ कीजिए। मेरा बेटा बहुत शरारती है।” संगीत-शिक्षक की आँखें चमक उठीं। उसने उन्हें पहन लिया, यह जताते हुए मानो वह खुश नहीं हो। “खैर, मुझे लगता है ये ठीक है। आजकल बच्चों को बड़ों का आदर-सम्मान नहीं है, क्या करें? हनुमान के दूत……. केवल राम ही इन शैतानों से बचा सकते हैं।” रुक्कू मनी की आँखें चौंध गईं। उसे रवि को बंदर कहलवाना अच्छा नहीं लगा भले ही वह पवित्र भाव में हो। वह सीधी दरवाजे पर खड़ी रही। साफ था कि वह उसे जल्दी से बाहर भेजना चाहती थी।

13. When.. …..music-master?” (Page 28)

जब वह अपनी नई चप्पलें पहनकर चला गया, वह बोली, “मृदु, अन्दर जाकर कुछ खा लो। सच बताओ, तुम बच्चे ऐसी बातें सोच कैसे लेते हो? शुक्र है कि तुम्हारे गोपू मामा ये चणले काम पर पहन कर नहीं जाते-” रसोई की ओर मृदु और मीना के साथ जाते-जाते वह अचानक हँसने लगी। “परंतु वह हमेशा, जैसे ही घर में आते हैं, अपने जूते जुराबे उतारकर चप्पलें पहनने की जल्दी करते हैं। तुम्हारे मामा आज शाम को क्या कहेंगे, जब मैं उन्हें बताऊँगी कि मैंने उनकी चप्पलें संगीत-शिक्षक को दे दी हैं?”

Read More

Chapter -1 Three Questions | Class 7th | NCERT English Honeycomb Solutions | Edugrown

NCERT Solutions for Class 7 English Honeycomb

Here our subject experts provided the Chapter-wise NCERT Solutions for Class 7 English as per the latest cbse guidelines. Students of class 7 can grab this opportunity. Access the links prevailing on this page and dip deep into the chapterwise NCERT English subject solutions and get knowledge on how to present the answer perfectly in the exams. Go ahead and understand how important referring to the NCERT Class 7 English solutions during preparation.

Question 1.
Why did the King want to know answers to three questions ?
Answer:
The King thought that he would never fail if he knew the right answers to the three questions.

Question 2.
Messengers were sent throughout the kingdom
(i) to fetch wisemen
(ii) to find answers to the questions
(iii) to look for the wise hermit
(iv) to announce a reward for those who could answer the questions. Mark your choice.
Answer:
Messengers were sent throughout the kingdom to announce a reward for those who could answer the questions.

Three Questions Comprehension check (Page – 14)

Complete the following sentences by adding the appropriate parts of the sentences given in the box.

1. Many wisemen answered the king’s questions, ………………
2. Someone suggested that there should be a council of wise men
3. Someone else suggested that the king should have a timetable………………
4. The king requested the hermit ………………
5. The king washed and dressed the bearded man’s wound,………………

  • but the bleeding would not stop.
  • to answer three questions.
  • but their answers were so varied that the king was not satisfied.
  • and follow it strictly.
  • to help the king act at the right time.

Answer:
1. Many wise men answered the kings questions, but their answers were so varied that the king was not satisfied.
2. Someone suggested that there should be a council of wise men to help the king at the right time.
3. Someone else suggested that the king should have a time table and follow it strictly.
4. The king requested the hermit to answer three questions.
5. The king washed and dressed the bearded man’s wound, but the bleeding would not stop.

Three Questions Working with the text (Page-14)

Answer the following questions :

Question 1.
Why was the King advised to go to magicians ?
Answer:
In order to decide the right time to do something, one needs to know the future and that could be done by magicians only. So the king was advised to go to magicians.

Question 2.
In answer to the second question, whose advice did the people say would be important to the King ?
Answer:
To answer the second question, the advice of councillors, or doctors and priests, would be important.

Question 3.
What suggestions were made in answer to the third question ?
Answer:
A few suggestions were made in answer to the third question. The most important thing was suggested to be science, fighting and moreover religious worship.

Question 4.
Did the wise men win the reward ? If not, why not?
Answer:
The wise men did not win the reward as they gave different answers to his questions.

Question 5.
How did the king and the hermit help the wounded man?
Answer:
The King with the help of hermit removed the wounded man’s clothes, washed his wound and covered it with his handkerchief. He redressed it till the blood stopped flowing.

Question 6.
(i) Who was the bearded man ?
(ii) Why did he ask for the King’s foregiveness ?
Answer:
(i) The bearded man was the sworn enemy of the king who had put bearded man’s brother to death. He had taken away all his property, too.
(ii) He had sworn revenge on the king. But the king had saved his life by dressing his wound. The bearded man felt grateful and asked for forgiveness.

Question 7.
The king forgave the bearded man. What did he do to show his forgiveness ?
Answer:
To show his forgiveness, the king promised to send his servants and doctor to look after him. He was happy to have made peace with the enemy. The king also promised to return his property.

Question 8.
What were the hermit’s answers to the three questions? Write each answer separately. Which answer do you like most, and why ?
Answer:
(i) The most important time was when the King was digging the beds for the hermit. The hermit then was the most important man, and the most important business was to help the hermit.
(ii) The most important time was when the king was dressing the man’s wounds. The bearded man was the most important person, and the service given to that man was King’s most important business.

(iii) The most important time is ‘present. The most important person is with when one is at the moment. To do a good deed to the person is the most important business. I feel the third answer is the most appropriate one. If we do the right at the present moment, everything will be ‘all right in future.

Three Questions Working with language (Page – 15)

Question 1.
Match items in List A with their meanings in List B. fainted : lost consciousness

AB
(i) woundedgot up from sleep
(ii) awokegive back
(iii) forgivesmall patches of ground for plants
(iv) faithfulseverely injured
(v) pitypardon
(vi) bedsloyal
(vii) returnfeel sorry for

Use any three of the above words in sentences of your own. You may change the form of the word.

AB
(i) woundedseverely injured
(ii) awokegot up from sleep
(iii) forgive pardon
(iv) faithfulloyal
(v) pityfeel sorry for
(vi) bedssmall patches of ground for plants
(vii) returngive back

Words in sentences :

(i) I took pity on a wounded bird.
(ii) The dog is a faithful animal.
(iii) Please plant the saplings in the beds.

Question 2.
Each of the following sentences has two blanks. Fill in the blanks with appropriate forms of the word given in brackets.

  • He has ………………. to help me. Do you think he will remember his ……………. ? (promise)
  • He has promised to help me. Do you think he will remember his promise ?

(i) The …………………..said that only fresh evidence would make him change his ………….. (judge)
(ii) I didn’t notice any serious………………. Of opinion among the debaters, although
they …………………..from one another over small points. (differ)
(iii) It’s a fairly simple question to ………….., but will you accept my ………….as final ? (answer)
(iv) It isn’t. ……………….. that ……………………should always be the mother of invention. (necessary)
(v) Hermits are…….. ………… men. How they acquire their …… no one can tell. (wise)
(vi) The committee has ……… ……….. to make Jagdish captain of the team. The …………….. is likely to please everyone. (decide)
(vii) Asking for…………………….. is as noble as willingness to ……..
(forgive)
Answer:
(i) judge, judgement.
(ii) difference, differed
(iii) answer, answer
(iv) necessary, necessity
(v) wise, wisdom
(vi) decided, decision
(vii) foregiveness, forgive

Three Questions Speaking and Writing (Page – 16)

Question 1.
Imagine you are the King. Narrate the incident of your meeting the hermit. Begin like this :
The wise men answered my questions, but I was not satisfied with their answers. One day I decided to go and meet the hermit….
Answer:
The wise men answered my questions, but I was not satisfied with their answer. One day I decided to go and meet the hermit who was known for his wisdom. When I reached his hut, he was digging the earth. He greeted me and kept digging. I put my questions before him but he even kept mum.

He was feeling tired. I took the spade and started digging for him. I repeated my request for answering the questions. Just then a bearded man came there. I had to redress his wound and consoled him. The hermit served him with food and shelter. Before coming back, I repeated my questions to the hermit. At last the sage gave answers to my satisfaction. I have made peace with my enemy by then.

Question 2.
Imagine you are the hermit. Write briefly the incident of your meeting the king. Begin like this :
One day I was digging in my garden. A man in ordinary clothes came to see me. I knew it was the king…
Answer:
One day I was digging in my garden. A man in ordinary clothes came to see me. I knew it was the King, but kept digging. I worked hard and got tired. He put three questions before me to answer, but I kept mum. He asked me to give my spade and he started digging.

Just then I saw a bearded man coming and made the king turn around. I with the help of king dressed the wounded bearded man and took him in the hut. I served him with food and he slept. The king repeated his questions. Only then I gave the answers to his satisfaction. He regarded me with a bow head and went to his capital.

Three Questions Introduction

Once a king wanted to know the answers to three questions. He thought that he would never fail if he knew three such questions’ awswers. How he got the answers is the basic theme of Leo Tolstoy’s story “Three Questions. The answers to the questions ennoble the king and he knew what the life sought him for doing the noble work for his subjects.

Three Questions Word Notes

NCERT Solutions for Class 7 English Honeycomb Chapter 1 Three Questions 1
NCERT Solutions for Class 7 English Honeycomb Chapter 1 Three Questions 2

Three Questions Complete Hindi Translation

Part-I

A king has ……….. ………….wants? (Page 7)

एक राजा के पास तीन प्रश्न हैं और वह उनके उत्तर जानने को उत्सुक है। वे प्रश्न क्या हैं? क्या राजा को वह सब कुछ प्राप्त होता है जो वह चाहता है?

1. The thought…. ……………..differently. (Page 7)

किसी राजा को यह विचार आया कि वह कभी असफल नहीं होगा। यदि उसे तीन बातों के बारे में जानकारी होगी। वे तीन बातें थीं: किसी कार्य को शुरू करने का सही समय क्या है? किन लोगों को उसे सुनना चाहिए? कौन-सा कार्य करना उसके लिए अति महत्त्वपूर्ण है? अतः राजा ने अपने संदेशवाहकों को राज्य भर में भेजा और एलान करवा दिया कि जो व्यक्ति इन तीन प्रश्नों के उत्तर देगा उसे भारी धन दिया जाएगा। अनेक बुद्धिमान व्यक्ति राजा के पास आये, परंतु उन्होंने सभी प्रश्नों के उत्तर अलग ढंग से दिये।

2. In reply …… …….. every action. (Pages 7-8)

पहले प्रश्न के उत्तर में, कुछ ने कहा कि राजा को एक समय सारिणी तैयार करनी चाहिए, और तब उसका सख्ती से पालन करना चाहिए। केवल इसी तरीके से, उन्होंने कहा, कि वह सभी कार्य सही समय पर कर पायेंगे। कुछ अन्यों ने कहा कि पहले से ही यह निर्णय कर लेना असंभव था कि किसी कार्य को करने के लिए सही समय कौन सा होना चाहिए। राजा को अपने चारों ओर की स्थिति पर ध्यान देना होगा, मूर्खता भरे विलासी कार्यों से बचना होगा, और वह सदा उसी कार्य को करे जो उस समय आवश्यक हो। अन्य लोगों ने कहा कि राजा को बुद्धिमान लोगों की एक समिति की जरूरत है जो उसे सही समय पर कार्य करने में सहायता दें। इसका कारण यह था कि कोई एक व्यक्ति दूसरे लोगों की सहायता के बिना किसी भी कार्य को करने का सही समय तय नहीं कर सकता।

3. By then …………………….. religious worship. (Page 8)

पर अन्य व्यक्ति बोले कि कुछ कार्य बेहद जरूरी भी हो सकते हैं। ये कार्य समिति के निर्णय की प्रतीक्षा नहीं कर सकते। किसी भी कार्य को करने के लिए सही समय का निर्णय लेने के लिए यह आवश्यक है कि भविष्य की जानकारी हो। और ऐसा केवल जादूगर ही कर सकते हैं। इस कारण, राजा को जादूगरों के पास जाना होगा। दूसरे प्रश्न के उत्तर में कुछेक ने बताया कि राजा के लिए सर्वाधिक महत्त्वपूर्ण लोग उसके सभासद हैं; अन्य ने बताया कि पुजारी हैं। कुछ ने डॉक्टरों को चुना। और अन्य लोगों ने कहा कि सैनिक ही उसके लिए बेहद जरूरी व्यक्ति हैं। तीसरे प्रश्न के उत्तर में कुछ ने विज्ञान को कहा। अन्य ने युद्ध लड़ने को चुना तथा कुछ अन्य ने धार्मिक पूजापाठ को महत्त्वपूर्ण बताया।

4. As the.. …heavily. (Pages 8-9)

चूंकि सभी प्रश्नों के उत्तर इतने अधिक अलग थे, राजा को संतुष्टि प्राप्त नहीं हुई और उसने कोई भी पुरस्कार नहीं दिया। इसके अतिरिक्त, उसने एक संन्यासी के पास सलाह के लिए जाने का निर्णय लिया। वह संन्यासी अपनी बुद्धिमत्ता के लिए दूर-दूर तक जाना जाता था।
वह संन्यासी जंगल में रहता था और उससे बाहर कभी नहीं आता था। वह केवल आम लोगों से मिलता था। इसी कारण राजा ने आम वस्त्र पहने। उस संन्यासी की झोंपड़ी पर पहुंचने से पहले ही राजा ने अपना घोड़ा अंगरक्षक के पास छोड़ दिया, और अकेला ही पैदल झोंपड़ी के निकट गया। जब राजा संन्यासी की झोंपड़ी के पास पहुंचा तो उसने संन्यासी को झोंपड़ी के सामने की भूमि को खोदते हुए पाया। उसने राजा का सत्कार किया और अपनी खुदाई जारी रखी। संन्यासी काफी बूढ़ा और कमजोर था, और कार्य करते समय वह हाँफने लगा था।

5. The king. ……….. ………….. ground. (Page 9)

राजा संन्यासी के पास गया और बोला, “हे बुद्धिमान संन्यासी, मैं आपके पास आया हूँ ताकि आप मेरे तीन प्रश्नों के उत्तर दे सकें: मैं कैसे पता लगाऊँ कि सही कार्य करने का सही समय कौन-सा है? किन व्यक्तियों की मुझे सबसे अधिक जरूरत है? और कौन से कार्य सबसे महत्त्वपूर्ण हैं?” संन्यासी ने राजा को सुना, परंतु कुछ न बोला। वह खुदाई करता रहा। “आप थक गये हैं,” राजा बोला, “मुझे फावड़ा दीजिए और अपने स्थान पर मुझे कार्य करने दें।” “धन्यवाद”, संन्यासी ने कहा, और राजा को अपना फावड़ा दे दिया। तब वह भूमि पर ही बैठ गया।

6. When the ….. ….the hermit. (Page 10)

जब राजा ने दो क्यारियाँ खोद दी, तो उसने कार्य रोका और अपने प्रश्नों को दोहराया। संन्यासी ने कोई उत्तर नहीं दिया, परंतु खड़ा हो गया, फावड़े के लिए अपने हाथ फैलाये, और बोला, “अब आप आराम कीजिए, और मुझे कार्य करने दीजिए।”परंतु राजा ने फावड़ा नहीं दिया और उसने खुदाई जारी रखी। एक घंटा बीता, तब दूसरा घंटा भी बीत गया। सूर्य पेड़ों के पीछे अस्त हो गया, और अंत में राजा ने फावड़ा जमीन पर अटका दिया और बोला, “हे बुद्धिमान व्यक्ति, मैं आपके पास अपने प्रश्नों के उत्तर जानने के लिए आया था। यदि आप मुझे उत्तर नहीं दे सकते, तो कह दीजिए और मैं घर लौट जाऊंगा।” “देखो कोई व्यक्ति दौड़ा चला आ रहा है,” संन्यासी ने कहा।

Part -II

1. The king ……..stopped. (Pages 10-11)

राजा पीछे मुड़ा तथा उसने एक दाढ़ी वाले व्यक्ति को दौड़कर उनकी ओर आते हुए देखा। अपने हाथों से उसने अपने पेट को दबा रखा था जिससे खून बह रहा था। जब वह राजा के पास पहुँचा तो बेहोश होकर भूमि पर गिर गया। राजा तथा संन्यासी ने उस व्यक्ति के कपड़ों को उतारा तथा उसके पेट में एक बड़ा-सा घाव देखा। राजा ने उस घाव को धोकर साफ किया तथा उस पर अपना रूमाल रख दिया, पर खून बहना बंद नहीं हुआ। राजा ने घाव पर पुनः पट्टी बांधी, और अंत में खून बहना थम गया।

2. The man ….. ……….bed was. (Page 11)

उस व्यक्ति ने अब बेहतर महसूस किया तथा उसने कुछ पीने के लिए मांगा। राजा ने उसे ताजा पानी लाकर दे दिया। इस समय तक सूर्य अस्त हो चुका था तथा हवा ठण्डी हो गई थी। राजा संन्यासी की मदद से उस घायल व्यक्ति को झोंपड़ी में ले गया तथा उसे चारपाई पर लिटा दिया। उस व्यक्ति ने आँखें बंद कर ली तथा चुपचाप लेटा रहा। राजा भी जो अपनी पदयात्रा तथा काम के कारण थक गया था, फर्श पर लेट गया तथा रात भर सोता रहा। जब वह जागा तो कुछ मिनट बाद ही उसे याद आया कि वह कहाँ था तथा पलंग पर लेटा वह दाढ़ी वाला अजनबी व्यक्ति कौन था।

3. “Forgive …………forgive me!” (Page 12)

“मुझे क्षमा कीजिए,” उर दाढ़ी वाले व्यक्ति ने कमजोर आवाज में कहा, जब उसने देखा कि राजा भी जाग गया था। मैं तुम्हें नहीं जानता और तुम्हें क्षमा करने का कोई कारण भी नहीं है,” राजा बोला। “आप मुझे नहीं जानते पर मैं आपको जानता हूँ। मैं आपका वही दुश्मन हूँ जिसने आपसे बदला लेने की कसम खा रखी थी, क्योंकि आपने मेरे भाई को मृत्यु दण्ड दिया था और मेरी सम्पत्ति हड़प ली थी। मैं जानता था कि आप अकेले ही उस संन्यासी के पास गए हैं और मैंने आपके घर लौटते समय रास्ते में आपकी हत्या कर देने का इरादा किया था। पर दिन बीत गया और आप नहीं लौटे।

इसीलिए मैं अपने छिपने के स्थान से बाहर निकला और मेरी मुठभेड़ आप के अंगरक्षकों से हो गयी जिन्होंने मुझे पहचाना और मुझे घायल कर दिया। मैं उनसे बच निकला पर यदि आपने मेरे घावों की मरहम पट्टी न की होती तो मैं मर गया होता। मैंने आपकी जान लेने की इच्छा की थी और आपने मुझे जीवनदान दिया। अब यदि मैं जीवित रहता हूँ और यदि आपकी इच्छा हो तो मैं आपके स्वाभिभक्त सेवक की तरह आपकी सेवा करूंगा तथा अपने बेटों को भी यही आदेश दूंगा। मुझे क्षमा कीजिए।”

4. The king….. ……………. wise man.” (Page 12)

राजा को बहुत खुशी हुई कि उसने अपने दुश्मन से इतनी आसानी से दोस्ती कर ली थी, जिसे उसने अपना हितैषी बना लिया था। उसने न केवल उसे मुआफ किया परन्तु यह भी कहा कि मैं अपने सेवकों को तुम्हारे पास भेजूंगा व अपने डॉक्टर को भी तुम्हारी देखभाल करने का निर्देश दे दूंगा, और राजा ने उस व्यक्ति को उसकी सम्पत्ति भी लौटाने का वचन दिया।

घायल व्यक्ति को छोड़कर, राजा झोंपड़ी से बाहर आया और संन्यासी को चारों ओर देखा। जाने से पहले वह एक बार अपने प्रश्नों के उत्तर प्राप्त करना चाहता था। संन्यासी अपने घुटने के बल बैठकर उन क्यारियों में बीज डाल रहा था, जिन्हें उसने पिछले दिन खोदा था। राजा उनके पास पहुंचा और बोला, “हे बुद्धिमान व्यक्ति, अब अंतिम बार मैं आपसे अपने प्रश्नों के उत्तर माँग रहा हूँ।”

5. “You have ……… you mean ?” (Page 13)

“तुम्हें उत्तर दिया जा चुका है।” संन्यासी बोला, जो अभी भी भूमि पर झुका हुआ था और अपने सामने खड़े राजा की ओर सिर उठाकर देख रहा था। “मुझे उत्तर किस प्रकार मिला? आपके कहने का क्या अर्थ है?”

6. Do you …….. ………………. business. (Page 13)

“क्या आप नहीं देखते?” संन्यासी ने उत्तर दिया। “यदि कल आपने मेरी कमजोरी पर दया न करके मेरी क्यारियाँ नहीं खोदी होतीं, तो आप वापिस लौट गये होते। तब तो, उस व्यक्ति ने आप पर आक्रमण कर दिया होता और आप यही कामना करते रहते ‘काश मैं तुम्हारे पास ठहर गया होता’। इसलिए. सबसे महत्त्वपूर्ण समय वह था जब आप क्यारियाँ खोद रहे थे। और मैं सबसे महत्त्वपूर्ण व्यक्ति था, तथा मेरी मदद करना ही आपका सबसे अधिक महत्त्वपूर्ण काम था। इसके पश्चात् जब वह व्यक्ति हमारी ओर भाग कर आया तो सबसे महत्त्वपूर्ण समय वह था जब आप उसकी देखभाल कर रहे थे, क्योंकि यदि आपने उसके घाव की मरहम-पट्टी न की होगी तो वह आपसे शांति वार्ता किए बिना ही मर गया होता। अतः वह सबसे महत्त्वपूर्ण व्यक्ति था, तथा आपने उसकी जो सेवा की वही आपके लिए सबके अधिक महत्त्वपूर्ण काम था।

7. “Remember…. ….purpose alone.”(Page 13)

“याद रखो, केवल एक ही समय सबके महत्त्वपूर्ण होता है और वह समय है ‘वर्तमान’। यही सबके अधिक महत्वपूर्ण समय है क्योंकि इस समय के दौरान ही हमारे पास कुछ कर पाने की शक्ति होती है।” “सबसे महत्त्वपूर्ण व्यक्ति वह होता है जिसके साथ एक निश्चित समय पर होते हैं, क्योंकि कोई नहीं जानता कि भविष्य में क्या होने वाला है और हमें किसी दूसरे व्यक्ति से भेंट भी हो पायेगी या नहीं। सबसे अधिक महत्त्वपूर्ण कार्य है उस व्यक्ति की भलाई करना, क्योंकि हमें उसी कार्य के लिए संसार में भेजा गया है।”

Read More