RD SHARMA SOLUTION CHAPTER – 8 Coordinate Geometry | CLASS 9TH MATHEMATICS-EDUGROWN

Chapter 8 Co-ordinate Geometry Exercise Ex. 8.1

Question 1

Plot the following points on the graph paper:

(i) (2,5)

(ii) (4,-3)

(iii) (-5,-7)

(iv) (7,-4)

(v) (-3,2)

(vi) (7,0)

(vii) (-4,0)

(viii) (0,7)

(ix) (0,-4)

(x) (0,0)Solution 1

The graph of the given points are:

Question 2

Write the coordinates of each of the following points marked in the graph paper:

Solution 2

The coordinates of the given points are A(3,1), B(6,0), C(0,6), D(-3,0), E(-4,3), F(-2,-4), G(0,-5), H(3,-6), P(7,-3) and Q(7,6)

Read More

RD SHARMA SOLUTION CHAPTER – 7 Linear Equations in Two Variables | CLASS 9TH MATHEMATICS-EDUGROWN

Chapter 7 Linear Equations in Two Variables Exercise Ex. 7.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Chapter 7 Linear Equations in Two Variables Exercise Ex. 7.2

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

If x = 1 and y = 6 is solution of the equation 8x – ay + a2= 0, find the value of a.Solution 6

Question 7(i)

Write two solutions of the form x = 0, y = a and x = b, y = 0 for the follwoing equation: 5x – 2y = 10Solution 7(i)

Question 7(ii)

Write two solutions of the form x = 0, y = a and x = b, y = 0 for the following equation: -4x + 3y = 12Solution 7(ii)

Question 7(iii)

Solution 7(iii)

Chapter 7 Linear Equations in Two Variables Exercise Ex. 7.3

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 1(vi)

Solution 1(vi)

Question 1(vii)

Solution 1(vii)

Question 1(viii)

Solution 1(viii)

Question 2

Solution 2

Question 3

Solution 3

Question 4

Plot the points (3,5) and (-1,3) on a graph paper and verify that the straight line passing through these points also passes through the point (1,4).Solution 4

The given points on the graph:



It is dear from the graph, the straight line passing through these points also passes through the point (1,4).Question 5

From the choices given below, choose the equation whose graph is given in fig.,

(i) y = x

(ii) x + y = 0

(iii) y = 2x

(iv) 2 + 3y = 7x

 Solution 5

Question 6

From the choices given below, choose the equation whose graph is given in fig.,

(i) y = x + 2

(ii) y = x – 2

(iii) y = -x + 2

(iv) x + 2y = 6

 Solution 6

Question 7

Solution 7

Question 8

Draw the graph of the equation 2x + 3y = 12. Find the graph, find the coordinates of the point.

(i) whose y-coordinate is 3.

(ii) whose x-coordinate is -3Solution 8

Question 9(i)

Solution 9(i)

Question 9(ii)

Solution 9(ii)

Question 9(iii)

Solution 9(iii)

Question 9(iv)

Solution 9(iv)

Question 10

Solution 10

Question 11

Solution 11

Question 12

The sum of a two digit number and the number obtained by reversing the order of its digits is 121. If units and ten’s digit of the number are x and y respectively, then write the linear equation representing the above statement.Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Draw the graph of y = |x|.Solution 15

We have,

y = |X|                               …(i)

Putting x = 0, we get y = 0

Putting x = 2, we get y = 2

Putting x = -2, we get y = 2

Thus, we have the following table for the points on graph of |x|.

x02-2
y022



The graph of the equation y = |x|:

Question 16

Draw the graph of y = |x| + 2.Solution 16

We have,

y = |x| + 2                                                  …(i)

Putting x = 0, we get y = 2

Putting x = 1, we get y = 3

Putting x = -1, we get y = 3

Thus, we have the following table for the points on graph of |x| + 2:

x01-1
y233



The graph of the equation y = |x| + 2:

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Ravish tells his daughter Aarushi, “Seven years ago, I was seven times as old as you were then. Also, three years form now, I shall be three times as old as you will be”. If present ages of Aarushi and Ravish are x and y years respectively, represent this situation algebraically as well as graphically.Solution 20

Question 21

Solution 21

Chapter 7 Linear Equations in Two Variables Exercise Ex. 7.4

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)



y + 3 = 0

y = -3

Point A represents -3 on number line.

On Cartesian plane, equation represents all points on x axis for which y = -3Question 1(iii)

Solution 1(iii)



y = 3

Point A represents 3 on number line.

On Cartesian plane, equation represents all points on x axis for which y = 3
Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 2(i)

Give the geometrical representation of 2x + 13 = 0 as an equation in

One variableSolution 2(i)

Question 2(ii)

Give the geometrical representation of 2x + 13 = 0 as an equation in

Two variablesSolution 2(ii)

Question 3(i)

Solve the equation 3x + 2 = x – 8, and represent the solution on (i) the number line.Solution 3(i)

Question 3(ii)

Solve the equation 3x + 2 = x – 8, and represent the solution on (ii) the Cartesian plane.Solution 3(ii)



On Cartesian plane, equation represents all points on y axis for which x = -5Question 4

Write the equation of the line that is parallel to x-axis and passing through the point

(i) (0,3)

(ii) (0,-4)

(iii) (2,-5)

(iv) (3,4)Solution 4

(i) The equation of the line that is parallel to x-axis and passing through the point (0,3) is y = 3

(ii) The equation of the line that is parallel to x-axis and passing through the point (0,-4) is y = -4

(iii) The equation of the line that is parallel to x-axis and passing through the point (2,-5) is y = -5

(iv) The equation of the line that is parallel to x-axis and passing through the point (3, 4) is y = 4Question 5

Solution 5

Read More

RD SHARMA SOLUTION CHAPTER- 6 Factorization of Polynomials | CLASS 9TH MATHEMATICS-EDUGROWN

Chapter 6 Factorisation of Polynomials Exercise Ex. 6.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

begin mathsize 12px style Identify space constant comma space linear comma space quadratic space and space cubic space polynomials space from space the space following space polynomials colon
open parentheses straight i close parentheses space straight f open parentheses straight x close parentheses space equals 0
open parentheses ii close parentheses space straight g space open parentheses straight x close parentheses space equals 2 straight x cubed minus 7 straight x space plus space 4
open parentheses iii close parentheses space straight h open parentheses straight x close parentheses space equals negative 3 straight x space plus 1 half
open parentheses iv close parentheses straight p open parentheses straight x close parentheses space equals space 2 straight x squared minus straight x plus 4
open parentheses straight v close parentheses space straight q open parentheses straight x close parentheses space equals space 4 straight x plus 3
open parentheses vi close parentheses straight r open parentheses straight x close parentheses space equals space 3 straight x cubed equals 4 straight x squared plus 5 straight x minus 7 end style

Solution 7

open parentheses straight i close parentheses space straight f open parentheses straight x close parentheses space equals space 0 space is space straight a space constant space polynomial.
open parentheses ii close parentheses space straight g open parentheses straight x close parentheses space equals 2 straight x cubed space minus 7 straight x space plus space 4 space is space straight a space cubic space polynomial.
open parentheses iii close parentheses space straight h open parentheses straight x close parentheses space equals space minus 3 straight x plus 1 half space is space straight a space linear space polynomial.
open parentheses iv close parentheses space straight p open parentheses straight x close parentheses space equals space 2 straight x squared space minus space straight x space plus space 4 space is space straight a space quadratic space polynomial.
open parentheses straight v close parentheses space straight q open parentheses straight x close parentheses space equals space 4 straight x space plus space 3 space is space straight a space linear space polynomial.
open parentheses vi close parentheses space straight r open parentheses straight x close parentheses space equals space 3 straight x cubed space plus space 4 straight x squared space plus space 5 straight x space minus space 7 space is space straight a space cubic space polynomial.

Question 8Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Solution 8Degree of a polynomial is the highest power of variable in the polynomial.
Binomial has two terms in it. So binomial of degree 35 can be written as x35 + 7 .  Monomial has only one term in it. So monomial of degree 100 can be written as 7x100Concept Insight: Mono, bi and tri means one, two and three respectively. So, monomial is a polynomial having one term similarly for binomials and trinomials. Degree is the highest exponent of variable.  The answer is not unique in such problems . Remember that the terms are always separated by +ve or -ve sign and not with  .  

Chapter 6 Factorisation of Polynomials Exercise Ex. 6.2

Question 1If f(x) = 2x3 – 13x2 + 17x + 12, find:

(i) f(2)

(ii) f(-3)

(iii) f(0)Solution 1(i)

f(x) = 2x3 – 13x2 + 17x + 12

f(2) = 2(2)3 – 13(2)2 + 17(2) + 12

      = 16 – 52 + 34 + 12

      = 10

(ii)

f(-3) = 2(-3)3 – 13(-3)2 + 17(-3) + 12

       = -54 – 117 – 51 + 12

       = – 210

(iii)

f(0) = 2(0)3 – 13(0)2 + 17(0) + 12

      = 0 – 0 + 0 + 12

      =12Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7Find rational roots of the polynomial f(x) = 2x3 + x2 – 7x – 6.Solution 7

Chapter 6 Factorisation of Polynomials Exercise Ex. 6.3

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

If the polynomials ax3 + 3x2 – 13 and 2x3 -5x + a, when divided by (x-2) leave the same remainder, find the value of a.Solution 10

Question 11Find the remainder when x3 + 3x2 + 3x + 1 is divided by 

Solution 11

Question 12

Solution 12

Chapter 6 Factorisation of Polynomials Exercise Ex. 6.4

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

What must be added to 3x3 + x2 – 22x + 9 so that the result is exactly divisible by 3x2 + 7x – 6?Solution 25

Chapter 6 Factorisation of Polynomials Exercise Ex. 6.5

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Using factor theorem, factorize: x4 – 7x3 + 9x2 + 7x -10Solution 4

Question 5

Using factor theorem, factorize: 3x3 – x2 – 3x + 1Solution 5

Question 6

Using factor theorem, factorize each of the following polynomials:

x3 – 23x2 + 142x – 120Solution 6

Question 7

Using factor theorem, factorize: y3 – 7y + 6Solution 7

Question 8

Using factor theorem, factorize: x3 – 10x2 – 53x – 42Solution 8

Question 9

Using factor theorem, factorize: y3 – 2y2 – 29y – 42Solution 9

Question 10

Using factor theorem, factorize: 2y3 – 5y2 – 19y + 42Solution 10

Question 11

x3 + 13x2 + 32x + 20Solution 11

         Let p(x) = x3 + 13x+ 32x + 20
         The factors of 20 are 1,  2,  4,  5 … …
         By hit and trial method
         p(- 1) = (- 1)3 + 13(- 1)2 + 32(- 1) + 20
                   = – 1 + 13 – 32 + 20
                   = 33 – 33 = 0
         As p(-1) is zero, so x + 1 is a factor of this polynomial p(x).

         Let us find the quotient while dividing x3 + 13x2 + 32x + 20 by (x + 1)
          By long division

                   We know that
         Dividend = Divisor  Quotient + Remainder
         x3 + 13x2 + 32x + 20 = (x + 1) (x2 + 12x + 20) + 0
                                         = (x + 1) (x2 + 10x + 2x + 20)
                                         = (x + 1) [x (x + 10) + 2 (x + 10)]
                                         = (x + 1) (x + 10) (x + 2)
                                         = (x + 1) (x + 2) (x + 10)Question 12

Factorise:

x3 – 3x2 – 9x – 5Solution 12

        Let p(x) = x3 – 3x2 – 9x – 5
        Factors of 5 are 1,  5.
        By hit and trial method
        p(- 1) = (- 1)3 – 3(- 1)2 – 9(- 1) – 5
           = – 1 – 3 + 9 – 5 = 0
        So x + 1 is a factor of this polynomial
        Let us find the quotient while dividing x3 + 3x2 – 9x – 5 by x + 1
        By long division

                Now, Dividend = Divisor  Quotient + Remainder
 x3 – 3x2 – 9x – 5 = (x + 1) (x2 – 4 x – 5) + 0
                                     = (x + 1) (x2 – 5 x + x – 5)
                                     = (x + 1) [(x (x – 5) +1 (x – 5)]
                                     = (x + 1) (x – 5) (x + 1)
                                     = (x – 5) (x + 1) (x + 1) Question 13

Factorise:

2y3 + y2 – 2y – 1Solution 13

         Let p(y) = 2y3 + y2 – 2y – 1         By hit and trial method
         p(1) = 2 ( 1)3 + (1)2 – 2( 1) – 1
                = 2 + 1 – 2 – 1= 0
         So, y – 1 is a factor of this polynomial
         By long division method,

                    p(y) = 2y3 + y2 – 2y – 1
                 = (y – 1) (2y2 +3y + 1)
                 = (y – 1) (2y2 +2y + y +1)
                 = (y – 1) [2y (y + 1) + 1 (y + 1)]
                 = (y – 1) (y + 1) (2y + 1)

 Question 14

Using factor theorem, factorize: x3 – 2x2 – x + 2Solution 14

Question 15

Solution 15

Question 16

Using factor theorem, factroize : x4 – 2x3 – 7x2 + 8x + 12Solution 16

Question 17

Using factor theorem, factroize : x4 + 10x3 + 35x2 + 50x + 24Solution 17

Question 18

Using factor theorem, factorize : 2x4 – 7x3 – 13x2 + 63x – 45Solution 18

Read More

RD SHARMA SOLUTION CHAPTER- 5 Factorization of Algebraic Expressions | CLASS 9TH MATHEMATICS-EDUGROWN

Chapter 5 Factorisation of Algebraic Expressions Exercise Ex. 5.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Give possible expressions for the length and breadth of the rectangle having

35y2 + 13y – 12 as its area.Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Chapter 5 Factorisation of Algebraic Expressions Exercise Ex. 5.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Chapter 5 Factorisation of Algebraic Expressions Exercise Ex. 5.3

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Chapter 5 Factorisation of Algebraic Expressions Exercise Ex. 5.4

Question 1

Solution 1

Question 2

Solution 2

Question 3Factorise : 27x3 – y3 – z3 – 9xyzSolution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

begin mathsize 12px style M u l t i p l y colon
open parentheses i close parentheses space x squared space plus y squared plus z squared space minus x y plus x z plus space y z space b y space x plus y minus z
open parentheses i i close parentheses space x squared space plus space 4 y to the power of 2 space end exponent plus space z squared space plus space 2 x y space plus x z minus 2 y z space b y space x minus 2 y minus z
open parentheses i i i close parentheses space space x squared space plus space 4 y to the power of 2 space end exponent plus space 2 x y space minus 3 x plus 6 y space plus 9 space b y space x space minus space 2 y space plus 3
open parentheses i v close parentheses space space 9 x squared space plus space 25 y to the power of 2 space end exponent space plus 15 x y space plus 12 x minus 20 y space plus 16 space b y space 3 x minus 5 y space plus 4 end style

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 17

Solution 17

Read More

RD SHARMA SOLUTION CHAPTER- 4 Algebraic Identities | CLASS 9TH MATHEMATICS-EDUGROWN

Chapter 4 Algebraic Identities Exercise Ex. 4.1

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 2(i)

Solution 2(i)

Question 2(ii)

Solution 2(ii)

Question 2(iii)

Solution 2(iii)

Question 2(iv)

Solution 2(iv)

Question 3(i)

Solution 3(i)

Question 3(ii)

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10(i)

Solution 10(i)

Question 10(ii)

Solution 10(ii)

Question 11

Solution 11

Question 12

Solution 12

Question 13(i)

Solution 13(i)

Question 13(ii)

Solution 13(ii)

Question 13(iii)

Solution 13(iii)

Question 13(iv)

Solution 13(iv)

Question 14

Solution 14

Chapter 4 Algebraic Identities Exercise Ex. 4.2

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 1(vi)

Solution 1(vi)

Question 1(vii)

Solution 1(vii)

Question 1(viii)

Solution 1(viii)

Question 1(ix)

Solution 1(ix)

Question 1 (x)Write the following in the expanded form:

(x + 2y + 4z)2Solution 1 (x)

Question 1 (xi)Write the following in the expanded form:

(2x – y + z)2Solution 1 (xi)

Question 1 (xii)Write the following in the expanded form:

(-2x + 3y + 2z)2Solution 1 (xii)

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6(i)

Solution 6(i)

Question 6(ii)

Solution 6(ii)

Question 6(iii)

Solution 6(iii)

Question 6(iv)

Solution 6(iv)

Question 6(v)

Solution 6(v)

Question 7(i)

Solution 7(i)

Question 7(ii)

Solution 7(ii)

Question 7(iii)

Solution 7(iii)

Chapter 4 Algebraic Identities Exercise Ex. 4.3

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11(i)

Solution 11(i)

Question 11(ii)

Solution 11(ii)

Question 11(iii)

Solution 11(iii)

Question 11(iv)

Solution 11(iv)

Question 11(v)

Solution 11(v)

Question 11(vi)

Solution 11(vi)

Question 12(i)

Solution 12(i)

Question 12(ii)

Solution 12(ii)

Question 12(iii)

Solution 12(iii)

Question 12(iv)

Solution 12(iv)

Question 13

Solution 13

Question 14(i)

Solution 14(i)

Question 14(ii)

Solution 14(ii)

Question 15

Solution 15

Question 16

Solution 16

Question 17(i)

Solution 17(i)

Question 17(ii)

Solution 17(ii)

Question 17(iii)

Solution 17(iii)

Question 17(iv)

Solution 17(iv)

Question 18

Solution 18

Question 19

Solution 19

Chapter 4 Algebraic Identities Exercise Ex. 4.4

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 1 (v)

Solution 1 (v)

Question 1 (vi)

Solution 1 (vi)

Question 1 (vii)

Solution 1 (vii)

Question 1 (viii)

Solution 1 (viii)

Question 1 (ix)

Solution 1 (ix)

Question 1 (x)

Solution 1 (x)

Question 1 (xi)

Solution 1 (xi)

Question 1 (xii)

Solution 1 (xii)

Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Solution 2 (iii)

Question 2 (iv)

Solution 2 (iv)

Question 2 (v)

Solution 2 (v)

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6 (i)

Solution 6 (i)

Question 6 (ii)

Solution 6 (ii)

Question 6 (iii)

Solution 6 (iii)

Chapter 4 Algebraic Identities Exercise Ex. 4.5

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 2(i)

Solution 2(i)

Question 2(ii)

Solution 2(ii)

Question 2(iii)

Solution 2(iii)

Question 2(iv)

Solution 2(iv)

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Read More

RD SHARMA SOLUTION CHAPTER – 3 Rationalisation | CLASS 9TH MATHEMATICS-EDUGROWN

Chapter 3 Rationalisation Exercise Ex. 3.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Chapter 3 Rationalisation Exercise Ex. 3.2

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 1(vi)

Solution 1(vi)

Question 1(vii)

Solution 1(vii)

Question 2(i)

Solution 2(i)

Question 2(ii)

Solution 2(ii)

Question 2(iii)

Solution 2(iii)

Question 2(iv)

Solution 2(iv)

Question 2(v)

Solution 2(v)

Question 2(vi)

Solution 2(vi)

Question 3(i)

Solution 3(i)

Question 3(ii)

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 3(v)

Solution 3(v)

Question 3(vi)

Solution 3(vi)

Question 3(vii)

Solution 3(vii)

Question 3(viii)

Solution 3(viii)

Question 3(ix)

Solution 3(ix)

Question 4(i)

Solution 4(i)

Question 4(ii)

Solution 4(ii)

Question 4(iii)

Solution 4(iii)

Question 4(iv)

Solution 4(iv)

Question 4(v)

Solution 4(v)

Question 4(vi)

Solution 4(vi)

Question 5(i)

Solution 5(i)

Question 5(ii)

Solution 5(ii)

Question 5(iii)

Solution 5(iii)

Question 6(i)

Solution 6(i)

Question 6(ii)

Solution 6(ii)

Question 6(iii)

Solution 6(iii)

Question 6(iv)

Solution 6(iv)

Question 6(v)

Solution 6(v)

Question 6(vi)

Solution 6(vi)

Question 7

Solution 7

Question 8(i)

Solution 8(i)

Question 8(ii)

Solution 8(ii)

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 9(i)

Simplify: Solution 9(i)

Question 9(ii)

Simplify: Solution 9(ii)

Read More

RD SHARMA SOLUTION CHAPTER – 2 Exponents of Real Numbers | CLASS 9TH MATHEMATICS-EDUGROWN

Chapter 2 Exponents of Real Numbers Exercise Ex. 2.1

Question 1(i)

Simplify:

3(a4b3)10 × 5(a2b2)3Solution 1(i)

Question 1(ii)

Simplify:

(2x-2y3)3Solution 1(ii)

Question 1(iii)

Simplify:

Solution 1(iii)

Question 1(iv)

Simplify:

Solution 1(iv)

Question 1(v)

Simplify:

Solution 1(v)

Question 1(vi)

Simplify:

Solution 1(vi)

Question 2(i)

If a = 3 and b = -2, find the value of:

aa + bbSolution 2(i)

Question 2(ii)

If a = 3 and b = -2, find the value of:

ab + baSolution 2(ii)

Question 2(iii)

If a = 3 and b = -2, find the value of:

(a + b)abSolution 2(iii)

Question 3(i)

Prove that:

Solution 3(i)

Question 3(ii)

Prove that:

Solution 3(ii)

Question 4(i)

Prove that:

Solution 4(i)

Question 4(ii)

Prove that:

Solution 4(ii)

Question 5(i)

Prove that:

Solution 5(i)

Question 5(ii)

Prove that:

Solution 5(ii)

Question 6

Solution 6

Question 7(i)

Simplify:

Solution 7(i)

Question 7(ii)

Simplify:

Solution 7(ii)

Question 7(iii)

Simplify:

Solution 7(iii)

Question 7(iv)

Simplify:

Solution 7(iv)

Question 8(i)

Solve the equation for x:

72x + 3 = 1Solution 8(i)

Question 8(ii)

Solve the equation for x:

2x+1 = 4x-3Solution 8(ii)

Question 8(iii)

Solve the equation for x:

25x + 3 = 8x + 3Solution 8(iii)

Question 8(iv)

Solve the equation for x:

Solution 8(iv)

Question 8(v)

Solve the equation for x:

Solution 8(v)

Question 8(vi)

Solve the equation for x:

23x – 7 = 256Solution 8(vi)

Question 9(i)

Solve the equation for x:

22x – 2x+3 + 24 = 0Solution 9(i)

Question 9(ii)

Solve the equation for x:

32x + 4 + 1 = 2.3x + 2Solution 9(ii)

Question 10

If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.Solution 10

Question 11

If 1176 = 2a × 3b × 7c, find a, b and c.Solution 11

Question 12

Given 4725 = 3a 5b 7c , find

  1. the integral values of a, b and c
  2. the values of 2-a3b7c

Solution 12

Question 13

If a = xyp – 1, b = xyq-1 and c = xyr-1, prove that aq-rbr-p cp-q = 1.Solution 13

Chapter 2 Exponents of Real Numbers Exercise Ex. 2.2

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 1(vi)

Solution 1(vi)

Question 1(vii)

Assuming that x, y, z are positive real numbers, simplify each of the following:

Solution 1(vii)

Question 2(i)

Solution 2(i)

Question 2(ii)

Simplify:

Solution 2(ii)

Question 2(iii)

Solution 2(iii)

Question 2(iv)

Solution 2(iv)

Question 2(v)

Solution 2(v)

Question 2(vi)

Solution 2(vi)

Question 2(vii)

Solution 2(vii)

Question 3(i)

Solution 3(i)

Question 3(ii)

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 3(v)

Solution 3(v)

Question 3(vi)

Solution 3(vi)

Question 3(vii)

Prove that:

Solution 3(vii)

Question 3(viii)

Solution 3(viii)

Question 3(ix)

Solution 3(ix)

Question 4(i)

Show that:

Solution 4(i)

Question 4(ii)

Show that:

Solution 4(ii)

Question 4(iii)

Show that:

Solution 4(iii)

Question 4(iv)

Show that:

Note: Question modifiedSolution 4(iv)

Note: Question modifiedQuestion 4(v)

Show that:

(xa-b)a+b(xb-c)b+c(xc-a)c+a = 1Solution 4(v)

Question 4(vi)

Show that:

Solution 4(vi)

Question 4(vii)

Show that:

Solution 4(vii)

Question 4(viii)

Show that:

Solution 4(viii)

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10(i)

Solution 10(i)

Question 10(ii)

Solution 10(ii)

Question 10(iii)

Solution 10(iii)

Question 10(iv)

Solution 10(iv)

Question 10(v)

Solution 10(v)

Question 10(vi)

Find the value of x if:

Solution 10(vi)

Question 10(vii)

Find the value of x if:

52x + 3 = 1Solution 10(vii)

Question 10(viii)

Find the value of x if:

Solution 10(viii)

Question 10(ix)

Find the value of x if:

Solution 10(ix)

Question 11

If x = 21/3 + 22/3, show that x3 – 6x = 6.Solution 11

Question 12

Determine (8x)x, if 9x+2 = 240 + 9x.Solution 12

Question 13

If 3x+1 = 9x-2, find the value of 21+x.Solution 13

Question 14

If 34x = (81)-1 and 101/y = 0.0001, find the value of  2-x+4y.Solution 14

Question 15

If 53x = 125 and 10y = 0.001 find x and y.Solution 15

Question 16(i)

Solve the equation:

3x + 1 = 27 × 34Solution 16(i)

Question 16(ii)

Solve the equation:

Solution 16(ii)

Question 16(iii)

Solve the equation

3x-1 × 52y-3 = 225Solution 16(iii)

Question 16(iv)

Solve the equation:

Solution 16(iv)

Question 16(v)

Solve the equation:

Solution 16(v)

Question 16(vi)

Solve the equation:

Solution 16(vi)

Question 17

Solution 17

Question 18(i)

If a and b are different positive primes such that

Solution 18(i)

Question 18(ii)

If a and b are different positive primes such that

(a + b)-1(a-1 + b-1) = axby, find x + y + 2.Solution 18(ii)

Question 19

If 2x × 3y × 5z = 2160, find x, y and z. Hence, compute the value of 3x × 2-y × 5-z.Solution 19

Question 20

If 1176 = 2a × 3b × 7c, find the values of a, b and c. hence, compute the value of 2a × 3b × 7-c as a fraction.Solution 20

Question 21(i)

Simplify :

Solution 21(i)

Question 21(ii)

Simplify:

Solution 21(ii)

Question 22

Show that:

Solution 22

Question 23(i)

If a = xm+nyl, b = xn+lym and c = xl+myn, prove that am-nbn-lcl-m = 1.Solution 23(i)

Question 23(ii)

If x = am+n, y = an+l and z = al+m, prove that xmynzl = znylzm.Solution 23(ii)

Read More

RD SHARMA SOLUTION CHAPTER – 1 Number System | CLASS 9TH MATHEMATICS-EDUGROWN

Chapter 1 Number Systems Exercise Ex. 1.1

Question 1Is zero a rational number? Can you write it in the form , where p and q are integers and q  0?Solution 1Yes zero is a rational number as it can be represented in the   form,  where p and q are integers and q  0 as  etc.

Concept Insight: Key idea to answer this question is “every integer is a rational number and zero is a non negative integer”.  Also 0 can be expressed in  form in various ways as 0 divided by any number is 0. simplest is   .

Question 2Find five rational numbers between 1 and 2.Solution 2

Question 3Find six rational numbers between 3 and 4.Solution 3There are infinite rational numbers in between 3 and 4.  
3 and 4 can be represented as respectively. Now rational numbers between 3 and 4 are    


Concept Insight:  Since there are infinite number of rational numbers between any two numbers so the answer is not unique here.  The trick is to convert the number to equivalent  form by multiplying and dividing by the number atleast 1 more than the rational numbers to be inserted.

Question 4Find five rational numbers between  .Solution 4There are infinite rational numbers between 

                 Now rational numbers between are 

Concept Insight: Since there are infinite number of rational numbers between any two numbers so the answer is not unique here.  The trick is to convert the number to equivalent   form by multiplying and dividing by the number at least 1 more than the rational numbers required.

Alternatively for any two rational numbers a and b,    is also a rational number which lies between a and b.

Question 5Are the following statements true or false? Give reasons for you answer.

(i) Every whole number is a natural number.

(ii) Every integer is a rational number.

(iii) Every rational number is an integer.

(iv) Every natural number is a whole number.

(v) Every integer is whole number.

(vi) Every rational number is whole number.Solution 5(i) False

(ii) True

(iii) False

(iv)True

(v) False

(vi) False

Chapter 1 Number Systems Exercise Ex. 1.2

Question 1

Solution 1

Question 2Express the follwoing rational numbers as decimals:

Solution 2

(i)



(ii)



(iii)



(iv)



(v)



(vi)

Question 3

Solution 3

Chapter 1 Number Systems Exercise Ex. 1.3

Question 1

Solution 1

Question 2

begin mathsize 12px style Express space each space of space the space followimg space decimals space in space the space form space straight p over straight q
open parentheses straight i close parentheses space 0 top enclose.4 end enclose
open parentheses ii close parentheses space 0. top enclose 37
open parentheses iii space close parentheses 0. top enclose 54
open parentheses iv close parentheses space 0. top enclose 621
open parentheses straight v close parentheses space 125. top enclose 3
open parentheses vi space close parentheses 4. top enclose 7
open parentheses vii space close parentheses 0.47 end style

Solution 2

(i)



(ii)



(iii)



(iv)



(v)



(vi)



(vii)

Chapter 1 Number Systems Exercise Ex. 1.4

Question 1

Solution 1

Question 2

Solution 2

Question 3(i)

Solution 3(i)

Question 3(ii)

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 3(v)

Solution 3(v)

Question 3(vi)

Solution 3(vi)

Question 3(vii)

Solution 3(vii)

Question 3(viii)

Solution 3(viii)

Question 3(ix)

Solution 3(ix)

Question 3(x)

Solution 3(x)

As decimal expansion of this number is non-terminating non recurring. So it is an irrational number.
Question 3(xi)

Solution 3(xi)

Rational number as it can be represented in   form.
Question 3(xii)Examine whether 0.3796 is rational or irrational.Solution 3(xii)0.3796

As decimal expansion of this number is terminating, so it is a rational number.Question 3(xiii)Examine whether 7.478478… is rational or irrational.Solution 3(xiii)
As decimal expansion of this number is non terminating recurring so it is a rational number.
Question 3(xiv)Examine whether 1.101001000100001… is rational or irrational.Solution 3(xiv)

Question 4(i)

Solution 4(i)

Question 4(ii)

Solution 4(ii)

Question 4(iii)

Solution 4(iii)

Question 4(iv)

Solution 4(iv)

Question 4(v)

Solution 4(v)

Question 4(vi)

Solution 4(vi)

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10Find three different irrational numbers between the rational numbers Solution 10

 3 irrational numbers are –
0.73073007300073000073 … … …0.75075007500075000075 … … …
0.79079007900079000079 … … …

Concept Insight: There is infinite number of rational and irrational numbers between any two rational numbers. Convert the number into its decimal form to find irrationals between them.

Alternatively following result can be used to answerIrrational number between two numbers x and y 

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Chapter 1 Number Systems Exercise Ex. 1.5

Question 1Complete the following sentences:

(i) Every point on the number line corresponds to a ___ number which may be either ____ or_____.

(ii) The decimal form of an irrational number is neither ______ nor ______.

(iii) The decimal representation of a rational number is either ____ or _____.

(iv) Every real number is either ______ number or ______ number.Solution 1(i) Real, rational, irrartional.

(ii) terminating, repeating.

(iii) terminating, non-terminating and reccuring.

(iv) rational, an irrational.Question 2

Find whether the following sentences are true or false:

(i) Every real number is either rational or irrational.

(ii)  is an irrational number.

(iii) Irrational numbers cannot be represented by points on the number line.Solution 2

(i) True

(ii) True

(iii) FalseQuestion 3

Solution 3

Question 4

Solution 4

Chapter 1 Number Systems Exercise Ex. 1.6

Question 1

Solution 1

Question 2

Solution 2

Read More

RD SHARMA SOLUTION CHAPTER- 16 Surface Areas and Volumes| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 16 – Surface Areas and Volumes Exercise Ex. 16.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

2.2 cubic dm of brass is to be drawn into a cylindrical wire 0.25 cm in diameter. Find the length of the wire.Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Find the number of metallic circular discs with 1.5 cm base diameter and of height 0.2 cm to be melted to form a right circular cylinder of height 10 cm and diameter 4.5 cm.Solution 9

Question 10

How many spherical lead shots each of diameter 4.2 cm can be obtained from a solid rectangular lead piece with dimensions 66 cm × 42 cm × 21 cm.Solution 10

Question 11

How many spherical lead shots of diameter 4 cm can be made out of a solid cube of lead whose edge measures 44 cm.Solution 11

Question 12

Three cubes of a metal whose edges are in the ratio 3 : 4: 5 are melted and converted into a single cube whose diagonal is   cm. Find the number of cones so formed.Solution 12

Question 13

A solid metallic sphere of radius 10.5 cm is melted and recast into a number of smaller cones, each of radius 3.5 cm and height 3 cm. Find the number of cones so formed.Solution 13

Question 14

Solution 14

Question 15

An iron spherical ball has been melted and recast into smaller balls of equal size. If the radius of each of the smaller balls is 1/4 of the radius of the original ball, how many such balls are made? Compare the surface area, of all the smaller balls combined together with that of the original ball.Solution 15

Question 16

Solution 16

Question 17

A copper rod of diameter 1 cm and length 8 cm is drawn into a wire of length 18 m of uniform thickness. Find the thickness of the wire.Solution 17

Question 18

Solution 18

Question 19

How many coins 1.75 cm in diameter and 2 mm thick must be melted to form a cuboid 11 cm  10 cm  7 cm?Solution 19

Question 20

Solution 20

Question 21

A cylindrical bucket, 32 cm high and with a radius of base 18 cm, is filled with sand. This bucket is emptied out on the ground and a conical heap of sand is formed. If the height of conical heap is 24 cm, find the radius and slant height of the heap.Solution 21

Question 22

A solid metallic sphere of radius 5.6 cm is melted and solid cones each of radius 2.8 cm and height 3.2 cm are made. Find the number of such cones formed.Solution 22

table attributes columnalign left end attributes row cell L e t text    end text t h e text    end text n u m b e r text    end text o f text    end text c o n e s text    end text b e apostrophe n apostrophe. end cell row cell R a d i u s text    end text o f text    end text t h e text    end text s p h e r e equals 5.6 text    end text c m end cell row cell R a d i u s text    end text o f text    end text t h e text    end text c o n e equals 2.8 text    end text c m end cell row cell H e i g h t text    end text o f text    end text t h e text    end text c o n e equals 3.2 text    end text c m end cell row cell V o l u m e text    end text o f text    end text t h e text    end text s p h e r e text    end text equals 4 over 3 pi r cubed end cell row cell equals 4 over 3 cross times pi cross times 5.6 cubed end cell row cell V o l u m e text    end text o f text    end text 1 text    end text c o n e equals 1 third pi r squared h end cell row cell equals 1 third pi r squared h end cell row cell equals 1 third cross times pi cross times 2.8 squared cross times 3.2 end cell row blank row cell n equals fraction numerator V o l u m e text    end text o f text    end text t h e text    end text s p h e r e over denominator V o l u m e text    end text o f text    end text 1 text    end text c o n e end fraction end cell row cell equals fraction numerator 4 over 3 cross times pi cross times 5.6 cubed over denominator 1 third cross times pi cross times 2.8 squared cross times 3.2 end fraction end cell row cell equals fraction numerator 4 cross times 5.6 cross times 5.6 cross times 5.6 over denominator 2.8 cross times 2.8 cross times 3.2 end fraction end cell row cell equals fraction numerator 4 cross times 2 cross times 2 cross times 5.6 over denominator 3.2 end fraction end cell row cell equals fraction numerator 4 cross times 2 cross times 2 cross times 56 over denominator 32 end fraction end cell row cell equals 28 end cell row cell 28 text    end text s u c h text    end text c o n e s text    end text c a n text    end text b e text    end text f o r m e d. end cell end table

Question 23

A solid cuboid of iron with dimensions 53 cm x 40 cm x 15 cm is melted and recast into a cylindrical pipe. The outer and inner diameters of pipe are 8 cm and 7 cm respectively. Find the length of pipe.Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

A spherical ball of radius 3 cm is melted and recast into three spherical balls. The radii of two of the balls are 1.5 cm and 2 cm. Find the diameter of the third ball.Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Rain water, which falls on a flat rectangular surface of length 6 m and breadth 4 m is transferred into a cylindrical vessel of internal radius 20 cm. What will be the height of water in the cylindrical vessel if a rainfall of 1 cm has fallen? [Use  = 22/7]Solution 35

Question 36

The rain water from a roof of dimensions 22 m × 20 m drains into a cylindrical vessel having diameter of base 2 m and height 3.5 m. if the rain water collected from the roof just fills the cylindrical vessel, then find the rain fall in cm.Solution 36

Question 37

Solution 37

Question 38

Solution 38

Question 39

Solution 39

Question 40

Solution 40

Question 41

Solution 41

Question 42

Solution 42

Question 43

Solution 43

Question 44

Solution 44

Question 45

Solution 45

Question 46

150 spherical marbles, each of diameter 1.4 cm are dropped in cylindrical vessel of diameter 7 cm containing some water, which are completely immersed in water. Find the rise in the level of water in the vesselSolution 46

*Answer given in the book is incorrect.Question 47

Sushant has a vessel, of the form of an inverted cone, open at the top, of height 11 cm and radius of top as 2.5 cm and is full of water. Metallic spherical balls each of diameter 0.5 cm are put in the vessel due to which 

of the water in the vessel flows out. Find how many balls were put in the vessel. Sushant made the arrangement so that the water that flows out irrigates the flower beds. What value has been shown by shushant ?Solution 47

table attributes columnalign left end attributes row cell L e t text    end text t h e text    end text n u m b e r text    end text o f text    end text c o n e s text    end text b e text    end text apostrophe n apostrophe end cell row cell H e i g h t text    end text o f text    end text t h e text    end text c o n e comma h equals 11 text    end text c m end cell row cell R a d i u s text    end text o f text    end text t o p comma R equals 2.5 text    end text c m end cell row cell V o l u m e text    end text o f text    end text t h e text    end text c o n e equals 1 third pi R squared h end cell row cell equals 1 third cross times 22 over 7 cross times 2.5 squared cross times 11 end cell row cell R a d i u s text    end text o f text    end text t h e text    end text s p h e r e comma r equals fraction numerator 0.5 over denominator 2 end fraction equals 0.25 c m end cell row cell V o l u m e text    end text o f text    end text 1 text    end text s p h e r e equals 4 over 3 pi r cubed end cell row cell equals 4 over 3 cross times 22 over 7 cross times 0.25 cubed end cell row cell V o l u m e text    end text o f text    end text w a t e r text    end text d i s p l a c e d equals T o t a l text    end text v o l u m e text    end text o f text    end text t h e text    end text s p h e r e s end cell row cell V o l u m e text    end text o f text    end text w a t e r text    end text d i s p l a c e d equals n cross times text   end text v o l u m e text    end text o f text    end text 1 text    end text s p h e r e end cell row cell n equals fraction numerator V o l u m e text    end text o f text    end text t h e text    end text c o n e over denominator V o l u m e text    end text o f text    end text 1 text    end text s p h e r e end fraction end cell row cell equals fraction numerator 2 over 5 cross times 1 third cross times 22 over 7 cross times 2.5 squared cross times 11 over denominator 4 over 3 cross times 22 over 7 cross times 0.25 cubed end fraction end cell row cell equals fraction numerator 25 squared cross times 11 cross times 100 cubed cross times 2 over denominator 4 cross times 100 cross times 25 cubed cross times 5 end fraction end cell row cell equals fraction numerator 11 cross times 100 squared cross times 2 over denominator 4 cross times 25 cross times 5 end fraction end cell row cell equals 440 end cell row cell therefore T h e text    end text n u m b e r text    end text o f text    end text b a l l s text    end text equals 440 end cell end table

Question 48

16 glass spheres each of radius 2 cm are picked into a cuboidal box of internal dimensions 16 cm × 8 cm × 8 cm and then the box is filled with water. Find the volume of water filled in the box.Solution 48

Question 49

Water flows through a cylindrical pipe, whose inner radius is 1 cm, at the rate of 80 cm/sec in an empty cylindrical tank, the radius of whose base is 40 cm. What is the rise of water level in tank in half an hour?Solution 49

Question 50

Water in a canal 1.5 m wide and 6 m deep is flowing with a speed of 10 km/hr. How much area will it irrigate in 30 minutes if 8 cm of standing water is desired?Solution 50

Question 51

A farmer runs a pipe of internal diameter 20 cm from the canal into a cylindrical tank in his field which is 10 m in diameter and 2 m deep. If water flows through the pipe at the rate of 3 km/h, in how much time will the tank be filled?Solution 51

Question 52

A cylindrical tank full of water is emptied by a pipe at the rate of 225 liters per minute. How much time will it take to empty half the tank, if the diameter of its base is 3 m and its height is 3.5 m? (π = 22/7)Solution 52

table attributes columnalign left end attributes row cell R a d i u s text    end text o f text    end text t h e text    end text b a s e equals 1.5 text   end text m end cell row cell H e i g h t text    end text o f text    end text t h e text    end text t a n k equals 3.5 text   end text m end cell row cell V o l u m e text    end text o f text   end text h a l f text   of   end text t h e text    end text t a n k equals pi cross times r squared cross times h over 2 end cell row cell equals fraction numerator pi left parenthesis 1.5 right parenthesis squared cross times 3.5 over denominator 2 end fraction end cell row cell equals 22 over 7 cross times 9 over 4 cross times fraction numerator 3.5 over denominator 2 end fraction end cell row cell equals fraction numerator 11 cross times 9 over denominator 8 end fraction m cubed end cell row cell equals 99 over 8 cross times 1000 text    end text l i t r e s end cell row blank row cell T i m e text   taken   to   empty   half   the   tank end text end cell row cell a t text   the   rate   225   litres   per    end text m i n u t e equals 99 over 8 cross times 1000 over 225 end cell row cell equals 55 text    end text m i n u t e s end cell end table

Question 53

Water is flowing at the rate of 2.52 km/h through a cylindrical pipe into a cylindrical tank, the radius of the base is 40 cm. If the increase in the level of water in the tank, in half an hour is 3.15 m, find the internal diameter of the pipe.Solution 53

Question 54

Water flows at the rate of 15 km/h through a pipe of diameter 14 cm into a cuboidal pond which is 50 m long and 44 m wide. In what time will level of water in the pond rise by 21 cm?Solution 54

Question 55

A canal 300 cm wide and 120 cm deep. The water in the canal is flowing with a speed of 20 km/h. How much area will it irrigate in 20 minutes if 8 cm of standing water is desired?Solution 55

Question 56

The sum of the radius of base and height of a solid right circular cylinder is 37 cm. If the total surface area of the solid cylinder is 1628 cm2, find the volume of cylinder.Solution 56

Question 57

Solution 57

Question 58

Solution 58

Question 59

Solution 59

Question 60

A 5 m wide cloth is used to make a conical tent of base diameter 14 m and height 24 m. find the cost of cloth used at the rate of Rs. 25 per metre. (π = 22/7)Solution 60

table attributes columnalign left end attributes row cell D i a m e t e r equals 14 text   end text m end cell row cell R a d i u s comma text    end text r equals 7 text   end text m end cell row cell H e i g h t comma text    end text h equals 24 text   end text m end cell row cell S l a n t text    end text h e i g h t comma l equals square root of h squared plus r squared end root equals square root of 7 squared plus 24 squared end root equals square root of 49 plus 576 end root equals square root of 625 equals 25 text    end text m end cell row cell C u r v e d text    end text s u r f a c e text    end text a r e a text    end text o f text    end text t h e text    end text t e n t equals pi r l end cell row cell equals 22 over 7 cross times 7 cross times 25 end cell row cell equals 550 text    end text m squared end cell row cell L e n g t h text    end text o f text    end text t h e text    end text c l o t h equals fraction numerator T o t a l text    end text a r e a text    end text o f text    end text t h e text    end text c l o t h over denominator W i d t h text    end text o f text    end text t h e text    end text c l o t h end fraction end cell row cell equals 550 over 5 equals 110 m end cell row cell I t text    end text i s text    end text g i v e n text    end text t h a t text    end text t h e text    end text c o s t text    end text o f text    end text c l o t h text    end text i s text    end text R s.25 text    end text p e r text    end text m e t r e. end cell row cell C o s t text    end text o f text    end text t h e text    end text c l o t h equals 110 cross times 25 end cell row cell equals R s.2750 end cell end table

Question 61

Solution 61

Question 62

The difference between the outer and inner curved surface areas of a hollow right circular cylinder 14 cm long is 88 cm2. If the volume of metal used in making the cylinder is 176 cm3, find the outer and inner diameters of the cylinder. (Use  = 22/7)Solution 62

Question 63

Solution 63

Question 64

Solution 64

Question 65

If the total surface area of a solid hemisphere is 462 cm2, find its volume.

(π = 22/7)Solution 65

table attributes columnalign left end attributes row cell L e t text    end text t h e text    end text r a d i u s text    end text o f text    end text t h e text    end text h e m i s p h e r e text    end text b e apostrophe r apostrophe. end cell row cell T o t a l text    end text s u r f a c e text    end text a r e a text    end text o f text    end text t h e text    end text h e m i s p h e r e equals 462 text   end text c m squared end cell row cell T o t a l text    end text s u r f a c e text    end text a r e a text    end text o f text    end text t h e text    end text h e m i s p h e r e equals 3 pi r squared end cell row cell therefore 462 equals 3 pi r squared end cell row cell rightwards double arrow 154 equals pi r squared end cell row cell rightwards double arrow 154 equals 22 over 7 cross times r squared end cell row cell rightwards double arrow r squared equals fraction numerator 154 cross times 7 over denominator 22 end fraction end cell row cell rightwards double arrow r squared equals 49 end cell row cell therefore r equals 7 text    end text c m end cell row cell V o l u m e equals 2 over 3 pi r cubed end cell row cell equals 2 over 3 cross times 22 over 7 cross times left parenthesis 7 right parenthesis cubed end cell row cell equals 2 over 3 cross times 22 cross times 49 end cell row cell equals 718.67 text    end text c m cubed end cell end table

*Answer given in the book is incorrect.Question 66

Water flows at the rate of 10m/minute through a cylindrical pipe 5 mm in diameter. How long would it take to fill a conical vessel whose diameter at the base is 40 cm and depth 24 cm?Solution 66

Question 67

A solid right circular cone of height 120 cm and radius 60 cm is placed in a right circular cylindrical full of water of height 180 cm such that it touches the bottom. Find the volume of water left in the cylinder, if the radius of the cylinder is equal to the radius of the cone.Solution 67

Question 68

A heap of rice in the form of a cone of diameter 9 m and height 3.5 m. Find the volume of rice. How much canvas cloth is required to cover the heap?Solution 68

Question 69

A cylindrical bucket of height 32 cm and base radius 18 cm is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm, find the radius and slant height of the heap.Solution 69

Question 70

A hemispherical bowl of internal radius 9 cm is full of liquid. The liquid is to be filled into cylindrical shaped each of radius 1.5 cm and height 4 cm. How many bottles are needed to empty the bowl?Solution 70

Question 71

A factory manufactures 120,000 pencils daily The pencils are cylindrical in shape each of length 25 cm and circumference of base as 1.5 cm. Determine the cost of colouring the curved surfaces of the pencils manufactured in one day at Rs. 0.05 per dm2.Solution 71

Question 72

πThe   part of a conical vessel of internal radius 5 cm and height 24 cm is full of water. The water is emptied into a cylindrical vessel with internal radius 10 cm. Find the height of water in cylindrical vessel.Solution 72

Height of the conical vessel h = 24 cm

Radius of the conical vessel r =5 cm

Let h be the height of the cylindrical vessel which is filled by water of the conical vessel.

Radius of the cylindrical vessel =10 cm

Volume of the cylindrical vessel = volume of water

π(10)2h=150π 

h = 150π¸ 100π 

h = 1.5 cm

Thus, the height of the cylindrical vessel is 1.5 cm.

Chapter 16 – Surface Areas and Volumes Exercise Ex. 16.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

A cylindrical tub of radius 5 cm and length 9.8 cm is full of water. A solid in the form of a right circular cone mounted on a hemisphere is immersed in the tub. If the radius of the hemi-sphere is 3.5 cm and height of the cone outside the hemisphere is 5 cm, find the volume of the water left in the tub. (Take  = 22/7)Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

A cylinderical road roller made of iron is 1 m long. Its internal diameter is 54 cm and the thickness of the iron sheet used in making the roller is 9 cm. Find the mass of the roller, if 1 cm3 of iron has 7.8 gm mass. (Use  = 3.14)Solution 16

Question 17

A vessel in the form of a hollow hemisphere mounted by a hollow cylinder. The dijameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm. Find the inner surface area of the vessel.Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

A right circular cylinder having diameter 12 cm and height 15 cm is full of ice-cream. The ice-cream is to be filled in cones of height 12 cm and diameter 6 cm having a hemispherical shape on the top. Find the number of such cones which can be filled with ice-cream.Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

A wooden toy is made by scooping out a hemisphere of same radius from each end of a solid cylinder. If the height of the cylinder is 10 cm, and its base is of radius 3.5 cm, find the volume of wood in the toy.

(π = 22/7)Solution 28

Question 29

The largest possible sphere is carved out of a wooden solid cube of side 7 cm. find the volume of wood left.(Use begin mathsize 12px style straight pi end style = 22/7)Solution 29

Question 30

From a solid cylinder of height 2.8 cm and diameter 4.2 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid. (π = 22/7)Solution 30

table attributes columnalign left end attributes row cell H e i g h t text    end text o f text    end text t h e text    end text c y l i n d e r comma h equals 2.8 text   end text c m end cell row cell R a d i u s text    end text o f text    end text t h e text    end text c y l i n d e r comma r equals 2.1 text   end text c m end cell row cell S l a n t text    end text h e i g h t text    end text o f text    end text t h e text    end text c o n e equals square root of 2.8 squared plus 2.1 squared end root end cell row cell equals square root of 7.84 plus 4.41 end root equals square root of 7.84 plus 4.41 end root equals square root of 12.25 end root equals 3.5 c m end cell row blank row cell T o t a l text    end text s u r f a c e text    end text a r e a text    end text o f text    end text t h e text    end text r e m a i n i n g text    end text s o l i d equals C u r v e d text    end text s u r f a c e text    end text a r e a text    end text o f end cell row cell t h e text    end text c y l i n d e r plus C u r v e d text    end text s u r f a c e text    end text a r e a text    end text o f text    end text t h e text    end text c o n e plus T o p text    end text c i r c u l a r text    end text a r e a end cell row cell o f text    end text t h e text    end text c o n e end cell row cell equals 2 pi r h plus pi r l plus pi r squared end cell row cell equals 2 cross times 22 over 7 cross times 2.1 cross times 2.8 plus 22 over 7 cross times 2.1 cross times 3.5 plus 22 over 7 cross times 2.1 squared end cell row cell equals 22 over 7 cross times 2.1 cross times left parenthesis 5.6 plus 3.5 plus 2.1 right parenthesis end cell row cell equals 22 over 7 cross times 2.1 cross times 11.2 end cell row cell equals 73.92 text    end text c m squared end cell end table

Question 31

The largest cone is curved out from one face of solid cube of side 21 cm. Find the volume of the remaining solid.Solution 31

Question 32

A solid wooden toy is in the form of a hemisphere surmounted by a cone of same radius. The radius of hemisphere is 3.5 cm and the total wood used in the making of toy is 166 . Find the height of the toy. Also, find the cost of painting the 6 hemispherical part of the toy at the rate of Rs. 10 per cm2. (Take π = 22/7).Solution 32

Question 33

In Fig. 16.57, from a cuboidal solid metalic block, of dimensions 15 cm × 10 cm × 5 cm, a cylindrical hole of diameter 7 cm is drilled out. Find the surface area of the remaining block. (Take π = 22/7).

Solution 33

Question 34

A building is in the form of a cylinder surmounted by a hemi-spherical vaulted done and contains   of air. If the internal diameter of done is equal to its total height above the floor, find the height of the building?Solution 34

Question 35

A pen stand made of wood is in the shape of a cuboid four conical depressions and a cubical depression to hold the pens and pins, respectively. The dimension of the cuboid are 10 cm × 5 cm × 4 cm. The radius of each of the conical depression is 0.5 cm and the depth is 2.1 cm. The edge of the cubical depression is 3 cm. Find the volume of the wood in the entire stand.Solution 35

Question 36

A building is in the form of a cylinder surmounted by a hemispherical dome. The base diameter of the dome is equal to   of the total height of the building. Find the height of the building, if it contains   of air.Solution 36

Question 37

A solid toy is in the form of a hemisphere surmounted by a right circular cone. The height of cone is 4 cm and the diameter of the base is 8 cm. Determine the volume of the toy. If a cube circumscribes the toy, then find the difference of the volumes of cube and the toy. Also, find the total surface area of the toy.Solution 37

Question 38

A circus tent is in the shape of a cylinder surmounted by a conical top of same diameter. If their common diameter is 56m, the height of the cylindrical part is 6 m and the total height of the tent above the ground is 27 m, find the area of the canvas used in making the tent.Solution 38

Total area of the canvas = curved surface area of the cone + curved surface area of a cylinder radius = 28 m height (cylinder) = 6 m

height (cone) = 21 m

l = slant height of cone

curved surface area of the cone = πrl 

=π×28×35

= ×28×35 = 3080 m2

curved surface area of the cylinder = 2πrh 

=2× ×28×6

=1056

Total area of the canvas = 3080+1056 =4136 m2

Chapter 16 – Surface Areas and Volumes Exercise Ex. 16.3

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

A milk container of height 16 cm is made of metal sheet in the form of frustum of a cone with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find the cost of milk at the rate of Rs.44 per litre which the container can hold.Solution 10

Question 11

A bucket is in the form of a frustum of a cone of height 30 cm with radii of its lower and upper ends as 10 cm and 20 cm respectively. Find the capacity and surface area of the bucket. Also, find the cost of milk which can completely fill the container, at the rate of Rs.25 per litre.Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

A solid cone of base radius 10 cm is cut into two parts through the mid-points of its height, by a plane parallel to its base. Find the ratio in the volumes of two parts of the cone.Solution 18

table attributes columnalign left end attributes row cell L e t text    end text t h e text    end text h e i g h t text    end text o f text    end text t h e text    end text c o n e text    end text b e text    end text 2 h. end cell row cell S i n c e text    end text t h e text    end text p l a n e text    end text d i v i d e s text    end text t h e text    end text c o n e text    end text i n t o text    end text h e i g h t s text    end text o f text    end text e q u a l text    end text l e n g t h. end cell row cell B a s e text    end text r a d i u s text    end text o f text    end text t h e text    end text c o n e comma R equals 10 text   end text c m end cell row cell L e t text    end text t h e text    end text r a d i u s text    end text o f text    end text t h e text    end text u p p e r text    end text p a r t text    end text o f text    end text t h e text    end text f r u s t u m text    end text b e text    end text apostrophe r apostrophe. end cell row blank row cell I n text    end text capital delta A D E comma end cell row cell fraction numerator A D over denominator D E end fraction equals fraction numerator A B over denominator B C end fraction end cell row cell rightwards double arrow h over r equals fraction numerator 2 h over denominator 10 end fraction end cell row cell therefore r equals 5 text   end text c m end cell row cell V o l u m e text    end text o f text    end text t h e text    end text s m a l l e r text    end text c o n e comma V subscript c equals 1 third pi r squared h end cell row cell equals 1 third cross times 22 over 7 cross times 5 squared cross times h end cell row cell V o l u m e text    end text o f text    end text t h e text    end text f r u s t u m text   end text comma V subscript f equals 1 third pi h left parenthesis r squared plus R squared plus R r right parenthesis end cell row cell equals 1 third pi h left parenthesis 5 squared plus 10 squared plus 10 cross times 5 right parenthesis end cell row cell equals 1 third pi h cross times 175 end cell row blank row cell V subscript c over V subscript f equals fraction numerator 1 third cross times 22 over 7 cross times 5 squared cross times h over denominator 1 third pi h cross times 175 end fraction end cell row cell rightwards double arrow V subscript c over V subscript f equals fraction numerator 1 third pi cross times 5 squared cross times h over denominator 1 third pi h cross times 175 end fraction end cell row cell rightwards double arrow V subscript c over V subscript f equals 25 over 175 end cell row cell therefore V subscript c over V subscript f equals 1 over 7 end cell row cell R a t i o text    end text o f text    end text v o l u m e s equals 1 colon 7 end cell end table

Question 19

A bucket open at the top, and made up of a metal sheet is in the form of a frustum of a cone. The depth of the bucket is 24 cm and the diameters of its upper and lower circular ends are 30 cm and 10 cm respectively. Find the cost of metal sheet used in it at the rate of Rs. 10 per 100 cm2. (π = 22/7)Solution 19

table attributes columnalign left end attributes row cell H e i g h t text    end text o f text    end text t h e text    end text c o n e comma h equals 24 text    end text c m end cell row cell U p p e r text    end text r a d i u s text    end text o f text    end text t h e text    end text c o n e comma R equals 15 text    end text c m end cell row cell L o w e r text    end text r a d i u s text    end text o f text    end text t h e text    end text c o n e comma r equals 5 text    end text c m end cell row cell S l a n t text    end text h e i g h t text    end text o f text    end text t h e text    end text c o n e comma l equals square root of h squared plus left parenthesis R minus r right parenthesis squared end root end cell row cell equals square root of 24 squared plus left parenthesis 15 minus 5 right parenthesis squared end root end cell row cell equals square root of 24 squared plus 10 squared end root end cell row cell equals square root of 576 plus 100 end root end cell row cell equals square root of 676 equals 26 text   end text c m end cell row cell T o t a l text    end text s u r f a c e text    end text a r e a text    end text o f text    end text t h e text    end text b u c k e t equals pi left parenthesis R plus r right parenthesis l plus pi r squared end cell row cell equals pi left parenthesis 15 plus 5 right parenthesis 26 plus pi 5 squared end cell row cell equals pi left square bracket 520 plus 25 right square bracket end cell row cell equals pi cross times 545 end cell row cell equals 1711.3 c m squared end cell row blank row cell 100 text    end text c m squared text    end text o f text    end text t h e text    end text m e t a l text    end text c o s t s text   end text R s.10 end cell row cell C o s t text    end text o f text    end text t h e text    end text s h e e t equals fraction numerator 1711.3 over denominator 100 end fraction cross times 10 end cell row cell equals R s.171.13 end cell row cell therefore C o s t text    end text o f text    end text t h e text    end text m e t a l text    end text s h e e t equals R s.171.13 end cell end table

Question 20

In Fig. 14.75, from the top of a solid cone of height 12 cm and base radius 6 cm, a cone of height 4 cm is removed by a plane parallel to the base. Find the total surface area of the remaining solid.

 ).

Solution 20

Question 21

The height of a cone is 10 cm. The cone is divided into two parts using a plane parallel to its base at the middle of its height. Find the ratio of the volumes of two parts.Solution 21

Let the height of the cone be H and the radius be R. This cone is divided into two equal parts.

AQ=1/2 AP

Also,

QP||PC

Therefore,ΔAQD~ΔAPC.

So,

Question 22

A bucket, made of metal sheet, is in the form of a cone whose height is 35 cm and radii of circular ends are 30 cm and 12 cm. How many liters of milk it contains if it is full to the brim? If the milk is sold at 40 per litre, find the amount received by the person.Solution 22

A bucket, made of metal sheet, is in the form of a cone.

R = 15 cm, r = 6 cm and H=35 cm

Now, using the similarity concept, we can writ

Volume of the frustum is

The rate of milk is Rs. 40 per litre.

So, the cost of 51.48 litres is Rs. 2059.20.Question 23

The diameters of the lower and upper ends of a bucket in the form of a frustum of a cone are 10 cm and 30 cm respectively. If its height is 24 cm,

(i) Find the area of the metal sheet used to make the bucket.

(ii) Why we should avoid the bucket made by ordinary plastic? (use π = 3.14)Solution 23

(i)

Given:

Radius of lower end (r1) = Diameter/2 = 5 cm

Radius of upper end (r2) = Diameter/2 = 15 cm

Height of the bucket (h) = 24 cm

Area of metal sheet used in making the bucket

= CSA of bucket + Area of smaller circular base

Hence, area of the metal sheet used in making the bucket is 1711.3 cm2.

(ii)

We should avoid the bucket made by ordinary plastic because it is less strength than metal bucket and also not ecofriendly.

Read More

RD SHARMA SOLUTION CHAPTER- 15 Areas Related to Circles | CLASS 10TH MATHEMATICS-EDUGROWN

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Find the radius of a circle whose circumference is equal to the sum of the circumference of two circles of radii 15 cm and 18 cm.Solution 9

Question 10

The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having its area equal to the sum of the areas of the two circles.Solution 10

Question 11

The radii of two circles are 19 cm and 9 cm respectively. Find the radius and area of the circle which has its circumference equal to the sum of the circumferences of the two circles.Solution 11

Area of a circle = πr2 = (22/7) × 28 × 28 = 2464 cm2Question 12

The area of a circular playground is 22176 m2. Find the cost of fencing this ground at the rate of Rs. 50 per metre.Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

A park is in the form of a rectangle 120 m x 100 m. At the centre of the park there is a circular lawn. The area of park excluding lawn is 8700 m2. Find the radius of the circular lawn. (Use = 22/7).Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

An archery target has three regions formed by three concentric circles as shown in figure. If the diameters of the concentric circles are in the ratio 1 : 2 : 3, then find the ratio of the areas of three regions.

Solution 20

Question 21

The wheel of a motor cycle is of radius 35 cm. How many revolutions per minute must the wheel make so as to keep a speed of 66 km/hr?Solution 21

Question 22

A circular pond is 17.5 m in diameter. It is surrounded by a 2 m wide path. Find the cost of constructing the path at the rate of Rs.25 per m2.Solution 22

Question 23

A circular park is surrounded by a road 21 m wide. If the radius of the park is 105 m, find the area of the road.Solution 23

Question 24

A square of diagonal 8 cm is inscribed in a circle. Find the area of the region lying inside the circle and outside the square.Solution 24

Question 25

Solution 25

Question 26

Find the area enclosed between two concentric circles of radii 3.5 cm and 7 cm. A third concentric circle is drawn outside the 7 cm circle, such that the area enclosed between it and the 7 cm circle is same as that between the two inner circles. Find the radius of the third circle correct to one decimal place.


Solution 26

Question 27

A path of width 3.5 m runs around a semi-circular grassy plot whose perimeter is 72 m. Find the area of the path. (Use π = 22/7)Solution 27

Question 28

A circular pond is of diameter 17.5 m. It is surrounded by a 2 m wide path. Find the cost of constructing the path at the rate of Rs. 25 per square meter (π = 3.14)Solution 28

table attributes columnalign left end attributes row cell text Area   of   the   surrounding   path  =  end text pi left parenthesis R squared minus r squared right parenthesis end cell row cell R equals left parenthesis 17.5 divided by 2 right parenthesis plus 2 equals 8.75 plus 2 equals 10.75 text   m   is   the   outer   radius. end text end cell row cell r equals 17.5 divided by 2 equals 8.75 text   m   is   the   inner   radius. end text end cell row cell text Area   of   the   path  =  end text pi left parenthesis R squared minus r squared right parenthesis equals pi left parenthesis 10.75 squared minus 8.75 squared right parenthesis end cell row cell equals 3.14 cross times 39 equals 122.46 text   m end text to the power of text 2 end text end exponent end cell row cell text Total   cost  =  122.46 end text cross times text 25  =   Rs. 3061.50   end text end cell end table

Question 29

The outer circumference of a circular race-track is 528 m. The track is everywhere 14 m wide. Calculate the cost of levelling the track at the rate of 50 paise per square metre (Use  = 22/7).Solution 29

Question 30

Solution 30

Question 31

Prove that the area of a circular path of uniform width h surrounding a circular region of radius r is  h (2r + h).Solution 31

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

The area of a sector of a circle of radius 5 cm is 5 cm2. Find the angle contained by the sector.Solution 9

Question 10

Find the area of the sector of a circle of radius 5 cm, if the corresponding arc length is 3.5 cm.Solution 10

Question 11

Solution 11

Question 12

The perimeter of a scetor of a circle of radius 5.7 m is 27.2 m. Find the area of the sector.Solution 12

Question 13

The perimeter of a certain sector of a circle of radius 5.6 m is 27.2 m. Find the area of the sector.Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

A sector of 56o cut out from a circle contains area 4.4 cm2. Find the radius of the circle.Solution 17

Question 18

Area of a sector of central angle 200° of a circle is 770 cm2. Find the length of the corresponding arc of this sector.Solution 18

Question 19

The length of minute hand of a clock is 5 cm. Find the area swept by the minute hand during the time period 6:05 am and 6:40 am.Solution 19

Question 20

The length of the minute hand of a clock is 14 cm. Find the area swept by the minute hand in 5 minutes.Solution 20

table attributes columnalign left end attributes row cell text A   minute   hand   covers   360 end text to the power of text o end text end exponent text   in   60   minutes. end text end cell row cell text Hence ,  the   minute   hand   covers   end text fraction numerator text 360 end text over denominator text 60 end text end fraction equals 6 degree text   in   one   minute. end text end cell row cell text The   minute   hand   covers   6 end text cross times text 5  =  30 end text to the power of text o end text end exponent text   in   5   minutes. end text end cell row cell text The   length   of   minute   hand   is   14   cm .  end text end cell row cell text Area   swept = end text text 30 end text to the power of text o end text end exponent over text 360 end text to the power of text o end text end exponent cross times pi R squared equals 1 over 6 cross times 22 over 7 cross times 14 squared equals 102.67 text   cm end text to the power of text 2 end text end exponent end cell end table

*Answer does not match with textbook answer.Question 21

In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find

(i) the length of arc

(ii) area of the sector formed by the arc. (use π = 22/7)Solution 21

table attributes columnalign left end attributes row cell left parenthesis text i end text right parenthesis text   Length   of   an   arc end text equals fraction numerator theta over denominator 360 degree end fraction cross times 2 pi R end cell row cell equals fraction numerator 60 degree over denominator 360 degree end fraction cross times 2 cross times 22 over 7 cross times 21 end cell row cell equals 1 over 6 cross times 2 cross times 22 over 7 cross times 21 equals 22 text   cm end text end cell end table
table attributes columnalign left end attributes row cell left parenthesis i i right parenthesis text   Area   of   the   sector = end text fraction numerator theta over denominator 360 degree end fraction cross times pi R squared end cell row cell equals fraction numerator 60 degree over denominator 360 degree end fraction cross times pi cross times 21 squared equals 1 over 6 cross times 22 over 7 cross times 21 squared equals 231 text   cm end text to the power of text 2 end text end exponent end cell end table

Question 22

From a circular piece of cardboard of radius 3 cm two sectors of 90° have been cut off. Find the perimeter of the remaining portion nearest hundredth centimeters. (Take π = 22/7)Solution 22

*Note: Answer given in the book is incorrect.Question 23

The area of a sector is one-twelfth that of the complete circle. Find the angle of the sector.Solution 23

Question 24

AB is a chord of a circle with centre O and radius 4 cm. AB is of length 4 cm. Find the area of the sector of the circle formed by chord AB.Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 1

Solution 1

Question 2

A chord PQ of length 12 cm subtends an angle of 120o at the centre of a circle. Find the area of the minor segment cut off by the chord PQ.Solution 2

Question 3

Solution 3

Question 4

A chord 10 cm long is drawn in a circle whose radius is  cm. Find area of both the segments. (Take  = 3.14).Solution 4

Question 5

Solution 5

Question 6

Find the area of the minor segment of a circle of radius 14 cm, when the angle of the corresponding sector is 60°.Solution 6

Question 7

A chord of a circle of radius 10 cm subtends an angle of 90° at the centre. Find the area of the corresponding major segment of the circle. (Use π = 3.14).Solution 7

Question 8

The radius of a circle with centre O is 5 cm. Two radii OA and OB are drawn at right angles to each other. Find the areas of the segments made by the chord AB. (π = 3.14)

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 1

A plot is in the form of the form of a rectangle ABCD having semi-circle on BC as shown in Fig., If AB = 60 m and BC = 28 m, find the area of the piot.

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

A rectangular piece is 20 m long and 15 m wide. Form its four corners, quadrants of radii 3.5 m have been cut. Find the area of the remaining part.Solution 4

Question 5

In fig., PQRS is a square of side 4 cm. Find the area of the shaded region.

Solution 5

Question 6

Four cows are tethered at four corners of a square plot of side 50 m, so that they just cannot reach one another. What area will be left ungrazed?

Solution 6

Question 7

A cow is tied with a rope of length 14 m at the corner of a rectangular field of dimensions 20m × 16m, find the area of the field in which the cow can graze.Solution 7

Question 8

A calf is tied with a rope of length 6 m at the corner of a square grassy lawn of side 20 m. If the length of the rope is increased by 5.5 m, Find the increase in area of the grassy lawn in which the calf can graze.Solution 8

Question 9

Solution 9

Question 10

A rectangular park is 100 m by 50 m. It is surrounded by semi-circular flower beds all round. Find the cost of levelling the semi-circular flower beds at 60 paise per square metre (Ise  = 3.14).Solution 10

Question 11

The inside perimeter of a running track (shown in Fig.) is 400 m. The length of each of the straight portion is 90 m and the ends are semi-circles. If the track is everywhere 14 m wide, find the area of the track. Also, find the length of the outer running track.

Solution 11

Question 12

Find the area of Fig., in square cm, correct to one place of decimal. (Take π = 22/7).

Solution 12

Question 13

From a rectangular region ABCD with AB = 20 cm, a right angle AED with AE = 9 cm and DE = 12 cm, is cut off. On the other end, taking BC as diameter, a semicircle is added on outside the region. Find the area of the shaded region. (π = 22/7)

Solution 13

table attributes columnalign left end attributes row cell text Area   of   the   rectangle   ABCD  =  AB end text cross times text AD end text end cell row cell text AD   is   the   hypotenuse   of   the   right   angled   end text capital delta text AED. end text end cell row cell A D equals square root of A E squared plus E D squared end root equals square root of 9 squared plus 12 squared end root equals square root of 225 equals 15 text   cm end text end cell row cell text Hence ,  area   of   the   rectangle  =  end text 20 cross times 15 equals 300 text   cm end text to the power of text 2 end text end exponent end cell row cell text Area   of   the   right   end text capital delta text AED  =  end text 1 half cross times A E cross times D E equals 1 half cross times 9 cross times 12 end cell row cell equals 54 text   cm end text to the power of text 2 end text end exponent end cell row cell text Area   of   the   semicircle  =  end text fraction numerator text 1 end text over denominator text 2 end text end fraction cross times pi cross times open parentheses 15 over 2 close parentheses squared end cell row cell equals 1 half cross times 3.14 cross times 7.5 squared equals 88.31 text   cm end text to the power of text 2 end text end exponent end cell row cell text Area   of   the   shaded   region end text end cell row cell text = Area   of   the   rectangle  +  Area   of   the   semicircle end text end cell row cell negative text Area   of   the   right   triangle end text end cell row cell text = end text 300 plus 88.31 minus 54 equals 334.31 text   cm end text to the power of text 2 end text end exponent end cell end table

Question 14

From each of the two opposite corners of a square of side 8.8 cm, a quadrant of a circle of radius 1.4 cm is cut. Another circle of radius 4.2 cm is also cut from the centre as shown in Fig. Find the area of the remaining (shaded) portion of the square. (Use π = 22/7).Solution 14

Question 15

ABCD is a rectangle with AB = 14 cm and BC = 7 cm. Taking DC, BC and AD as diameters, three semi-circles are drawn as shown in the figure. Find the area of the shaded region.

Solution 15

Question 16

ABCD is rectangle, having AB = 20 cm and BC = 14 cm. Two sectors of 180° have been cut off. Calculate :

(i) the area of the shaded region.     (ii) the length of the boundary of the shaded region.

Solution 16

Question 17

The square ABCD is divided into five equal parts, all having same area. The central part is circular and the lines AE, GC, BF and HD lie along the diagonals AC and BD of the square. If AB = 22 cm, find:

(i) the circumference of the central part.   (ii) the perimeter of the part ABEF.

Solution 17

Question 18

In figure, find the area of the shaded region.

(Use π = 3.14)

Solution 18

Question 19

OACB is a quadrant of a circle with centre O and radius 3.5 cm. If OD = 2 cm, find the area of the (i) quadrant OACB (ii) shaded region.

Solution 19

Question 20

A square OABC is inscribed in a quadrant OPBQ of a circle. If OA = 21 cm, find the area of the shaded region.

Solution 20

table attributes columnalign left end attributes row cell text Area   of   the   square  =  end text O A squared equals 21 squared equals 441 text   cm end text to the power of text 2 end text end exponent end cell row cell text Diagonal   of   the   square   OB  =  end text square root of text 2 end text end root O A equals 21 square root of 2 text   cm end text end cell row cell text Diagonal   of   the   square   is   equal   to   the   radius end text end cell row cell text of   the   circle. end text end cell row cell text Hence ,  area   of   the   quadrant  =  end text fraction numerator text 1 end text over denominator text 4 end text end fraction cross times pi r squared equals fraction numerator text 1 end text over denominator text 4 end text end fraction cross times 22 over 7 cross times left parenthesis 21 square root of 2 right parenthesis squared end cell row cell equals fraction numerator text 1 end text over denominator text 4 end text end fraction cross times 22 over 7 cross times 441 cross times 2 equals 693 end cell row cell text Hence ,  area   of   the   shaded   region end text end cell row cell text =  Area   of   the   quadrant end text minus text Area   of   the   square  =  693 end text minus 441 end cell row cell equals 252 text   cm end text to the power of text 2 end text end exponent end cell end table

Question 21

Solution 21

Question 22

OE = 20 cm. In sector OSFT, square OEFG is inscribed. Find the area of the shaded region.

Solution 22

Question 23

Solution 23

Question 24

A circle is inscribed in an equilateral triangle ABC of side 12 cm, touching its sides (fig.,). Find the radius of the inscribed circle and the area of the shaded part.

Solution 24

Question 25

In fig., an equilateral triangle ABC of side 6 cm has been inscribed in a circle. Find the area of the shaded region. (Take  = 3.14).

Solution 25

*Answer is not matching with textbook.Question 26

Solution 26

Question 27

Find the area of a shaded region in the given figure, where a circular arc of radius 7 cm has been drawn with vertex A of an equilateral triangle ABC of side 14 cm as centre.

Solution 27

Question 28

A regular hexagon is inscribed in a circle. If the area of hexagon is  , find the area of the circle. (Use π it = 3.14)Solution 28

Consider the following figure:

Question 29

ABCDEF is a regular hexagon with centre O (Fig.,). If the area of triangle OAB is 9 cm2, find the area of: (i) the hexagon and (ii) the circle in which the hexagon is inscribed.

Solution 29

(i)

According to the figure in the question, there are 6 triangles.

Area of one triangle is 9 cm2.

Area of hexagon = 6 × 9 = 54 cm2

(ii)

Area of the equilateral triangle = 9 cm2

Area of the circle in which the hexagon is inscribed

= 65.26 cm2

NOTE: Answer not matching with back answer.Question 30

Four equal circles, each of radius 5 cm, touch each other as shown in Fig. Find the area included between them (Take π = 3.14)

Solution 30

Question 31

Solution 31

Question 32

A child makes a poster on a chart paper drawing a square ABCD of side 14 cm. She draws four circles with centre A, B, C and D in which she suggests different ways to save energy. The circles are drawn in such a way that each circle touches externally two of the three remaining circles. In the shaded region she write a message ‘Save Energy’. Find the perimeter and area of the shaded region. (Use π = 22/7)

Solution 32

Question 33

The diameter of a coin is 1 cm. If four such coins be placed on a table so that the rim of each touches that of the other two, find the area of the shaded region (Take π = 3.1416)

Solution 33

Question 34

Two circular pieces of equal radii and maximum area, touching each other are cut out from a rectangular card board of dimensions 14 cm × 7 cm. find the area of the remaining card board. (π = 22/7)Solution 34

table attributes columnalign left end attributes row cell text Area   of   the   rectangular   card  =  14 end text cross times text 7  =  98   cm end text to the power of text 2 end text end exponent end cell row cell text Maximum   diameter   of   a   circle   inscribed   in   end text end cell row cell text the   given   rectangle  =  7   cm. end text end cell row cell text Area   of   the   circles  =  end text pi cross times left parenthesis 7 divided by 2 right parenthesis squared end cell row cell text Area   of   two   such   circles  =  2 end text cross times pi cross times left parenthesis 7 divided by 2 right parenthesis squared equals 77 text   cm end text to the power of text 2 end text end exponent end cell row cell text Area   of   the   remaining   card  =  98   cm end text to the power of text 2 end text end exponent minus 77 text   cm end text to the power of text 2 end text end exponent equals 21 text   cm end text to the power of text 2 end text end exponent end cell end table

Question 35

AB and CD are two diameters of a circle perpendicular to each other and OD is the diameter of the smaller circle. If OA = 7 cm, find the area of the shaded region.

Solution 35

Question 36

PSR, RTQ and PAQ are three semi-circles of diameters 10 cm, 3 cm and 7 cm respectively. Find the perimeter of the shaded region.

Solution 36

table attributes columnalign left end attributes row cell text Perimeter   of   the   shaded   region = end text end cell row cell text Length   of   end text stack P S R with overparenthesis on top plus text   Length   of end text stack P A Q with overparenthesis on top text   end text plus text   length   of   end text stack Q T R with overparenthesis on top end cell row cell equals pi cross times 5 plus pi cross times 3.5 plus pi cross times 1.5 end cell row cell equals pi cross times 10 end cell row cell equals 31.4 text   cm end text end cell end table

Question 37

Two circles with centres A and B touch each other at the point C. If AC = 8 cm and AB = 3 cm, find the area of the shaded region.

Solution 37

Question 38

ABCD is a square of side 2a. Find the ratio between

(i) the circumferences

(ii) the areas of the incircle and the circum-circle of the square.

Solution 38

Question 39

There are three semicircles, A, B and C having diameter 3 cm each, and another semicircle E having a circle D with diameter 4.5 cm are shown. Calculate:

(i) the area of the shaded region

(ii) the cost of painting the shaded region at the rate of 25 paise per cm2, to the nearest rupee.

Solution 39

Question 40

Solution 40

Question 41

O is the centre of a circular arc and AOB is a straight line. Find the perimeter and the area of the shaded region correct to one decimal place. (Take π = 3.142)

Solution 41

Question 42

The boundary of the shaded region consists of four semi-circular arcs, the smallest two being equal. If the diameter of the largest is 14 cm and of the smallest is 3.5 cm, find (i) the length of the boundary   (ii) the area of the shaded region.

Solution 42

Question 43

Ab = 36 cm and M is mid-point of AB. Semi-circles are drawn on AB, AM and MB as diameters. A circle with centre C touches all the three circles. Find the area of the shaded region.

Solution 43

Question 44

Solution 44

Question 45

Solution 45

Question 46

Shows a kite in which BCD is the shape of a quadrant of a circle of radius 42 cm. ABCD is a square and Δ CEF is an isosceles right angled triangle whose equal sides are 6 cm long. Find the area of the shaded region.

Solution 46

Question 47

ABCD is a trapezium of area 24.5 cm2. In it, AD ∥ BC, ∠DAB = 90°, AD = 10 cm and BC = 4 cm. If ABE is a quadrant of a circle, find the area of the shaded region.

(π = 22/7)

Solution 47

Question 48

ABCD is a trapezium with AB ∥ DC, AB = 18 cm, DC = 32 cm and the distance between AB and DC is 14 cm. Circles of equal radii 7 cm with centres A, B, C and D have been drawn. Then, find the area of the shaded region of the figure. (π = 22/7)

Solution 48

Since the data given in the question seems incomplete and inconsistent with the figure, we make the following assumptions to solve it:

1. ABCD a symmetric trapezium with AD = BC

2. AD = BC = 14 cm (the distance between AB and CD is not 14 cm)

Draw perpendiculars to CD from A and B to divide the trapezium into one rectangle and two congruent right angled triangles.

The base of the right angled triangle=(CD – AB) ÷ 2

=(32 – 18) ÷ 2=7 cm

cos∠D = base ÷ hypotenuse = 7 ÷ 14 =1/2

m∠D = 60° 

Hence, m∠A = 120° 

table attributes columnalign left end attributes row cell s i n angle D equals fraction numerator p e r p e n d i c u l a r over denominator h y p o t e n u s e end fraction equals p over 14 equals fraction numerator square root of 3 over denominator 2 end fraction end cell row cell rightwards double arrow p equals 7 square root of 3 text   cm end text end cell row cell text Area   of   the   trapezium  =  end text fraction numerator text 1 end text over denominator text 2 end text end fraction p left parenthesis A B plus C D right parenthesis equals 1 half cross times 7 square root of 3 left parenthesis 18 plus 32 right parenthesis end cell row cell equals 175 square root of 3 text   cm end text to the power of text 2 end text end exponent end cell row cell text The   trapezium   has   four   parts   of   circles , end text end cell row cell text two   with   angles   60 end text degree text   at   centre   and   two   with   angles   120 end text degree text   at   centre. end text end cell row cell text So   in   total   it   has   2 end text cross times fraction numerator text 1 end text over denominator text 6 end text end fraction t h plus 2 cross times 1 third r d equals text one   full   circle. end text end cell row cell text Area   of   the   circle = end text pi R squared equals 22 over 7 cross times 7 squared equals 154 text   cm end text to the power of text 2 end text end exponent end cell row cell text Area   of   the   shaded   part end text end cell row cell text = Area   of   the   trapezium end text minus text Area   of   the   circle end text end cell row cell text = end text 175 square root of 3 text   cm end text to the power of text 2 end text end exponent minus 154 text   cm end text to the power of text 2 end text end exponent end cell row cell equals 149.1 text   cm end text to the power of text 2 end text end exponent end cell end table

*Answer is not matching with textbook answer.Question 49

Solution 49

Question 50

Solution 50

Question 51

Sides of a triangular field are 15 m, 16 m and 17 m. With the three corners of the field a cow, a buffalo and a horse are tied separately with ropes of length 7 m each to graze in the field. Find the area of the field which cannot be grazed by three animals.Solution 51

Question 52

In the given Fig., the side of square is 28 cm, and radius of each circle is half of the length of the side of the square where O and O’ are centres of the circles. Find the area of shaded region.

Solution 52

According to the question,

Side of a square is 28 cm.

Radius of a circle is 14 cm.

Required area = Area of the square + Area of the two circles – Area of two quadrants …(i)

Area of the square = 282 = 784 cm2

Area of the two circles = 2πr2

= 1232 cm2

Area of two quadrants = 

= 308 cm2

Required area = 784 + 1232 – 308 = 1708 cm2

NOTE: Answer not matching with back answer.Question 53

In a hospital used water is collected in a cylindrical tank of diameter 2 m and height 5 m. After recycling, this water is used to irrigate a park of hospital whose length is 25 m and breadth is 20 m. If tank is filled completely then what will be the height of standing water used for irrigating the park?Solution 53

According to the question,

For a cylindrical tank

d = 2 m, r = 1 m, h = 5 m

Volume of the tank = πr2h

  = 

 = 

After recycling, this water is used irrigate a park of a hospital with length 25 m and breadth 20 m.

If the tank is filled completely, then

Volume of cuboidal park = Volume of tank

h = 0.0314 m = 3.14 cm = p cmQuestion 54

In the figure, a square OABC is inscribed in a quadrant OPBQ. If OA = 15 cm, find the area of shaded region (use π = 3.14).

Solution 54

Join OB.

Here,   is a right triangle.

By Pythagoras theorem,

Therefore, radius of the circle (r) 

Area of the square 

Area of the quadrant of a circle 

Area of the shaded region = Area of quadrant – Area of square

= 128.25 cm2Question 55

In the figure, ABCD is a square with side   and inscribed in a circle. Find the area of the shaded region. (Use π = 3.14).

Solution 55

Join AC.

Here,   is a right triangle.

By Pythagoras theorem,

Therefore, diameter of the circle = 4 cm

So, the radius of the circle (r) = 2 cm

Area of the square 

Area of the circle 

Area of the shaded region = Area of the circle – Area of square

= 4.56 cm2

Question 1

If the circumference and the area of a circle are numerically equal, then diameter of the circle is

begin mathsize 12px style left parenthesis straight a right parenthesis space straight pi over 2
left parenthesis straight b right parenthesis space 2 straight pi
left parenthesis straight c right parenthesis space 2
left parenthesis straight d right parenthesis space 4 end style

Solution 1

Correct Option :- (D)

begin mathsize 12px style Let space radivs space of space circle space be space straight r.
circumferance space of space circle space equals space 2 πr
area space of space circle space equals space πr squared
Given comma area space equals space circumference
space space space space space space space space space space space space space space space space space space space space space rightwards double arrow πr squared equals 2 πr
space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space box enclose straight r equals 2 end enclose space
diameter space equals space 2 straight r
space space space space space space space space space space space space space space space space space equals space 4 space space space space space space space space space space space space space space end style

Question 2

If the difference between the circumference and radius of a circle is 37 cm., then using π =  , the circumference (in cm) of the circle is

(a) 154

(b) 44

(c) 14

(d) 7 Solution 2

According to the question,

Circumference of a circle = 

 = 

 = 44 cm Question 3

A write can be bent in the form of a circle of radius 56 cm. If it is bent in the form of a square, then its area will be

(a) 3520 cm2

(b) 6400 cm2

(c) 7744 cm2

(d) 8800 cm2Solution 3

Correct option (c)

begin mathsize 12px style L e n g t h space o f space w i r e space equals space C i r c u m t e r n c e space o f space C i r c l e
left parenthesis l right parenthesis space equals space 2 πr
straight l equals 2 straight pi cross times left parenthesis 56 right parenthesis
equals space 2 cross times 22 over 7 cross times 56
equals 352 space cm
If space bent space in space form space of space square space then space lenth space of space wire space equals space Perimeter space of space squre space if space side space of space squre space is space straight a space
then space straight l space equals space 49
rightwards double arrow straight a space equals space 352 over 4
rightwards double arrow straight a space equals space 88 space cm
area space of space square space equals space straight a squared
equals space 7744 cm squared


end style

Question 4

begin mathsize 12px style If space straight a space wire space is space bent space into space the space shape space of space straight a space square comma space then space the space area space of space the space squre space 81 cm squared. space when space wire space is space bent space into space straight a space semi minus space circular space shape comma space then space area space of space the space semi space minus space circle space will space be
left parenthesis straight a right parenthesis space 22 cm squared
left parenthesis straight b right parenthesis space 44 cm squared
left parenthesis straight c right parenthesis space 77 space cm squared
left parenthesis straight d right parenthesis space 154 space cm squared end style

Solution 4

correct option – (c)

begin mathsize 12px style a r e a space o f space s q u a r e space equals space 81 space c m squared
s i d e space o f space s q u a r e space equals space square root of 81
equals space 9 space c m
L e n g t h space o f space w i r e space equals space p e r i m e t e r space o f space s q u a r e
equals space 4 cross times 9
equals 36 space c m
w i r e space i s space b e n t space i n t o space s e m i minus c i r c l e space t h e n space
L e n g h t space o f space w i r e space equals space h a l f space o f space c i r c u m f e r n c e space plus 2 r
rightwards double arrow 36 equals πr plus 2 straight r
rightwards double arrow box enclose straight r equals fraction numerator 36 over denominator straight pi plus 2 end fraction end enclose
area space of space semi minus circle space equals space πr squared over 2
equals space straight pi over 2 cross times open parentheses fraction numerator 36 over denominator straight pi plus 2 end fraction close parentheses squared
equals straight pi over 2 open parentheses fraction numerator 36 over denominator straight pi plus 2 end fraction close parentheses squared
equals straight pi over 2 open parentheses fraction numerator 36 cross times 7 over denominator 36 end fraction close parentheses squared
equals fraction numerator 22 over denominator 7 cross times 2 end fraction cross times 7 cross times 7
equals 77 cm squared end style

Question 5

A circular park has a path of uniform width around it. The difference between the outer and inner circumferences of the circular path is 132 m. Its width is

(a) 20 m

(b) 21 m

(c) 22 m

(d) 24 mSolution 5

correct option – (b)

begin mathsize 12px style L e t space o u t e r space r a d i u s space i s space b space a n d space i n n e r space r a d i u s space i s space a
G i v e n space comma space 2 pi b minus 2 pi a equals 132
rightwards double arrow 2 pi open parentheses b minus a close parentheses equals 132
rightwards double arrow open parentheses b minus a close parentheses space equals space fraction numerator 132 over denominator 2 cross times 22 end fraction cross times 7
w i d t h space o f space p a t h space rightwards double arrow space open parentheses b minus a close parentheses equals 21 end style

Question 6

The radius of a wheel is 0.25 m. The number of revolutions it will make to travel a distance of 11 km will be

(a) 2800

(b) 4000

(c) 5500

(d) 7000Solution 6

Correct Option: d

begin mathsize 12px style Let space wheel space take space straight n space revolutions
space After space 1. space revolution space distance space covered space by space wheel space equals space 2 πr
rightwards double arrow After space straight n space revolution space distance space covered space by space wheel space equals space 2 πrn
rightwards double arrow space Given comma space 2 πrn space equals space 11000 space straight m
rightwards double arrow 2 straight pi space cross times space open parentheses 0.25 close parentheses straight n space equals space 11000
rightwards double arrow straight n space equals space fraction numerator 11000 over denominator 2 cross times begin display style 22 over 7 end style cross times begin display style 1 fourth end style end fraction
straight n equals space 7000 end style

Question 7

The ratio of the outer and inner perimeters of a circular path is 23:22. If the path is 5m wide, the diameter of the inner circle is 

(a) 55m

(b) 110 m

(c) 220 m

(d) 230 mSolution 7

Correct Option: (c)

Perimeter space of space circular space path space equals space 2 space πr
Let space outer space radius space be space straight b space and space inner space radius space be space straight a space
rightwards double arrow space given space fraction numerator 2 πb over denominator 2 πa end fraction equals 23 over 22 rightwards double arrow straight b over straight a equals 23 over 22 rightwards double arrow box enclose straight b equals 23 over 22 straight a end enclose
also space width space comma space straight b minus straight a space equals space 5
from space circle enclose 1 comma circle enclose 2
23 over 22 straight a minus straight a space equals space 5
rightwards double arrow straight a over 22 equals 5
rightwards double arrow straight a space equals space 110 space straight m
diameter space equals space 2 straight a
equals space 220 space straight m

Question 8

begin mathsize 12px style The space circumference space of space straight a space circle space is space 100 space cm. space The space side space of space straight a space square space inscribed space in space the space circle space is
left parenthesis straight a right parenthesis space 50 square root of 2 space cm
left parenthesis straight b right parenthesis space 100 over straight pi space cm
left parenthesis straight C right parenthesis space 50 square root of 2 cm
left parenthesis straight d right parenthesis space fraction numerator 100 square root of 2 over denominator straight pi end fraction cm end style

Solution 8

Correct option – (c)

begin mathsize 12px style 2 πr space equals space 100
rightwards double arrow straight r space equals space 50 over straight pi cm
Image space Pending space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
OA squared plus OB squared equals space AB squared
OA space equals space OB space equals space straight r
rightwards double arrow 2 straight r squared equals AB squared
rightwards double arrow AB space equals space square root of 2 straight r end root
equals space fraction numerator 50 square root of 2 over denominator straight pi end fraction cm
end style

Question 9

begin mathsize 12px style The space area space of space the space incircle space of space an space equilateral space triangle space of space side space 42 space cm space is
left parenthesis straight a right parenthesis space 22 square root of 3 cm squared
left parenthesis straight b right parenthesis space 231 space cm squared
left parenthesis straight c right parenthesis space 462 space cm squared
left parenthesis straight d right parenthesis space 924 space cm squared end style

Solution 9

Correct option (c)

begin mathsize 12px style Imege space pending space
AB space equals space 42 space cm
straight E space is space mid space point space of space AB
Hence space EB space equals space 21 space cm
Also space less than ABC space equals space 60 to the power of 0
But space less than space ABO space equals space 1 half less than ABC
equals space 30 to the power of 0
In space increment OEB
tan space 30 to the power of 0 equals space OE over EB
rightwards double arrow OE space equals space EB space tan space 30 to the power of 0
equals space fraction numerator 21 over denominator square root of 3 end fraction
radius space space space straight r space equals space OE
straight r space equals space fraction numerator 21 over denominator square root of 3 end fraction
area space of space circle space equals space πr squared
equals space straight pi open parentheses fraction numerator 21 over denominator square root of 3 end fraction close parentheses squared
equals space straight pi cross times fraction numerator 21 cross times 21 over denominator 3 end fraction
equals space 22 over 7 cross times fraction numerator 21 cross times 21 over denominator 3 end fraction
equals space 462 space cm squared end style

Question 10

begin mathsize 12px style The space area space of space the space incircle space of space an space equilateral space triangle space of space side space 154 space cm squared. space The space perimeter space of space the space triangle space is
left parenthesis straight a right parenthesis space 71.5 space cm
left parenthesis straight b right parenthesis space 71.7 space cm
left parenthesis straight c right parenthesis space 72.3 space cm
left parenthesis straight d right parenthesis space 72.7 space cm end style

Solution 10

Correct Option ( d )

begin mathsize 12px style πr squared equals 154
straight r squared space equals space fraction numerator 154 over denominator straight pi space end fraction space space equals space 154 over 22 cross times 7
straight r squared space equals space 49
straight r space equals space 7 space cm
OE space equals space straight r
Image space pending space
AB equals BC equals space AC
OE perpendicular AB space and space AE space equals EB
and space angle space EBC space equals space 60 to the power of 0
But space angle space EBO space equals space 1 half space angle space EBC space equals space 30 to the power of 0
In space increment space OEB space comma space tan space 30 to the power of 0 equals space OE over EB
rightwards double arrow EB space equals space fraction numerator OE over denominator tan space 30 to the power of 0 end fraction
equals 7 square root of 3
rightwards double arrow AB space equals space 2 EB
equals space 14 space square root of 3
perimeter space equals space AB space plus BC space plus CA
equals space 3 space AB
equals space 42 square root of 3
equals space 72.7 space cm
end style

Question 11

begin mathsize 12px style The space area space of space the space largest space triangle space that space can space be space inscribed space in space straight a space semi minus space circle space of space radius space straight r space comma space is
left parenthesis straight a right parenthesis space straight r squared
left parenthesis straight b right parenthesis space 2 space straight r squared
left parenthesis straight c right parenthesis space straight r cubed
left parenthesis straight d right parenthesis space 2 space straight r cubed end style

Solution 11

Correct option (a)

begin mathsize 12px style Image space pending space space
For space the space largest space triangle. space with space largest space area. space we space need space that space base space of space triangle space must space be space large.
hence space AB space is space Base space of space triangle
Let space straight C space be space 3 rd space vertex space of space triangle.
area space equals 1 half cross times AB cross times space straight h
equals space 1 half cross times 2 straight r space cross times straight h
equals space straight r space straight h
largest space possible space value space of space straight h space is space straight r space
Hence space area space equals space straight r space cross times straight r
equals space straight r squared end style

Question 12

The perimeter of a triangle is 30 cm and the circumference of its incircle is 88 cm. The area of the triangle is

a. 70 cm2

b. 140 cm2

c. 210 cm2

d. 420 cm2 Solution 12

Let r be the radius of the circle.

2pr = 88

Perimeter of a triangle = 30 cm

Semi-perimeter = 15 cm

Hence,

Area of a triangle = r × s …(r = incircle radius, s =semi perimeter)

= 14 × 15

= 210 cm2 Question 13

begin mathsize 12px style The space area space of space straight a space circle space is space 220 space cm squared. space The space area space of space straight a space square space inscribed space in space it space is
left parenthesis straight a right parenthesis space 49 space cm squared space space
left parenthesis straight b right parenthesis space 70 space cm squared space space space
left parenthesis straight c right parenthesis space 140 space cm squared
left parenthesis straight d right parenthesis space 150 space cm squared space end style

Solution 13

Correct option – (c)

begin mathsize 12px style πr squared equals space 220
rightwards double arrow straight r squared space equals fraction numerator space 220 over denominator 22 end fraction cross times 7
straight r squared equals space 70
straight r space equals space square root of 70 cm
Image space Pending space
OA space equals space OB equals straight r
ABCD space is space straight a space squre.
OA squared plus OB squared equals space AB squared
rightwards double arrow AB to the power of 2 space equals space 2 straight r squared end exponent
rightwards double arrow AB space equals space square root of 2 straight r end root
equals square root of 140
area space equals space left parenthesis AB right parenthesis squared
equals space 140 space cm squared

end style

Question 14

If the circumference of a circle increases from 4π to 8π, then its area is

(a) halved

(b) doubled

(c) tripled

(d) quadrupledSolution 14

begin mathsize 12px style Correct space option colon space open parentheses straight d close parentheses
Initially comma space 2 πr subscript 1 space equals space 4 straight pi
straight r subscript 1 space equals space 2
finally comma space 2 πr subscript 2 space equals space 8 straight pi
straight r subscript 2 space equals space 4
Initially space area space equals space πr subscript 1 superscript 2 space equals space 4 straight pi
final space area space equals space πr subscript 2 superscript 2
space space space space space space space space space space space space space space space space space space space space equals space 16 space straight pi
fraction numerator final space area over denominator Initial space area end fraction space equals space fraction numerator 16 straight pi over denominator 4 straight pi end fraction space equals space 4
area space is space quadrupled. end style

Question 15

If the radius of a circle is diminished by 10%, then its area is diminished by

(a) 10%

(b) 19%

(c) 20%

(d) 36%Solution 15

begin mathsize 12px style Coerrect space option colon space open parentheses straight b close parentheses
Initial space radius space equals space straight r
final space radius space equals space diminshed space by space 10 percent sign
space space space space space space space space space space space space space space space space space space space space space space space space equals space 90 percent sign space of space initial
space space space space space space space space space space space space space space space space space space space space space space space space equals space 0.9 space straight r
Initial space area space equals space πr squared
final space area space equals space 0.81 space straight r squared straight pi
area space is space diminished space by space equals space fraction numerator Initial space area space space minus space final space area space over denominator Initial space area end fraction space cross times space 100
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space.19 space cross times space 100
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 19 percent sign
end style

Question 16

begin mathsize 12px style If space the space area space of space straight a space square space is space same space as space the space area space of space straight a space circle comma space then space the space ratio space of space their space perimetres comma space in space terms space of space straight pi comma space is
open parentheses straight a close parentheses space straight pi space colon space square root of 3
open parentheses straight b close parentheses space 2 space colon space square root of straight pi
open parentheses straight c close parentheses space 3 space colon space straight pi
open parentheses straight d close parentheses space straight pi space colon space square root of 2 end style

Solution 16

begin mathsize 12px style Correct space option colon space open parentheses straight b close parentheses
area space of space square space equals space straight a squared
area space of space circle space equals space πr squared
given space straight a squared space equals space πr squared
straight a space equals space square root of straight pi straight r space space space space space space space space..... open parentheses 1 close parentheses
fraction numerator perimeter space of space square over denominator perimeter space of space circle space end fraction space equals space fraction numerator 4 straight a over denominator 2 πr end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 4 square root of straight pi straight r over denominator 2 πr end fraction space space space space space space space space from space open parentheses 1 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 2 over denominator square root of straight pi end fraction end style

Question 17

begin mathsize 12px style The space area space of space the space largest space triangle space that space can space be space inscribed space in space straight a space semi minus circle space of space radius space straight r space is
open parentheses straight a close parentheses space 2 straight r
open parentheses straight b close parentheses space straight r squared
open parentheses straight c close parentheses space straight r
open parentheses straight d close parentheses space square root of straight r end style

Solution 17

begin mathsize 12px style Correct space option colon space open parentheses straight b close parentheses
For space the space largest space triangle. space with space largest space area. space we space need space that space base space of space triangle space must space be space large.
hence space AB space is space Base space of space triangle
Let space straight C space be space 3 rd space vertex space of space triangle.
area space equals 1 half cross times AB cross times space straight h
equals space 1 half cross times 2 straight r space cross times straight h
equals space straight r space straight h
largest space possible space value space of space straight h space is space straight r space
Hence space area space equals space straight r space cross times straight r
equals space straight r squared end style

Question 18

begin mathsize 12px style The space ratio space of space the space areas space of space straight a space circle space and space an space equilateral space triangle space whose space diameter space and space straight a space sides space are space respectively space equal comma space is
left parenthesis straight a right parenthesis space straight pi space colon space square root of 2
left parenthesis straight b right parenthesis space straight pi space colon space square root of 3
open parentheses straight c close parentheses space square root of 3 space colon space straight pi
open parentheses straight d close parentheses space square root of 2 space colon space straight pi end style

Solution 18

begin mathsize 12px style Correct space option colon space open parentheses straight b close parentheses
Let space radius space of space circle space equals space straight r
Let space side space of space triangle space equals space straight a
given comma space 2 straight r space equals space straight a
fraction numerator area space of space circle over denominator area space of space equilateral space triangle end fraction space equals space fraction numerator πr squared over denominator begin display style fraction numerator square root of 3 over denominator 4 end fraction end style straight a squared end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator πr squared over denominator begin display style fraction numerator square root of 3 over denominator 4 end fraction end style space cross times space 4 straight r squared end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space bevelled fraction numerator straight pi over denominator square root of 3 end fraction
end style

Question 19

begin mathsize 12px style If space space the space sum space of space the space areas space of space two space circles space with space radii space straight r subscript 1 space and space straight r subscript 2 space is space equal space to space the space area space of space straight a space circle space of space radius space straight r comma space then space straight r subscript 1 superscript 2 space plus space straight r subscript 2 superscript 2
left parenthesis straight a right parenthesis space greater than straight r squared
left parenthesis straight b right parenthesis space equals space straight r squared
open parentheses straight c close parentheses space less than straight r squared
open parentheses straight d close parentheses space None space of space these end style

Solution 19

begin mathsize 12px style Correct space option colon space open parentheses straight b close parentheses
area space of space circle space 1 space equals space πr subscript 1 superscript 2
area space of space circle space 2 space equals space πr subscript 2 superscript 2
area space of space circle space 3 space equals space πr squared
Given comma space space πr subscript 1 superscript 2 space plus space space πr subscript 2 superscript 2 space equals space πr squared
straight r subscript 1 superscript 2 space plus space straight r subscript 2 superscript 2 space equals space straight r squared end style

Question 20

If the perimeter of a semi-circular protractor is 36 cm, then its diameter is

(a) 10 cm

(b) 12 cm

(c) 14 cm

(d) 16 cmSolution 20

begin mathsize 12px style Correct space option colon space open parentheses straight c close parentheses
perimeter space of space semicircle space equals space πr space plus space 2 straight r
2 straight r space plus space πr space equals space 36
straight r space equals space fraction numerator 36 over denominator straight pi space plus space 2 end fraction
diameter space equals space 2 straight r
space space space space space space space space space space space space space space space space space space space equals space fraction numerator 72 over denominator straight pi space plus space 2 end fraction
space space space space space space space space space space space space space space space space space space space equals space 14 space cm end style

Question 21

begin mathsize 12px style The space perimeter space of space the space sector space OAB space shown space in space figure comma space is
open parentheses straight a close parentheses space 64 over 3 space cm
open parentheses straight b close parentheses space 26 space cm
open parentheses straight c close parentheses space 64 over 5 space cm
open parentheses straight d close parentheses space 19 space cm end style

Solution 21

begin mathsize 12px style Correct space option colon space open parentheses straight a close parentheses
OA space equals space 7 space cm
circle space with space angle space 2 straight pi space has space circumference
equals space 2 πr
straight pi over 3 space radian space equals space 60 degree
for space angle space 1 space radian space equals space straight r
for space straight pi over 3 space radian space equals space straight pi over 3 straight r
straight pi over 3 space cross times space 7
22 over 7 space cm
perimeter space equals space OA space plus space OB space plus space circumference
space space space space space space space space space space space space space space space space space space space space space equals space 7 space plus space 7 space plus space 22 over 3
space space space space space space space space space space space space space space space space space space space space space equals space 14 space plus space 22 over 3
space space space space space space space space space space space space space space space space space space space space space equals space 64 over 3 space cm
end style

Question 22

If the perimeter of a sector of a circle of radius 6.5 cm is 29 cm, then its area is

(a) 58 cm2

(b) 52 cm2

(c) 25 cm2

(d) 56 cm2Solution 22

begin mathsize 12px style Correct space option space colon space open parentheses straight b close parentheses
any space sector space of space circle space with space radius space straight r.
circumference space open parentheses AB close parentheses space equals space open parentheses fraction numerator straight theta over denominator 2 straight pi end fraction close parentheses space 2 πr
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space θr space space space space space space space space space space...... open parentheses 1 close parentheses
area space equals space open parentheses fraction numerator straight theta over denominator 2 straight pi end fraction close parentheses πr squared
space space space space space space space space space space space equals space straight theta over 2 space straight r squared space space space space space...... open parentheses 2 close parentheses
perimeter space of space OAB space equals space OA space plus space AB space plus space OB
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight r space plus space straight r space plus space AB
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 2 straight r space plus space AB
2 straight a space equals space 13 space space plus space AB
AB space equals space 16
From space open parentheses 1 close parentheses space θr space equals space 16
straight theta space equals space fraction numerator 16 over denominator 6.5 end fraction space radian
from space open parentheses 2 close parentheses
area space equals space straight theta over 2 space straight r squared
space space space space space space space space space space space equals space fraction numerator 16 over denominator 6.5 space cross times space 2 end fraction space cross times space 6.5 space cross times 6.5
space space space space space space space space space space space equals space 8 space cross times space 6.5
space space space space space space space space space space space equals space 52 space cm squared

end style

Question 23

If the area of a sector of a circle bounded by an arc of length 5π cm is equal to 20π cm, then its radius is

(a) 12 cm

(b) 16 cm

(c) 8 cm

(d) 10 cmSolution 23

begin mathsize 12px style Correct space option colon space open parentheses straight c close parentheses
arc space equals space 5 straight pi comma space area space equals space 20 straight pi
We space know comma space length space of space arc space equals space θr
and space area space of space sector space equals space straight theta over 2 space straight r squared
Hence space θr space equals space 5 space straight pi space and space straight theta over 2 straight r squared space equals space 20 straight pi
fraction numerator begin display style straight theta over 2 end style straight r squared over denominator θr end fraction space equals space fraction numerator 20 straight pi over denominator 5 straight pi end fraction
straight r over 2 space equals space 4
straight r space equals space 8 space cm end style

Question 24

The area of the circle that can be inscribed in a square of side 10 cm is

(a) 40 π cm2

(b) 30 π cm2

(c) 100 π cm2

(d) 25 π cm2Solution 24

Correct option: (d)

Diameter of circle = side of square

2r = 10

r = 5 cm

Area of circle = πr2 = 25 π cm2

Question 25

If the difference between the circumference and radius of a circle is 37 cm, then its area is

(a) 154 cm2

(b) 160 cm2

(c) 200 cm

(d) 150 cm2Solution 25

begin mathsize 12px style Correct space option colon space open parentheses straight a close parentheses
2 πr space minus space straight r space equals space 37
straight r space equals space fraction numerator 37 over denominator 2 straight pi space minus space 1 end fraction equals space fraction numerator 37 over denominator 2 space cross times space begin display style 22 over 7 end style space minus space 1 end fraction space equals space fraction numerator 37 over denominator begin display style 37 over 7 end style end fraction
straight r space equals space 7 space cm
area space equals space πr squared
space space space space space space space space space space space equals space 49 space straight pi space cm squared
space space space space space space space space space space space equals space 154 space cm squared end style

Question 26

The area of a circular path of uniform width h surrounding a circular region of radius r is

(a) π (2r + h) r

(b) π (2r + h) h

(c) π (h + r) r

(d) π (h + r) hSolution 26

Correct option: (b)

Inner radius = r

outer radius = r + h

area of shaded region = area of outer circle – area of inner circle

= π (r + h)2 – πr2

= π {(r + h)2 – r}

= π (r + h – r) (r + h + r)

= π (2r + h) h

Question 27

begin mathsize 12px style If space AB space is space straight a space chord space of space length space 5 square root of 3 space cm space of space straight a space circle space with space centre space straight O space and space radius space 5 space cm comma space then space area space of space sector space OAB space is
open parentheses straight a close parentheses space fraction numerator 3 straight pi over denominator 8 end fraction space cm squared
open parentheses straight b close parentheses space fraction numerator 8 straight pi over denominator 3 end fraction space cm squared
open parentheses straight c close parentheses space 25 straight pi space cm squared
open parentheses straight d close parentheses space fraction numerator 25 straight pi over denominator 3 end fraction space cm squared end style

Solution 27

begin mathsize 12px style Correct space option space colon space open parentheses straight d close parentheses
OO apostrophe space is space perpendicular space bisector space of space AB.
Hence space AO apostrophe space equals space 1 half AB
space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 5 square root of 3 over denominator 2 end fraction
OA space equals space 5 space cm
In space triangle space OAO apostrophe comma space sin space straight theta space equals space fraction numerator AO apostrophe over denominator AO end fraction space equals space fraction numerator 5 square root of 3 over denominator 5 space cross times space 2 end fraction space equals space fraction numerator square root of 3 over denominator 2 end fraction
straight theta space equals space 60 degree
angle AOB space equals space 2 space angle AOO apostrophe
angle AOB space equals space 120 degree
space space space space space space space space space space space space space space equals space fraction numerator 2 straight pi over denominator 3 end fraction space radian
area space of space sector space with space angle space straight theta space equals space straight theta over 2 straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses fraction numerator 2 straight pi over denominator 3 end fraction close parentheses space cross times space 1 half space cross times space open parentheses 5 close parentheses squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight pi over 3 cross times space 25
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 25 straight pi over denominator 3 end fraction end style

Question 28

The area of a circle whose area and circumference are numerically equal, is

(a) 2π sq. units

(b) 4π sq. units

(c) 6π sq. units

(d) 8π sq. unitsSolution 28

Correct option: (b)

area = circumference

πr2 = 2πr

r = 2 units

area = πr2

       = 4π sq. unitsQuestion 29

If diameter of a circle is increased by 40%, then its area increases by

(a) 96%

(b) 40%

(c) 80%

(d) 48%Solution 29

begin mathsize 12px style Correct space option colon space open parentheses straight a close parentheses
Initial space diameter space equals space straight d
Final space diameter space equals space straight d space plus space 40 percent sign space of space straight d
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight d space plus space 40 over 100 straight d space equals space 1.4 straight d
Initial space area space equals space straight pi open parentheses straight d over 2 close parentheses squared space equals space πd squared over 4
Final space area space equals space straight pi open parentheses fraction numerator 1.4 space straight d over denominator 2 end fraction close parentheses squared space equals space 1.96 πd squared over 4
percent sign space increase space in space area space equals space fraction numerator Final space minus space initial over denominator initial end fraction space cross times space 100
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 96 percent sign space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space end style

Question 30

In figure, the shaded area is

(a) 50 (π – 2) cm2

(b) 25 (π – 2) cm2

(c) 25 (π + 2) cm2

(d) 5 (π – 2) cm2

Solution 30

** img pending

begin mathsize 12px style Correct space option colon space open parentheses straight b close parentheses
area space of space OAB space sector space equals space straight theta over 2 space straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight pi over 4 straight r squared
area space of space triangle OAB space equals space 1 half space cross times space OA space cross times space OB
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight r squared over 2
area space of space shaded space region space equals space area space of space sector space minus space area space of space OAB
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight pi over 4 straight r squared space space minus space straight r squared over 2
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses fraction numerator straight pi space minus space 2 over denominator 4 end fraction close parentheses straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space space open parentheses fraction numerator straight pi space minus space 2 over denominator 4 end fraction close parentheses space open parentheses 10 close parentheses squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 25 open parentheses straight pi space minus space 2 close parentheses space cm squared space space space space space space space space space space space space space space space space space space space space end style

Question 31

begin mathsize 12px style In space figure comma space the space area space of space the space segment space PAQ space is
open parentheses straight a close parentheses space straight a squared over 4 open parentheses straight pi space plus space 2 close parentheses
open parentheses straight b close parentheses space straight a squared over 4 open parentheses straight pi space minus space 2 close parentheses
open parentheses straight c close parentheses space straight a squared over 4 open parentheses straight pi space minus space 1 close parentheses
open parentheses straight d close parentheses space straight a squared over 4 open parentheses straight pi space plus space 1 close parentheses end style

Solution 31

begin mathsize 12px style Correct space option space colon space open parentheses straight b close parentheses
same space as space straight Q space 30 comma
Here space radius space is space straight a space
Hence space straight a squared over 4 open parentheses straight pi space minus space 2 close parentheses end style

Question 32

begin mathsize 12px style In space figure comma space the space area space of space segment space ACB space is
open parentheses straight a close parentheses space open parentheses straight pi over 3 space minus space fraction numerator square root of 3 over denominator 2 end fraction close parentheses straight r squared
open parentheses straight b close parentheses space open parentheses straight pi over 3 space plus space fraction numerator square root of 3 over denominator 2 end fraction close parentheses straight r squared
open parentheses straight c close parentheses space open parentheses straight pi over 3 space minus space fraction numerator 2 over denominator square root of 3 end fraction close parentheses straight r squared
open parentheses straight d close parentheses space None space of space these end style

Solution 32

begin mathsize 12px style Correct space option colon space open parentheses straight d close parentheses
straight theta space equals space 120 degree
space space space space equals space fraction numerator 2 straight pi over denominator 3 end fraction space radian
area space of space sector space OACBO space equals space straight theta over 2 space straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight pi over 3 space straight r squared
space area space of space triangle OAB
In space triangle space OO apostrophe straight A
sin space 30 degree space equals space fraction numerator OO apostrophe over denominator OA end fraction
OO apostrophe space equals space straight r over 2
and space tan space 30 degree space equals space fraction numerator OO apostrophe over denominator AO apostrophe end fraction
AO apostrophe space equals space fraction numerator OO apostrophe over denominator tan space 30 degree end fraction space equals space fraction numerator square root of 3 straight r over denominator 2 end fraction
AB space equals space 2 space AO apostrophe
space space space space space space equals space square root of 3 straight r space
area space of space space triangle OAB space equals space 1 half space cross times space AB space cross times space OO apostrophe
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 half space cross times space square root of 3 straight r space cross times space straight r over 2 space equals space fraction numerator square root of 3 straight r squared over denominator 4 end fraction
area space of space segment space ACB space equals space straight pi over 3 straight r squared space minus space fraction numerator square root of 3 over denominator 4 end fraction straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses straight pi over 3 space minus space fraction numerator square root of 3 over denominator 4 end fraction close parentheses straight r squared end style

Question 33

If the area of a sector of a circle bounded by an arc of length 5π cm is equal to 20π cm2, then the radius of the circle is

(a) 12 cm

(b) 16 cm

(c) 8 cm

(d) 10 cmSolution 33

begin mathsize 12px style Correct space option colon space open parentheses straight c close parentheses
length space of space arc space equals space θr
area space of space sector space equals space straight theta over 2 straight r squared
θr space equals space 5 space and space straight theta over 2 straight r squared space equals space 20 straight pi
fraction numerator θr over denominator begin display style straight theta over 2 end style straight r squared end fraction equals space fraction numerator 5 straight pi over denominator 20 straight pi end fraction
2 over straight r equals space 1 fourth

straight r space equals space 8 space cm end style

Question 34

In Figure, the ratio of the areas of two sectors Sand S2 is

(a) 5 : 2

(b) 3 : 5

(c) 5 : 3

(d) 4 : 5Solution 34

begin mathsize 12px style Correct space option colon space open parentheses straight d close parentheses
straight theta space of space sector space straight S subscript 1 space equals space 120 degree
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 2 straight pi over denominator 3 end fraction space radian
area space equals space open parentheses straight theta over 2 close parentheses straight r squared
space space space space space space space space space space space equals space straight pi over 3 straight r squared
straight theta space of space sector space straight S subscript 2 space equals space 150 degree
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 5 straight pi over denominator 6 end fraction space radian
area space equals space open parentheses fraction numerator 5 straight pi over denominator 12 end fraction close parentheses straight r squared
fraction numerator area space straight S subscript 1 over denominator area space straight S subscript 2 end fraction space equals space fraction numerator open parentheses begin display style straight pi over 3 end style close parentheses straight r squared over denominator open parentheses begin display style fraction numerator 5 straight pi over denominator 12 end fraction end style close parentheses straight r squared end fraction space equals space 12 over 15 space equals space 4 over 5 end style

Question 35

begin mathsize 12px style If space the space area space of space sector space of space straight a space circle space is space 5 over 18 space of space the space area space of space the space circle comma space then space the space sector space angle space is space equal space to
open parentheses straight a close parentheses space 60 degree
open parentheses straight b close parentheses space 90 degree
open parentheses straight c close parentheses space 100 degree
open parentheses straight d close parentheses space 120 degree end style

Solution 35

begin mathsize 12px style Correct space option colon space open parentheses straight c close parentheses
area space of space sector space equals space straight theta over 2 straight r squared
area space of space circle space equals space πr squared
Given space fraction numerator begin display style straight theta over 2 end style straight r squared over denominator πr squared end fraction equals space 5 over 18
fraction numerator straight theta over denominator 2 straight pi end fraction equals space 5 over 18
straight theta space equals space fraction numerator 5 straight pi over denominator 9 end fraction
space space space space space equals space 100 degree end style

Question 36

begin mathsize 12px style If space the space area space of space sector space of space straight a space circle space is space 7 over 20 space of space the space area space of space the space circle comma space then space the space sector space angle space is space equal space to
open parentheses straight a close parentheses space 110 degree
open parentheses straight b close parentheses space 130 degree
open parentheses straight c close parentheses space 100 degree
open parentheses straight d close parentheses space 126 degree end style

Solution 36

begin mathsize 12px style Correct space option space colon space open parentheses straight d close parentheses
fraction numerator begin display style straight theta over 2 end style straight r squared over denominator πr squared end fraction equals 7 over 20
fraction numerator straight theta over denominator 2 straight pi end fraction equals 7 over 20 rightwards double arrow straight theta space equals space fraction numerator 7 straight pi over denominator 10 end fraction
straight theta space equals space 126 degree end style

Question 37

begin mathsize 12px style In space figure comma space if space ABC space is space an space equilateral space triangle comma space then space shaded space area space is space equal space to
open parentheses straight a close parentheses space open parentheses straight pi over 3 space minus space fraction numerator square root of 3 over denominator 4 end fraction close parentheses straight r squared
open parentheses straight b close parentheses space open parentheses straight pi over 3 space minus space fraction numerator square root of 3 over denominator 2 end fraction close parentheses straight r squared
open parentheses straight c close parentheses space space open parentheses straight pi over 3 space plus space fraction numerator square root of 3 over denominator 4 end fraction close parentheses straight r squared
open parentheses straight d close parentheses space open parentheses straight pi over 3 space plus space square root of 3 close parentheses straight r squared end style

Solution 37

begin mathsize 12px style Correct space option colon space open parentheses straight a close parentheses
If space angle BAC space equals space straight theta
then space angle BOC space equals space 2 straight theta
But space angle BAC space equals space 60 degree
as space ABC thin space is space equilateral space
Hence space straight theta space equals space 60 degree
In space triangle OBC
sin space straight theta space equals space BE over OB
BE space equals space OB space sin space 60 degree
space space space space space space equals space fraction numerator square root of 3 straight r over denominator 2 end fraction
and space BC space equals space 2 BE
space space space space space space space space space space space space space space space space equals space square root of 3 straight r
Also space cos space straight theta space equals space OE over OB
OE space equals space OB space cos space 60 degree
space space space space space space space equals space straight r over 2
area space of space triangle OBC space equals space 1 half space cross times space BC space cross times space OE
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 half space cross times space square root of 3 space straight r space cross times space straight r over 2 space equals space fraction numerator square root of 3 space straight r squared over denominator 4 end fraction
area space of space sector space OBC space equals space straight theta over 2 space straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space θr squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight pi over 3 space straight r squared
area space of space shaded space region space equals space straight pi over 3 space straight r squared space minus space fraction numerator square root of 3 over denominator 4 end fraction space straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses straight pi over 3 space minus space fraction numerator square root of 3 over denominator 4 end fraction close parentheses space straight r squared space space space space space end style

Question 38

In figure, the area of the shaded region is

(a) 3π cm2

(b) 6π cm2

(c) 9π cm2

(d) 7π cm2

Solution 38

begin mathsize 12px style Correct space option colon space left parenthesis straight a right parenthesis
PA space equals space 3 space cm
angle straight A space plus space angle straight B space plus space angle straight C space plus space angle straight D space equals space 360 degree
angle straight A space plus space 90 degree space plus space 90 degree space plus space 60 degree space equals space 360 degree
angle straight A space equals space 120 degree
space space space space space space space equals space fraction numerator 2 straight pi over denominator 3 end fraction space space radian
area space of space sector space with space angle space fraction numerator 2 straight pi over denominator 3 end fraction space equals space straight theta over 2 straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses fraction numerator 2 straight pi over denominator 3 end fraction close parentheses space 1 half space straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight pi over 3 open parentheses PA close parentheses squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight pi over 3 open parentheses 3 close parentheses squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space space space 3 straight pi space cm squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space end style

Question 39

If the perimeter of a circle is equal to that of a square, then the ratio of their areas is

(a) 13 : 22

(b) 14 : 11

(c) 22 : 13

(d) 11 : 14Solution 39

begin mathsize 12px style Correct space option space colon space open parentheses straight b close parentheses
perimeter space of space circle space equals space perimeter space of space square
2 πr space equals space 4 straight a
straight a space equals space πr over 2
fraction numerator area space of space circle over denominator area space of space square end fraction space equals space πr squared over straight a squared space equals space fraction numerator πr squared over denominator begin display style fraction numerator straight pi squared straight r squared over denominator 4 end fraction end style end fraction equals space 4 over straight pi
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 4 over denominator begin display style 22 over 7 end style end fraction space equals space 14 space colon space 11
end style

Question 40

begin mathsize 12px style The space radius space of space straight a space circle space is space 20 space cm. space It space is space divided space into space four space parts space of space equal space area space by space drawing space three space concentric space circles space inside space it space. space Then comma space the space radius space of space the space largest space of space three space concentric space space circles space drawn space is
open parentheses straight a close parentheses space 10 square root of 5 space cm
open parentheses straight b close parentheses space 10 square root of 3 space cm
open parentheses straight c close parentheses space 10 space cm
open parentheses straight d close parentheses space 10 square root of 2 space cm end style

Solution 40

begin mathsize 12px style Correct space option colon space open parentheses straight b close parentheses
OA space equals space 20 space cm
area space of space 4 space parts space are space equal
Area space of space straight C 4 space equals space πr squared
space space space space space space space space space space space space space space space space space space space space space space space equals space straight pi open parentheses OA close parentheses squared
space space space space space space space space space space space space space space space space space space space space space space space equals space 400 space straight pi
area space of space each space part space equals space 1 fourth space cross times space 400 space straight pi
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 100 space straight pi
straight C 1 space circle space area space equals space straight pi space open parentheses OD close parentheses squared
100 space straight pi space equals space straight pi space open parentheses OD close parentheses squared
open parentheses OD close parentheses squared space equals space 100
OD space equals space 10 space cm
area space of space straight C 2 space equals space 2 space cross times space area space of space circle space straight C 1
straight pi open parentheses OC close parentheses squared space equals space 2 space cross times space 100 straight pi
open parentheses OC close parentheses squared space equals space 2 space cross times space 100
OC space equals space 10 square root of 2
area space of space straight C 3 space equals space 3 space cross times space area space of space circle space straight C 1
straight pi open parentheses OB close parentheses squared space equals space 3 space cross times space 100 space straight pi
OB space equals space 10 square root of 3 space cm
end style

Question 41

begin mathsize 12px style The space area space of space straight a space sector space whose space perimeter space is space four space space times space its space radius space straight r space units comma space is
open parentheses straight a close parentheses space straight r squared over 4 space sq. space units
open parentheses straight b close parentheses space 2 straight r to the power of 2 space end exponent sq. space units
open parentheses straight c close parentheses space straight r squared space sq. space units
open parentheses straight d close parentheses space straight r squared over 2 space sq. space units end style

Solution 41

begin mathsize 12px style Correct space option colon space open parentheses straight C close parentheses
area space of space sector space equals space straight theta over 2 space straight r squared
perimeter space equals space θr space plus space 2 straight r
θr space plus space 2 straight r space equals space 4 straight r
θr space equals space 2 straight r
straight theta space equals space 2
area space equals space 2 over 2 space straight r squared
space space space space space space space space space space equals space straight r squared end style

Question 42

If a chord of a circle of radius 28 cm makes an angle of 90° at the centre, then the area of the major segment is

(a) 392 cm2

(b) 1456 cm2

(c) 1848 cm2

(d) 2240 cm2Solution 42

begin mathsize 12px style Correct space option colon space open parentheses straight C close parentheses
radius space equals space 28 space cm
area space of space sector space straight O space ABD space equals space straight theta over 2 space straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight pi over 4 space straight r squared
area space of space circle space equals space πr squared
area space of space major space segment space equals space πr squared space minus space straight pi over 4 straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 3 straight pi over denominator 4 end fraction space straight r squared
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 3 over 4 cross times 22 over 7 cross times space 28 space cross times space 28
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1848 space cm squared space space
end style

Question 43

If area of a circle inscribed in an equilateral triangle is 48π square units, then perimeter of the triangle is

begin mathsize 12px style open parentheses straight a close parentheses space 17 square root of 3 space units
open parentheses straight b close parentheses space 36 space units
open parentheses straight c close parentheses space 72 space units
open parentheses straight d close parentheses space 48 square root of 3 space units end style

Solution 43

begin mathsize 12px style Correct space opton colon space open parentheses straight c close parentheses
ABC space is space an space equilateral space triangle
area space of space circle space equals space πr squared
πr squared space equals space 48 space straight pi
straight r squared space equals space 48
straight r space equals space 4 square root of 3
OE space equals space straight r space equals space 4 square root of 3
angle BCA space equals space 60 degree
and space angle ECO space equals space 1 half angle BCA
angle ECO space equals space 30 degree
In space triangle OEC
tan space 30 degree space equals space OE over EC
EC space equals space square root of 3 space OE space equals space 12
BC space equals space 2 space EC
space space space space space space equals space 24
perimeter space equals space AB space plus space BC space plus space CA
space space space space space space space space space space space space space space space space space space space space space equals space 3 space BC
space space space space space space space space space space space space space space space space space space space space space equals space 72 space end style

Question 44

The hour hand of a clock is 6 cm long. The area swept by it between 11.20 am and 11.55 am is

(a) 2.75 cm2

(b) 5.5 cm2

(c) 11 cm2

(d) 10 cm2Solution 44

begin mathsize 12px style Correct space option colon space open parentheses straight b close parentheses
hour space hand space is space 6 space cm space long.
when space minute space hand space complete space 60 space minute space or space 2 straight pi space radian comma space hour space hand space lower space straight pi over 6 space radian
minute space hand space 2 straight pi space radian space rightwards arrow hour space hand space straight pi over 6 rad
minute space hand space 1 space radian space rightwards arrow space hour space hand space 1 over 12 rad
minute space hand space goes space 11 space colon space 20 space to space 11 space colon space 55 space equals space 35 space min
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 2 straight pi over denominator 60 end fraction space cross times space 35
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 35 straight pi over denominator 30 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 7 straight pi over denominator 6 end fraction space rad
minute space hand space fraction numerator 7 straight pi over denominator 6 end fraction space radian space rightwards arrow space hour space hand space 1 over 12 space cross times space fraction numerator 7 straight pi over denominator 6 end fraction space rad
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards arrow space fraction numerator 7 straight pi over denominator 72 end fraction space rad
area space equals straight Q over 2 straight r squared
space space space space space space space space space space space space space equals space open parentheses fraction numerator 7 straight pi over denominator 72 end fraction close parentheses space cross times space 1 half space cross times space open parentheses 6 close parentheses squared
space space space space space space space space space space space space space equals space fraction numerator 7 straight pi over denominator 144 end fraction space cross times space 36
space space space space space space space space space space space space space equals space fraction numerator 7 straight pi over denominator 4 end fraction space equals space 7 over 4 space cross times space 22 over 7 space equals space 5.5 space cm squared

space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space end style

Question 45

begin mathsize 12px style ABCD space is space straight a space square space of space side space 4 space cm. space If space straight E space is space straight a space point space in space the space interior space of space the space square space such space that space triangle CED space is space equilateral comma space then space area space of space triangle ACE space is
open parentheses straight a close parentheses space 2 open parentheses square root of 3 space minus space 1 close parentheses space cm squared
open parentheses straight b close parentheses space 4 open parentheses square root of 3 space minus space 1 close parentheses space cm squared
open parentheses straight c close parentheses space 6 open parentheses square root of 3 space minus space 1 close parentheses space cm squared
open parentheses straight d close parentheses space 8 open parentheses square root of 3 space minus space 1 close parentheses space cm squared end style

Solution 45

begin mathsize 12px style Correct space option colon space open parentheses straight b close parentheses
AB space equals space 4 space cm
triangle CED space is space an space equilateral space triangle.
Hence space CD space equals space ED space equals space EC space equals space 4 space cm
In space triangle OED
sin space 30 degree space equals space OE over ED
OE space equals space ED over 2 space equals space 2 space cm
In space triangle EO apostrophe straight C
sin space 60 degree space equals space fraction numerator straight O apostrophe straight E over denominator EC end fraction
straight O apostrophe straight E space equals space EC space cross times space fraction numerator square root of 3 over denominator 2 end fraction
space space space space space space space space equals space 2 square root of 3
area space of space triangle EDC space equals space 1 half cross times DC cross times EO apostrophe
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 half cross times 4 cross times 2 square root of 3
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 4 square root of 3
area space of space triangle AED space equals space 1 half cross times space AD space cross times space OE
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 half cross times space 4 space cross times space 2
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 4
area space of space triangle ADC space equals space 1 half cross times space AD space cross times space DC
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 half cross times space 4 space cross times space 4
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 8
area space of space triangle AEC space equals space area space open parentheses triangle AED close parentheses space plus space area space open parentheses triangle DEC close parentheses space minus space area space open parentheses triangle ADC close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space space 4 space plus space 4 square root of 3 space minus space 8
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 4 square root of 3 space minus space 4
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 4 open parentheses square root of 3 space minus space 1 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space end style

Question 46

If the area of circle is equal to the sum of the areas of two circles of diameters 10 cm and 24 cm, then diameter of the larger circle (in cm) is

(a) 34

(b) 26

(c) 17

(d) 14Solution 46

Correct option: (b)

radius of Circle = 5 cm

area = π (5)2

       = 25 π

rdius of circle 2 = 12 cm

area = π (12)2

       = 144 π

area of larger circle = 144 π + 25π

                            = 169 π

πr2 = 169 π

r2 = 169

r = 13

diameter = 2r

              = 26Question 47

If Π is taken as 22/7, the distance (in metres) covered by a wheel of diameter 35 cm, in one revolution, is

(a) 2.2

(b) 1.1

(c) 9.625

(d) 96.25 Solution 47

begin mathsize 12px style Correct space option colon space open parentheses straight b close parentheses
radius space of space wheel space equals space diameter over 2 equals space 35 over 2 cm
distance space covered space by space wheel space in space one space revolution space equals space 2 πr
equals space 2 space cross times space 22 over 7 cross times 35 over 2
equals space 110 space cm
equals space 1.1 space straight m end style

Question 48

ABCD is a rectangle whose three vertices are B(4, 0), C(4, 3) and D(0, 3). The length of one of its diagonals is

(a) 5

(b) 4

(c) 3

(d) 25Solution 48

begin mathsize 12px style Correct space option colon space open parentheses straight a close parentheses
Other space co minus ordinate space of space rectangle space is space open parentheses 0 comma space 0 close parentheses
Diagonals space of space rectangle space are space equal.
Hence space OC space equals space OB
OC space equals space square root of open parentheses 4 space minus space 0 close parentheses squared space plus space open parentheses 3 space minus space 0 close parentheses squared end root
space space space space space space space equals space square root of 16 space plus space 9 end root
space space space space space space space equals space square root of 25
space space space space space space space equals space 5 space space end style

Question 49

Area of the largest triangle that can be inscribed in a semi-circle of a radius r units is

a. r2 sq. units

b. 

c. 2r2 sq. units

d.  Solution 49

Question 50

If the sum of the areas of two circles with radii r1 and r2 is equal to the area of a circle of radius r, then

a. r = r1 + r2

b. 

c. r1 + r2 < r

d.  Solution 50

Question 51

If the sum of the circumference of two circles with radii r1 and r2 is equal to the circumference of a circle of radius r, then

a. r = r1 + r2

b. r1 + r2 > r

c. r1 + r2 < 2

d. None of theseSolution 51

Question 52

If the circumference of a circle and the perimeter of a square are equal, then

a. Area of the circle = Area of the square

b. Area of the circle < Area of the square

c. Area of the circle > Area of the square

d. Nothing definite can be saidSolution 52

Question 53

If the perimeter of a circle is equal to that of a square, then the ratio of their areas is

a. 22 : 7

b. 14 : 11

c. 7 : 22

d. 11 : 14Solution 53

Read More