RD SHARMA SOLUTION CHAPTER-10 DifferentiabilityI CLASS 12TH MATHEMATICS-EDUGROWN

Chapter 10 Differentiability Ex 10.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Find whether the following functions is differentiable at

 x = 1 and x = 2 or not:

Solution 6

Question 7(i)

Solution 7(i)

Question 7(ii)

Solution 7(ii)

Question 7(iii)

Solution 7(iii)

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Find the values of a and b, if the function f(x) defined by   is differentiable at x = 1.Solution 11

Given: 

As f(x) is differentiable at x = 1, we have

  … (i)

Now, Rf'(1) exist when (b – 2 – a) = 0 … (ii)

From (i), we get, b = 5

Putting this in (ii), we get, a = 3.

Chapter 10 Differentiability Ex 10.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Examine the differentiability of the function f defined by

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Read More

RD SHARMA SOLUTION CHAPTER-9  ContinuityI CLASS 12TH MATHEMATICS-EDUGROWN

Chapter 9 Continuity Ex 9.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

begin mathsize 12px style If space straight f left parenthesis straight x right parenthesis space equals space left curly bracket fraction numerator straight x squared minus 1 over denominator begin display style x minus 1 end style end fraction table row cell semicolon space for space straight x space not equal to 1 end cell row cell semicolon space for space straight x space equals space 1 end cell end table
Find space whether space straight f left parenthesis straight x right parenthesis space is space continuous space at space straight x space equals space 1. end style

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10(i)

Solution 10(i)

Question 10(ii)

Solution 10(ii)

Question 10(iii)

Solution 10(iii)

Question 10(iv)

Solution 10(iv)

Question 10(v)

Solution 10(v)

Question 10(vi)

Solution 10(vi)

Question 10(vii)

Solution 10(vii)

Question 10(viii)

 Discuss the continuity of the following functions at the indicated points:

Solution 10(viii)

Question 11

Solution 11

Question 12

Solution 12

Question 13

F i n d space t h e space v a l u e space o f space apostrophe a apostrophe space f o r space w h i c h space t h e space f u n c t i o n space d e f i n e d space b y
f open parentheses x close parentheses equals open curly brackets table attributes columnalign left end attributes row cell a sin pi over 2 open parentheses x plus 1 close parentheses comma space x less or equal than 0 end cell row cell fraction numerator tan x minus sin x over denominator x cubed end fraction comma space i f space x greater than 0 space end cell end table close
i s space c o n t i n u o u s space a t space x equals 0

Solution 13

S i n c e space f open parentheses x close parentheses space i s space c o n t i n u o u s space a t space x equals 0 comma space L. H. L i m i t equals R. H. L i m i t.
T h u s comma space w e space h a v e
limit as x rightwards arrow 0 to the power of minus of f open parentheses x close parentheses equals limit as x rightwards arrow 0 to the power of plus of f open parentheses x close parentheses
rightwards double arrow limit as x rightwards arrow 0 to the power of minus of a sin pi over 2 open parentheses x plus 1 close parentheses equals limit as x rightwards arrow 0 to the power of plus of fraction numerator tan x minus sin x over denominator x cubed end fraction
rightwards double arrow a cross times 1 equals limit as x rightwards arrow 0 of fraction numerator tan x minus sin x over denominator x cubed end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator begin display style fraction numerator sin x over denominator cos x end fraction end style minus sin x over denominator x cubed end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator fraction numerator sin x over denominator x end fraction open parentheses begin display style fraction numerator 1 over denominator cos x end fraction end style minus 1 close parentheses over denominator x squared end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator fraction numerator sin x over denominator x end fraction open parentheses begin display style fraction numerator 1 minus cos x over denominator cos x end fraction end style close parentheses over denominator x squared end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator sin x over denominator x end fraction cross times limit as x rightwards arrow 0 of fraction numerator 1 over denominator cos x end fraction cross times limit as x rightwards arrow 0 of fraction numerator 1 minus cos x over denominator x squared end fraction
rightwards double arrow a equals 1 cross times 1 cross times limit as x rightwards arrow 0 of fraction numerator 1 minus cos x over denominator x squared end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator 1 minus cos x over denominator x squared end fraction cross times fraction numerator 1 plus cos x over denominator 1 plus cos x end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator 1 minus cos squared x over denominator x squared open parentheses 1 plus cos x close parentheses end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator sin squared x over denominator x squared open parentheses 1 plus cos x close parentheses end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator sin squared x over denominator x squared end fraction cross times limit as x rightwards arrow 0 of fraction numerator 1 over denominator 1 plus cos x end fraction
rightwards double arrow a equals 1 cross times limit as x rightwards arrow 0 of fraction numerator 1 over denominator 1 plus cos x end fraction
rightwards double arrow a equals 1 cross times fraction numerator 1 over denominator 1 plus 1 end fraction
rightwards double arrow a equals 1 half

Question 14

Also sketch the graph of this function.Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

F i n d space t h e space v a l u e space o f space k space i f space f open parentheses x close parentheses space i s space c o n t i n u o u s space a t space x equals straight pi over 2 comma space w h e r e
f open parentheses x close parentheses equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator k cos x over denominator pi minus 2 x end fraction comma space x not equal to pi over 2 end cell row cell 3 comma space space space space space space space space space space space space space space x equals pi over 2 end cell end table close

Solution 25

Error: the service is unavailable.

Question 26

Determine the values of a, b, c for which the function

begin mathsize 12px style straight f left parenthesis straight x right parenthesis space equals space open curly brackets table attributes columnalign left end attributes row cell table row cell fraction numerator sin left parenthesis straight a plus 1 right parenthesis straight x space plus space sinx over denominator straight x end fraction end cell cell comma space for space straight x space less than space 0 end cell row straight c cell comma space for space straight x space equals space 0 space is space continuous space at space straight x space equals space 0. end cell end table end cell row cell table row cell fraction numerator square root of straight x plus bx squared minus square root of straight x end root over denominator bx to the power of begin display style 3 over 2 end style end exponent end fraction end cell cell comma space for space straight x space greater than thin space 0 end cell end table end cell end table close end style

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36(i)

Solution 36(i)

Question 36(ii)

Solution 36(ii)

L e t space x minus 1 equals y
rightwards double arrow x equals y plus 1
T h u s comma space
limit as x rightwards arrow 1 of open parentheses x minus 1 close parentheses tan fraction numerator pi x over denominator 2 end fraction equals limit as y rightwards arrow 0 of y tan fraction numerator pi open parentheses y plus 1 close parentheses over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals limit as y rightwards arrow 0 of y tan open parentheses fraction numerator pi y over denominator 2 end fraction plus pi over 2 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals minus limit as y rightwards arrow 0 of y c o t fraction numerator pi y over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals minus limit as y rightwards arrow 0 of y fraction numerator cos fraction numerator pi y over denominator 2 end fraction over denominator sin fraction numerator pi y over denominator 2 end fraction end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals minus limit as y rightwards arrow 0 of y fraction numerator cos fraction numerator pi y over denominator 2 end fraction over denominator begin display style fraction numerator open parentheses sin fraction numerator pi y over denominator 2 end fraction close parentheses pi over 2 over denominator pi over 2 end fraction end style end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals minus limit as y rightwards arrow 0 of fraction numerator cos fraction numerator pi y over denominator 2 end fraction over denominator begin display style fraction numerator open parentheses sin fraction numerator pi y over denominator 2 end fraction close parentheses pi over 2 over denominator fraction numerator pi y over denominator 2 end fraction end fraction end style end fraction
space space space space space space space space space space space space space space space space space space space space space space space space equals minus limit as y rightwards arrow 0 of 2 over pi fraction numerator cos fraction numerator pi y over denominator 2 end fraction over denominator begin display style fraction numerator open parentheses sin fraction numerator pi y over denominator 2 end fraction close parentheses over denominator fraction numerator pi y over denominator 2 end fraction end fraction end style end fraction
space space space space space space space space space space space space space space space space space space space space space space space space equals minus 2 over pi limit as y rightwards arrow 0 of cos fraction numerator pi y over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space equals minus 2 over pi
S i n c e space t h e space f u n c t i o n space i s space c o n t i n u o u s comma space L. H. L i m i t equals R. H. L i m i t
T h u s comma space k equals minus 2 over pi

Question 36(iii)

Solution 36(iii)

Question 36(iv)

Solution 36(iv)

Question 36(v)

Solution 36(v)

Question 36(vi)

Solution 36(vi)

Question 36(vii)

Solution 36(vii)

Question 36(viii)

Solution 36(viii)

Question 36(ix)

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point:

Solution 36(ix)

Question 37

Solution 37

Question 38

Solution 38

Question 39(i)

Solution 39(i)

Question 39(ii)

Solution 39(ii)

Question 40

Solution 40

Question 41

Solution 41

Question 43

Solution 43

Question 44

Solution 44

Question 45

Solution 45

Question 46

is continuous at x = 3.Solution 46

Question 42

For what of   is the function   continuous at x = 0? What about continuity at x = ±1?Solution 42

Given: 

At x = 0, we have

∴ LHL ≠ RHL

So, f(x) is discontinuous at x = 0.

Thus, there is no value of   for which f(x) is continuous at x = 0.

At x = 1, we have

∴ LHL = RHL

So, f(x) is continuous at x = 1.

At x = -1, we have

∴ LHL = RHL

So, f(x) is continuous at x = -1.

Chapter 9 Continuity Ex 9.2

Question 1

Solution 1

Question 2

Solution 2

Question 3(i)

Solution 3(i)

Question 3(ii)

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 3(v)

Solution 3(v)

Question 3(vi)

Solution 3(vi)

Question 3(vii)

Solution 3(vii)

Question 3(viii)

Solution 3(viii)

Question 3(ix)

Solution 3(ix)

Question 3(x)

Solution 3(x)

Question 3(xi)

Solution 3(xi)

Question 3(xii)

Solution 3(xii)

Question 3(xiii)

Solution 3(xiii)

Question 4(i)

Solution 4(i)

Question 4(ii)

Solution 4(ii)

Question 4(iii)

Solution 4(iii)

Question 4(iv)

Solution 4(iv)

Question 4(v)

Solution 4(v)

Question 4(vi)

Solution 4(vi)

Question 4(vii)

Solution 4(vii)

Question 4(viii)

Solution 4(viii)

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Given the function

Find the points of discontinuity of the functions f(f(x)).Solution 18

Question 19

Find all point of discontinuity of the function 

Solution 19

Read More

RD SHARMA SOLUTION CHAPTER-8 Solution of Simultaneous Linear Equations I CLASS 12TH MATHEMATICS-EDUGROWN

Chapter 8 Solution of Simultaneous Linear Equations Ex. 8.1

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 1(vi)

Solution 1(vi)

Question 2(i)

Solution 2(i)

Question 2(ii)

Solution 2(ii)

Question 2(iii)

Solution 2(iii)

Question 2(iv)

Solution 2(iv)

Question 2(v)

Solution 2(v)

Question 2(vi)

Solution 2(vi)

Question 2(vii)

Solution 2(vii)

Question 2(viii)

Solution 2(viii)

Question 2(ix)

Solution 2(ix)

Question 2(x)

Solution 2(x)

Question 2(xi)

Solution 2(xi)

Question 2(xii)

Solution 2(xii)

Question 2(xiii)

Solution 2(xiii)

Question 2(xiv)

Solution 2(xiv)

Question 3(i)

Solution 3(i)

Question 3(ii)

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 3(v)

Solution 3(v)

Question 3(vi)

Solution 3(vi)

Question 4(i)

Solution 4(i)

Question 4(ii)

Solution 4(ii)

Question 4(iii)

Solution 4(iii)

Question 4(iv)

Solution 4(iv)

Question 4(v)

Solution 4(v)

Question 4(vi)

Solution 4(vi)

Question 5

Solution 5

Question 6

begin mathsize 12px style If space straight A equals open square brackets table row 3 2 cell negative 4 end cell row 1 1 cell negative 2 end cell end table close square brackets comma space find space straight A to the power of negative 1 end exponent space and space hence space solve space the space system space of space linear space equations
2 straight x minus 3 straight y plus 5 straight z equals 11 comma space 3 straight x plus 2 straight y minus 4 straight z equals negative 5 comma space straight x plus straight y minus 2 straight z equals negative 3 end style

Solution 6

Question 7

Solution 7

Question 8(i)

Solution 8(i)

Question 8(ii)

Solution 8(ii)

Question 8(iii)

Solution 8(iii)

Question 8(iv)

Using A-1, solve the system of linear equations

X – 2y = 10, 2x – y – z = 8 and -2y + z = 7Solution 8(iv)

Question 8(v)

Solution 8(v)

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping and others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management must include for awards.Solution 13

Question 14

A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs. 6000. Three times the award money for Hard work added to that given for honesty amounts to Rs. 11000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.Solution 14

The school can include an award for creativity and extra-curricular activities.Question 15

Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prizes at the rate of Rs. x, Rs. y and Rs. z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total prize money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total prize money of Rs. 47000. If all the three prizes per person together amount to Rs. 12000, then using matrix method find the value of xy and z. What values are described in these equations?Solution 15

Question 16

Two factories decided to award their employees for three values of (a) adaptable to new techniques, (b) careful and alert in difficult situations and (c) keeping calm in tense situations, at the rate of Rs. x, Rs. y and Rs. z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of Rs. 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of Rs. 30500. If the three prizes per person together cost Rs 9500, then

(i) represent the above situation by matrix equation and form linear equations using matrix multiplication.

(ii) Solve these equations using matrices.

(iii) Which values are reflected in the questions?Solution 16

Keeping calm in a tense situation is more rewarding than carefulness, and carefulness is more rewarding than adaptability.Question 17

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award Rs. x each Rs. y each and Rs. z each for the three respective values to 3, 2 and 1 students respectively with a total award money of Rs. 1,600. School B wants to spend Rs 2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.Solution 17

Question 18

Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award Rs. x each, Rs. y each and Rs. z each for the three respectively values to its 3, 2 and 1 students with a total award money of Rs. 1,000. School Q wants to spend Rs. 1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is Rs. 600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.Solution 18

Question 19

Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award Rs. x each, Rs. y each and Rs. z each for the three respectively values to its 3, 2 and 1 students with a total award money of Rs. 2,200. School Q wants to spend Rs. 3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is Rs. 1,200, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.Solution 19

Question 20

A total amount of Rs. 7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and 8.5% respectively. The total annual interest from these three accounts is Rs. 550. Equal amounts have been deposited in the 5% and 8% savings accounts. Find the amount deposited in each of the three accounts, with the help of matrices.Solution 20

Let the amount deposited be x, y and z respectively.

As per the data in the question, we get

Question 8(vi)

If   find A-1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.Solution 8(vi)

Therefore, A is invertible.

Let Cij be the co-factors of the elements aij.

Now, the given system of equations is expressible as

Here we have |AT| = |A| = -16 ≠ 0

Therefore, the given system of equations is consistent with a unique solution given by

Question 8(vii)

Use the product   to solve the system of equations x + 3z = -9, -x + 2y – 2z = 4, 2x – 3y + 4z = -3.Solution 8(vii)

Let 

Now, 

Now, the given system of equations is expressible as

Here we have |BT| = |B| = -1 ≠ 0

Therefore, the given system of equations is consistent with a unique solution given by

Hence, x = 36, y = 5 and z = -15.Question 21

A shopkeeper has 3 varieties of pens ‘A’, ‘B’ and ‘C’. Meenu purchased 1 pen of each variety for a total of Rs. 21. Jeen purchased 4 pens of ‘A’ variety, 3 pens of ‘B’ variety and 2 pens of ‘C’ variety for Rs. 60. Using matrix method find the cost of each pen.Solution 21

From the given information, we can form a matrix as follows

Applying R2→ R2 – 4R1, R3→ R3 – 6R1

Applying R3→ R3 + (-4R1)

From the above matrix form, we get

A + B + C = 21 … (i)

-B – 2C = -24 … (ii)

5C = 40

⇒ C = 8 … (iii)

Putting the value of C in (ii), we get

B = 8

Substituting B and C in (i), we get

C = 5

Hence, cost of variety ‘A’ pen is Rs. 8, cost of variety B pen is Rs. 8 and cost of variety ‘C’ pen is Rs. 5.

Chapter 8 Solution of Simultaneous Linear Equations Ex. 8.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Read More

RD SHARMA SOLUTION CHAPTER-7 Adjoint and Inverse of a Matrix I CLASS 12TH MATHEMATICS-EDUGROWN

Chapter 7 Adjoint and Inverse of a Matrix Ex 7.1

1. Find the adjoint of each of the following matrices:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 1
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 2
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 3
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 4

Verify that (adj A) A = |A| I = A (adj A) for the above matrices.

Solution:

(i) Let

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 5

Cofactors of A are

C11 = 4

C12 = – 2

C21 = – 5

C22 = – 3

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 6
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 7

(ii) Let

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 8

Therefore cofactors of A are

C11 = d

C12 = – c

C21 = – b

C22 = a

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 9
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 10

(iii) Let

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 11

Therefore cofactors of A are

C11 = cos α

C12 = – sin α

C21 = – sin α

C22 = cos α

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 12
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 13

(iv) Let

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 14

Therefore cofactors of A are

C11 = 1

C12 = tan α/2

C21 = – tan α/2

C22 = 1

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 15
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 16

2. Compute the adjoint of each of the following matrices.

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 17
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 18
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 19
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 20

Solution:

(i) Let

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 21

Therefore cofactors of A are

C11 = – 3

C21 = 2

C31 = 2

C12 = 2

C22 = – 3

C23 = 2

C13 = 2

C23 = 2

C33 = – 3

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 22
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 23

(ii) Let

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 24

Cofactors of A

C11 = 2

C21 = 3

C31 = – 13

C12 = – 3

C22 = 6

C32 = 9

C13 = 5

C23 = – 3

C33 = – 1

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 25
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 26

(iii) Let

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 28

Therefore cofactors of A

C11 = – 22

C21 = 11

C31 = – 11

C12 = 4

C22 = – 2

C32 = 2

C13 = 16

C23 = – 8

C33 = 8

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 32

(iv) Let

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 33

Therefore cofactors of A

C11 = 3

C21 = – 1

C31 = 1

C12 = – 15

C22 = 7

C32 = – 5

C13 = 4

C23 = – 2

C33 = 2

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 34
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 35
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 36

Solution:

Given

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 37

Therefore cofactors of A

C11 = 30

C21 = 12

C31 = – 3

C12 = – 20

C22 = – 8

C32 = 2

C13 = – 50

C23 = – 20

C33 = 5

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 38

Solution:

Given

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 41

Cofactors of A

C11 = – 4

C21 = – 3

C31 = – 3

C12 = 1

C22 = 0

C32 = 1

C13 = 4

C23 = 4

C33 = 3

Solution:

Given

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 44

Cofactors of A are

C11 = – 3

C21 = 6

C31 = 6

C12 = – 6

C22 = 3

C32 = – 6

C13 = – 6

C23 = – 6

C33 = 3

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 45
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 46

Solution:

Given

A = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 47

Cofactors of A are

C11 = 9

C21 = 19

C31 = – 4

C12 = 4

C22 = 14

C32 = 1

C13 = 8

C23 = 3

C33 = 2

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 48
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 49

7. Find the inverse of each of the following matrices:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 50
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 51
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 52
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 53

Solution:

(i) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

Now, |A| = cos θ (cos θ) + sin θ (sin θ)

= 1

Hence, A – 1 exists.

Cofactors of A are

C11 = cos θ

C12 = sin θ

C21 = – sin θ

C22 = cos θ

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 54
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 55

(ii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

Now, |A| = – 1 ≠ 0

Hence, A – 1 exists.

Cofactors of A are

C11 = 0

C12 = – 1

C21 = – 1

C22 = 0

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 56

(iii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 57

(iv) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

Now, |A| = 2 + 15 = 17 ≠ 0

Hence, A – 1 exists.

Cofactors of A are

C11 = 1

C12 = 3

C21 = – 5

C22 = 2

8. Find the inverse of each of the following matrices.

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 60
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 61
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 62

Solution:

(i) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

|A| = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 67

= 1(6 – 1) – 2(4 – 3) + 3(2 – 9)

= 5 – 2 – 21

= – 18≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 5

C21 = – 1

C31 = – 7

C12 = – 1

C22 = – 7

C32 = 5

C13 = – 7

C23 = 5

C33 = – 1

(ii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

|A| = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 70

= 1 (1 + 3) – 2 (– 1 + 2) + 5 (3 + 2)

= 4 – 2 + 25

= 27≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 4

C21 = 17

C31 = 3

C12 = – 1

C22 = – 11

C32 = 6

C13 = 5

C23 = 1

C33 = – 3

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 71
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 72

(iii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

|A| = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 73

= 2(4 – 1) + 1(– 2 + 1) + 1(1 – 2)

= 6 – 2

= – 4≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 3

C21 = 1

C31 = – 1

C12 = + 1

C22 = 3

C32 = 1

C13 = – 1

C23 = 1

C33 = 3

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 74

(iv) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

|A| = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 75

= 2(3 – 0) – 0 – 1(5)

= 6 – 5

= 1≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 3

C21 = – 1

C31 = 1

C12 = – 15

C22 = 6

C32 = – 5

C13 = 5

C23 = – 2

C33 = 2

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 76

(v) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

|A| = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 77

= 0 – 1 (16 – 12) – 1 (– 12 + 9)

= – 4 + 3

= – 1≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 0

C21 = – 1

C31 = 1

C12 = – 4

C22 = 3

C32 = – 4

C13 = – 3

C23 = 3

C33 = – 4

(vi) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

|A| = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 79

= 0 – 0 – 1(– 12 + 8)

= 4≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = – 8

C21 = 4

C31 = 4

C12 = 11

C22 = – 2

C32 = – 3

C13 = – 4

C23 = 0

C33 = 0

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 80

(vii) The criteria of existence of inverse matrix is the determinant of a given matrix should not equal to zero.

|A| = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 81 – 0 + 0

= – (cos2 α – sin2 α)

= – 1≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = – 1

C21 = 0

C31 = 0

C12 = 0

C22 = – cos α

C32 = – sin α

C13 = 0

C23 = – sin α

C33 = cos α

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 82

9. Find the inverse of each of the following matrices and verify that A-1A = I3.

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 83
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 84

Solution:

(i) We have

|A| = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 85

= 1(16 – 9) – 3(4 – 3) + 3(3 – 4)

= 7 – 3 – 3

= 1≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 7

C21 = – 3

C31 = – 3

C12 = – 1

C22 = 1

C32 = 0

C13 = – 1

C23 = 0

C33 = 1

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 86
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 87
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 88

(ii) We have

|A| = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 89

= 2(8 – 7) – 3(6 – 3) + 1(21 – 12)

= 2 – 9 + 9

= 2≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 1

C21 = 1

C31 = – 1

C12 = – 3

C22 = 1

C32 = 1

C13 = 9

C23 = – 5

C33 = – 1

10. For the following pair of matrices verify that (AB)-1 = B-1A-1.

Solution:

(i) Given

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 94
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 95

Hence, (AB)-1 = B-1A-1

(ii) Given

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 96
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 97

Hence, (AB)-1 = B-1A-1

Solution:

Given

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 102
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 103
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 104

Solution:

Given

Solution:

Solution:

Given

A = 
https://gradeup-question-images.grdp.co/liveData/PROJ23872/1543574054891449.png and B – 1 = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 113

Here, (AB) – 1 = B – 1 A – 1

|A| = – 5 + 4 = – 1

Cofactors of A are

C11 = – 1

C21 = 8

C31 = – 12

C12 = 0

C22 = 1

C32 = – 2

C13 = 1

C23 = – 10

C33 = 15

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 114
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 115

(i) F(α)-1 = F (-α)

(ii) G(β)-1 = G (-β)

(iii) F(α)G(β)-1 = G (-β) F (-α)

Solution:

(i) Given

F (α) = 
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 116

|F (α)| = cos2 α + sin2 α = 1≠ 0

Cofactors of A are

C11 = cos α

C21 = sin α

C31 = 0

C12 = – sin α

C22 = cos α

C32 = 0

C13 = 0

C23 = 0

C33 = 1

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 117
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 118

(ii) We have

|G (β)| = cos2 β + sin2 β = 1

Cofactors of A are

C11 = cos β

C21 = 0

C31 = -sin β

C12 = 0

C22 = 1

C32 = 0

C13 = sin β

C23 = 0

C33 = cos β

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 119
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 120

(iii) Now we have to show thatF(α)G(β) – 1 = G (– β) F (– α)

We have already know thatG(β) – 1 = G (– β)F(α) – 1 = F (– α)

And LHS = F(α)G(β) – 1

= G(β) – 1 F(α) – 1

= G (– β) F (– α)

Hence = RHS

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 121

Solution:

Consider,

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 122
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 123
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 124

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 125
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 126
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 127
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 128

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 129
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 130

Chapter 7 Adjoint and Inverse of a Matrix Ex 7.2


Find the inverse of the following matrices by using elementary row transformations:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 131

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 132
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 133
134

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 135
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 136
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 137

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 138
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 139
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 140

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 141
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 142
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 143

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 144
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 145
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 146

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 147
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 148
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 149
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 150

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 151
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 152
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 153
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 154

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 155
RD Sharma Solutions for Class 12 Maths Chapter 7 Adjoint and Inverse of a Matrix Image 156
Read More

RD SHARMA SOLUTION CHAPTER-6 Determinants I CLASS 12TH MATHEMATICS-EDUGROWN

Chapter 6 Determinants Ex 6.1

1. Write the minors and cofactors of each element of the first column of the following matrices and hence evaluate the determinant in each case:

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 1
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 3
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 4
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 5
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 6
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 7

Solution:

(i) Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column.The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, Cij = (–1)i+j × Mij

Given,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 8

From the given matrix we have,

M11 = –1

M21 = 20

C11 = (–1)1+1 × M11

= 1 × –1

= –1

C21 = (–1)2+1 × M21

= 20 × –1

= –20

Now expanding along the first column we get

|A| = a11 × C11 + a21× C21

= 5× (–1) + 0 × (–20)

= –5

(ii) Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, Cij = (–1)i+j × Mij

Given

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 9

From the above matrix we have

M11 = 3

M21 = 4

C11 = (–1)1+1 × M11

= 1 × 3

= 3

C21 = (–1)2+1 × 4

= –1 × 4

= –4

Now expanding along the first column we get

|A| = a11 × C11 + a21× C21

= –1× 3 + 2 × (–4)

= –11

(iii) Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, Cij = (–1)i+j × Mij

Given,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 10

M31 = –3 × 2 – (–1) × 2

M31 = –4

C11 = (–1)1+1 × M11

= 1 × –12

= –12

C21 = (–1)2+1 × M21

= –1 × –16

= 16

C31 = (–1)3+1 × M31

= 1 × –4

= –4

Now expanding along the first column we get

|A| = a11 × C11 + a21× C21+ a31× C31

= 1× (–12) + 4 × 16 + 3× (–4)

= –12 + 64 –12

= 40

(iv) Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of the matrix can be obtained for a particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, Cij = (–1)i+j × Mij

Given,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 11

M31 = a × c a – b × bc

M31 = a2c – b2c

C11 = (–1)1+1 × M11

= 1 × (ab2 – ac2)

= ab2 – ac2

C21 = (–1)2+1 × M21

= –1 × (a2b – c2b)

= c2b – a2b

C31 = (–1)3+1 × M31

= 1 × (a2c – b2c)

= a2c – b2c

Now expanding along the first column we get

|A| = a11 × C11 + a21× C21+ a31× C31

= 1× (ab2 – ac2) + 1 × (c2b – a2b) + 1× (a2c – b2c)

= ab2 – ac2 + c2b – a2b + a2c – b2c

(v) Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, Cij = (–1)i+j × Mij

Given,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 12

M31 = 2×0 – 5×6

M31 = –30

C11 = (–1)1+1 × M11

= 1 × 5

= 5

C21 = (–1)2+1 × M21

= –1 × –40

= 40

C31 = (–1)3+1 × M31

= 1 × –30

= –30

Now expanding along the first column we get

|A| = a11 × C11 + a21× C21+ a31× C31

= 0× 5 + 1 × 40 + 3× (–30)

= 0 + 40 – 90

= 50

(vi) Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, Cij = (–1)i+j × Mij

Given,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 13

M31 = h × f – b × g

M31 = hf – bg

C11 = (–1)1+1 × M11

= 1 × (bc– f2)

= bc– f2

C21 = (–1)2+1 × M21

= –1 × (hc – fg)

= fg – hc

C31 = (–1)3+1 × M31

= 1 × (hf – bg)

= hf – bg

Now expanding along the first column we get

|A| = a11 × C11 + a21× C21+ a31× C31

= a× (bc– f2) + h× (fg – hc) + g× (hf – bg)

= abc– af2 + hgf – h2c +ghf – bg2

(vii) Let Mij and Cij represents the minor and co–factor of an element, where i and j represent the row and column. The minor of matrix can be obtained for particular element by removing the row and column where the element is present. Then finding the absolute value of the matrix newly formed.

Also, Cij = (–1)i+j × Mij

Given,

M31 = –1(1 × 0 – 5 × (–2)) – 0(0 × 0 – (–1) × (–2)) + 1(0 × 5 – (–1) × 1)

M31 = –9

M41 = –1(1×1 – (–1) × (–2)) – 0(0 × 1 – 1 × (–2)) + 1(0 × (–1) – 1 × 1)

M41 = 0

C11 = (–1)1+1 × M11

= 1 × (–9)

= –9

C21 = (–1)2+1 × M21

= –1 × 9

= –9

C31 = (–1)3+1 × M31

= 1 × –9

= –9

C41 = (–1)4+1 × M41

= –1 × 0

= 0

Now expanding along the first column we get

|A| = a11 × C11 + a21× C21+ a31× C31 + a41× C41

= 2 × (–9) + (–3) × –9 + 1 × (–9) + 2 × 0

= – 18 + 27 –9

= 0

2. Evaluate the following determinants:

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 16
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 17
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 18
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 19

Solution:

(i) Given

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 20

⇒ |A| = x (5x + 1) – (–7) x

|A| = 5x2 + 8x

(ii) Given

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 21

⇒ |A| = cos θ × cos θ – (–sin θ) x sin θ

|A| = cos2θ + sin2θ

We know that cos2θ + sin2θ = 1

|A| = 1

(iii) Given

⇒ |A| = cos15° × cos75° + sin15° x sin75°

We know that cos (A – B) = cos A cos B + Sin A sin B

By substituting this we get, |A| = cos (75 – 15)°

|A| = cos60°

|A| = 0.5

(iv) Given

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 23

⇒ |A| = (a + ib) (a – ib) – (c + id) (–c + id)

= (a + ib) (a – ib) + (c + id) (c – id)

= a2 – i2 b2 + c2 – i2 d2

We know that i2 = -1

= a2 – (–1) b2 + c2 – (–1) d2

= a2 + b2 + c2 + d2

3. Evaluate:

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 24

Solution:

Since |AB|= |A||B|

= 2(17 × 12 – 5 × 20) – 3(13 × 12 – 5 × 15) + 7(13 × 20 – 15 × 17)

= 2 (204 – 100) – 3 (156 – 75) + 7 (260 – 255)

= 2×104 – 3×81 + 7×5

= 208 – 243 +35

= 0

Now |A|2 = |A|×|A|

|A|2= 0

4. Show that

Solution:

Given

Let the given determinant as A

Using sin (A+B) = sin A × cos B + cos A × sin B

⇒ |A| = sin 10° × cos 80° + cos 10° x sin 80°

|A| = sin (10 + 80)°

|A| = sin90°

|A| = 1

Hence Proved

Solution:

Given,

= 2(1 × 1 – 4 × (–2)) – 3(7 × 1 – (–2) × (–3)) – 5(7 × 4 – 1 × (–3))

= 2(1 + 8) – 3(7 – 6) – 5(28 + 3)

= 2 × 9 – 3 × 1 – 5 × 31

= 18 – 3 – 155

= –140

Now by expanding along the second column

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 30

= 2(1 × 1 – 4 × (–2)) – 7(3 × 1 – 4 × (–5)) – 3(3 × (–2) – 1 × (–5))

= 2 (1 + 8) – 7 (3 + 20) – 3 (–6 + 5)

= 2 × 9 – 7 × 23 – 3 × (–1)

= 18 – 161 +3

= –140

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 31

Solution:

Given

⇒ |A| = 0 (0 – sinβ (–sinβ)) –sinα (–sinα × 0 – sinβ cosα) – cosα ((–sinα) (–sinβ) – 0 × cosα)

|A| = 0 + sinα sinβ cosα – cosα sinα sinβ

|A| = 0

Chapter 6 Determinants Ex 6.2

1. Evaluate the following determinant:

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 33
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 34
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 35
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 36

Solution:

(i) Given

(ii) Given

= 1(109)(12)–(119)(11)

= 1308 – 1309

= – 1

So, Δ = – 1

(iii) Given,

= a (bc – f2) – h (hc – fg) + g (hf – bg)

= abc – af2 – ch2 + fgh + fgh – bg2

= abc + 2fgh – af2 – bg2 – ch2

So, Δ = abc + 2fgh – af2 – bg2 – ch2

(iv) Given

= 21(24–4) = 40

So, Δ = 40

(v) Given

= 1(–7)(–36)–(–20)(–13)

= 252 – 260

= – 8

So, Δ = – 8

(vi) Given,

(vii) Given

(viii) Given,

2. Without expanding, show that the value of each of the following determinants is zero:

Solution:

(i) Given,

(ii) Given,

(iii) Given,

(iv) Given,

(v) Given,

(vi) Given,

(vii) Given,

(viii) Given,

(ix) Given,

As, C1 = C2, hence determinant is zero

(x) Given,

(xi) Given,

(xii) Given,

(xiii) Given,

(xiv) Given,

(xv) Given,

(xvi) Given,

(xvii) Given,

Hence proved.

Evaluate the following (3 – 9):

Solution:

Given,

= (a + b + c) (b – a) (c – a) (b – c)

So, Δ = (a + b + c) (b – a) (c – a) (b – c)

Solution:

Given,

Solution:

Given,

Solution:

Given,

Solution:

Given,

Solution:

Given,

Solution:

Given,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 107
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 108

= a a(a+x+y)+az + 0 + 0

= a(a + x + y + z)

So, Δ = a(a + x + y + z)

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 109

Solution:

Prove the following identities (11 – 45):

Solution:

Given,

Solution:

Consider,

= – (a + b + c) (b–c)(a+b–2c)–(c–a)(c+a–2b)

= 3abc – a3 – b3 – c3

Therefore, L.H.S = R.H.S,

Hence the proof.

Solution:

Given,

Solution:

Consider,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 120,

Solution:

Consider,

L.H.S =
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 123

Now by applying, R1→R1 + R2 + R3, we get,

Solution:

Consider,

Solution:

Consider,

Solution:

Consider,

Hence, the proof.

Solution:

Given,

= – xyz(x – y) (z – y) [z2 + y2 + zy – x2 – y2 – xy]

= – xyz(x – y) (z – y) (z–x)(z+x0+y(z–x)

= – xyz(x – y) (z – y) (z – x) (x + y + z)

= R.H.S

Hence, the proof.

Solution:

Consider,

= (a2 + b2 + c2) (b – a) (c – a) (b+a)(–b)–(–c)(c+a)

= (a2 + b2 + c2) (a – b) (c – a) (b – c) (a + b + c)

= R.H.S

Hence, the proof.

Solution:

Consider,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 140

= (2a+4)(1)–(1)(2a+6)

= – 2

= R.H.S

Hence, the proof.

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 141

Solution:

Consider,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 142

= – (a2 + b2 + c2) (a – b) (c – a) (–(b+a))(–b)–(c)(c+a)

= (a – b) (b – c) (c – a) (a + b + c) (a2 + b2 + c2)

= R.H.S

Hence, the proof.

Solution:

Consider,

= R.H.S

Hence, the proof.

Solution:

Consider,

Solution:

Consider,

Solution:

Expanding the determinant along R1, we have

Δ = 1(1)(7)–(3)(2) – 0 + 0

∴ Δ = 7 – 6 = 1

Thus,
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 156

Hence the proof.

Chapter 6 Determinants Ex 6.3

1. Find the area of the triangle with vertices at the points:

(i) (3, 8), (-4, 2) and (5, -1)

(ii) (2, 7), (1, 1) and (10, 8)

(iii) (-1, -8), (-2, -3) and (3, 2)

(iv) (0, 0), (6, 0) and (4, 3)

Solution:

(i) Given (3, 8), (-4, 2) and (5, -1) are the vertices of the triangle.

We know that, if vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by:

(ii) Given (2, 7), (1, 1) and (10, 8) are the vertices of the triangle.

We know that if vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by:

(iii) Given (-1, -8), (-2, -3) and (3, 2) are the vertices of the triangle.

We know that if vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by:

As we know area cannot be negative. Therefore, 15 square unit is the area

Thus area of triangle is 15 square units

(iv) Given (-1, -8), (-2, -3) and (3, 2) are the vertices of the triangle.

We know that if vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by:

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 161

2. Using the determinants show that the following points are collinear:

(i) (5, 5), (-5, 1) and (10, 7)

(ii) (1, -1), (2, 1) and (10, 8)

(iii) (3, -2), (8, 8) and (5, 2)

(iv) (2, 3), (-1, -2) and (5, 8)

Solution:

(i) Given (5, 5), (-5, 1) and (10, 7)

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 162

(ii) Given (1, -1), (2, 1) and (10, 8)

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 163

(iii) Given (3, -2), (8, 8) and (5, 2)

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 164

Now, by substituting given value in above formula

Since, Area of triangle is zero

Hence, points are collinear.

(iv) Given (2, 3), (-1, -2) and (5, 8)

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by,

3. If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab

Solution:

Given (a, 0), (0, b) and (1, 1) are collinear

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by,


RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 169

⇒ a + b = ab

Hence Proved

4. Using the determinants prove that the points (a, b), (a’, b’) and (a – a’, b – b) are collinear if a b’ = a’ b.

Solution:

Given (a, b), (a’, b’) and (a – a’, b – b) are collinear

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by,

⇒ a b’ = a’ b

Hence, the proof.

5. Find the value of λ so that the points (1, -5), (-4, 5) and (λ, 7) are collinear.

Solution:

Given (1, -5), (-4, 5) and (λ, 7) are collinear

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by,

⇒ – 50 – 10λ = 0

⇒ λ = – 5

6. Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, -6) and (5, 4).

Solution:

Given (x, 4), (2, -6) and (5, 4) are the vertices of a triangle.

We have the condition that three points to be collinear, the area of the triangle formed by these points will be zero. Now, we know that, vertices of a triangle are (x1, y1), (x2, y2) and (x3, y3), then the area of the triangle is given by,

⇒ x(–10)–4(–3)+1(8–30) = ± 70

⇒ –10x+12+38 = ± 70

⇒ ±70 = – 10x + 50

Taking positive sign, we get

⇒ + 70 = – 10x + 50

⇒ 10x = – 20

⇒ x = – 2

Taking –negative sign, we get

⇒ – 70 = – 10x + 50

⇒ 10x = 120

⇒ x = 12

Thus x = – 2, 12

Chapter 6 Determinants Ex 6.4

Solve the following system of linear equations by Cramer’s rule:

1. x – 2y = 4

-3x + 5y = -7

Solution:

Given x – 2y = 4

-3x + 5y = -7

Let there be a system of n simultaneous linear equations and with n unknown given by

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 174
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 175

Solving determinant, expanding along 1st row

⇒ D = 5(1) – (– 3) (– 2)

⇒ D = 5 – 6

⇒ D = – 1

Again,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 176

Solving determinant, expanding along 1st row

⇒ D1 = 5(4) – (– 7) (– 2)

⇒ D1 = 20 – 14

⇒ D1 = 6

And

Solving determinant, expanding along 1st row

⇒ D2 = 1(– 7) – (– 3) (4)

⇒ D2 = – 7 + 12

⇒ D2 = 5

Thus by Cramer’s Rule, we have

2. 2x – y = 1

7x – 2y = -7

Solution:

Given 2x – y = 1 and

7x – 2y = -7

Let there be a system of n simultaneous linear equations and with n unknown given by

Solving determinant, expanding along 1st row

⇒ D1 = 1(– 2) – (– 7) (– 1)

⇒ D1 = – 2 – 7

⇒ D1 = – 9

And

Solving determinant, expanding along 1st row

⇒ D2 = 2(– 7) – (7) (1)

⇒ D2 = – 14 – 7

⇒ D2 = – 21

Thus by Cramer’s Rule, we have

3. 2x – y = 17

3x + 5y = 6

Solution:

Given 2x – y = 17 and

3x + 5y = 6

Let there be a system of n simultaneous linear equations and with n unknown given by

Solving determinant, expanding along 1st row

⇒ D1 = 17(5) – (6) (– 1)

⇒ D1 = 85 + 6

⇒ D1 = 91

Solving determinant, expanding along 1st row

⇒ D2 = 2(6) – (17) (3)

⇒ D2 = 12 – 51

⇒ D2 = – 39

Thus by Cramer’s Rule, we have

4. 3x + y = 19

3x – y = 23

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

Solving determinant, expanding along 1st row

⇒ D = 3(– 1) – (3) (1)

⇒ D = – 3 – 3

⇒ D = – 6

Again,

Solving determinant, expanding along 1st row

⇒ D1 = 19(– 1) – (23) (1)

⇒ D1 = – 19 – 23

⇒ D1 = – 42

Solving determinant, expanding along 1st row

⇒ D2 = 3(23) – (19) (3)

⇒ D2 = 69 – 57

⇒ D2 = 12

Thus by Cramer’s Rule, we have

5. 2x – y = -2

3x + 4y = 3

Solution:

Given 2x – y = -2 and

3x + 4y = 3

Let there be a system of n simultaneous linear equations and with n unknown given by

Solving determinant, expanding along 1st row

⇒ D2 = 3(2) – (– 2) (3)

⇒ D2 = 6 + 6

⇒ D2 = 12

Thus by Cramer’s Rule, we have

6. 3x + ay = 4

2x + ay = 2, a ≠ 0

Solution:

Given 3x + ay = 4 and

2x + ay = 2, a ≠ 0

Let there be a system of n simultaneous linear equations and with n unknown given by

3x + ay = 4

2x + ay = 2, a≠0

So by comparing with the theorem, let’s find D, D1 and D2

Solving determinant, expanding along 1st row

⇒ D = 3(a) – (2) (a)

⇒ D = 3a – 2a

⇒ D = a

Again,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 197

Solving determinant, expanding along 1st row

⇒ D1 = 4(a) – (2) (a)

⇒ D = 4a – 2a

⇒ D = 2a

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 198

Solving determinant, expanding along 1st row

⇒ D2 = 3(2) – (2) (4)

⇒ D = 6 – 8

⇒ D = – 2

Thus by Cramer’s Rule, we have

7. 2x + 3y = 10

x + 6y = 4

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

Solving determinant, expanding along 1st row

⇒ D = 2 (6) – (3) (1)

⇒ D = 12 – 3

⇒ D = 9

Again,

Solving determinant, expanding along 1st row

⇒ D1 = 10 (6) – (3) (4)

⇒ D = 60 – 12

⇒ D = 48

Solving determinant, expanding along 1st row

⇒ D2 = 2 (4) – (10) (1)

⇒ D2 = 8 – 10

⇒ D2 = – 2

Thus by Cramer’s Rule, we have

8. 5x + 7y = -2

4x + 6y = -3

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

Now, here we have

5x + 7y = – 2

4x + 6y = – 3

So by comparing with the theorem, let’s find D, D1 and D2

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 206

Solving determinant, expanding along 1st row

⇒ D = 5(6) – (7) (4)

⇒ D = 30 – 28

⇒ D = 2

Again,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 207

Solving determinant, expanding along 1st row

⇒ D1 = – 2(6) – (7) (– 3)

⇒ D1 = – 12 + 21

⇒ D1 = 9

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 208

Solving determinant, expanding along 1st row

⇒ D2 = – 3(5) – (– 2) (4)

⇒ D2 = – 15 + 8

⇒ D2 = – 7

Thus by Cramer’s Rule, we have

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 209
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 210

9. 9x + 5y = 10

3y – 2x = 8

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

Solving determinant, expanding along 1st row

⇒ D = 3(9) – (5) (– 2)

⇒ D = 27 + 10

⇒ D = 37

Again,

Solving determinant, expanding along 1st row

⇒ D1 = 10(3) – (8) (5)

⇒ D1 = 30 – 40

⇒ D1 = – 10

Solving determinant, expanding along 1st row

⇒ D2 = 9(8) – (10) (– 2)

⇒ D2 = 72 + 20

⇒ D2 = 92

Thus by Cramer’s Rule, we have

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 215

10. x + 2y = 1

3x + y = 4

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 216

Solving determinant, expanding along 1st row

⇒ D = 1(1) – (3) (2)

⇒ D = 1 – 6

⇒ D = – 5

Again,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 217

Solving determinant, expanding along 1st row

⇒ D1 = 1(1) – (2) (4)

⇒ D1 = 1 – 8

⇒ D1 = – 7

Solving determinant, expanding along 1st row

⇒ D2 = 1(4) – (1) (3)

⇒ D2 = 4 – 3

⇒ D2 = 1

Thus by Cramer’s Rule, we have

Solve the following system of linear equations by Cramer’s rule:

11. 3x + y + z = 2

2x – 4y + 3z = -1

4x + y – 3z = -11

Solution:

Let there be a system of n simultaneous linear equations and with n unknown given by

Now, here we have

3x + y + z = 2

2x – 4y + 3z = – 1

4x + y – 3z = – 11

So by comparing with the theorem, let’s find D, D1, D2 and D3

Solving determinant, expanding along 1st row

⇒ D = 3(–4)(–3)–(3)(1) – 1(2)(–3)–12 + 12–4(–4)

⇒ D = 312–3 – –6–12 + 2+16

⇒ D = 27 + 18 + 18

⇒ D = 63

Again,

Solving determinant, expanding along 1st row

⇒ D1 = 2(–4)(–3)–(3)(1) – 1(–1)(–3)–(–11)(3) + 1(–1)–(–4)(–11)

⇒ D1 = 212–3 – 13+33 + 1–1–44

⇒ D1 = 29 – 36 – 45

⇒ D1 = 18 – 36 – 45

⇒ D1 = – 63

Again

Solving determinant, expanding along 1st row

⇒ D2 = 33+33 – 2–6–12 + 1–22+4

⇒ D2 = 336 – 2(– 18) – 18

⇒ D2 = 126


RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 225

Solving determinant, expanding along 1st row

⇒ D3 = 344+1 – 1–22+4 + 22+16

⇒ D3 = 345 – 1(– 18) + 2(18)

⇒ D3 = 135 + 18 + 36

⇒ D3 = 189

Thus by Cramer’s Rule, we have

12. x – 4y – z = 11

2x – 5y + 2z = 39

-3x + 2y + z = 1

Solution:

Given,

x – 4y – z = 11

2x – 5y + 2z = 39

-3x + 2y + z = 1

Let there be a system of n simultaneous linear equations and with n unknown given by

Now, here we have

x – 4y – z = 11

2x – 5y + 2z = 39

– 3x + 2y + z = 1

So by comparing with theorem, now we have to find D, D1 and D2

Solving determinant, expanding along 1st row

⇒ D = 1(–5)(1)–(2)(2) + 4(2)(1)+6 – 14+5(–3)

⇒ D = 1–5–4 + 48 – –11

⇒ D = – 9 + 32 + 11

⇒ D = 34

Again,

Solving determinant, expanding along 1st row

⇒ D1 = 11(–5)(1)–(2)(2) + 4(39)(1)–(2)(1) – 12(39)–(–5)(1)

⇒ D1 = 11–5–4 + 439–2 – 178+5

⇒ D1 = 11–9 + 4(37) – 83

⇒ D1 = – 99 – 148 – 45

⇒ D1 = – 34

Again

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 230

Solving determinant, expanding along 1st row

⇒ D2 = 139–2 – 112+6 – 12+117

⇒ D2 = 137 – 11(8) – 119

⇒ D2 = – 170

And,


RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 231

Solving determinant, expanding along 1st row

⇒ D3 = 1–5–(39)(2) – (– 4) 2–(39)(–3) + 114–(–5)(–3)

⇒ D3 = 1 –5–78 + 4 (2 + 117) + 11 (4 – 15)

⇒ D3 = – 83 + 4(119) + 11(– 11)

⇒ D3 = 272

Thus by Cramer’s Rule, we have

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 232

13. 6x + y – 3z = 5

x + 3y – 2z = 5

2x + y + 4z = 8

Solution:

Given

6x + y – 3z = 5

x + 3y – 2z = 5

2x + y + 4z = 8

Let there be a system of n simultaneous linear equations and with n unknown given by

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 233

Now, here we have

6x + y – 3z = 5

x + 3y – 2z = 5

2x + y + 4z = 8

So by comparing with theorem, now we have to find D , D1 and D2

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 234

Solving determinant, expanding along 1st Row

⇒ D = 6(4)(3)–(1)(–2) – 1(4)(1)+4 – 31–3(2)

⇒ D = 612+2 – 8 – 3–5

⇒ D = 84 – 8 + 15

⇒ D = 91

Again, Solve D1 formed by replacing 1st column by B matrices

Here

Solving determinant, expanding along 1st Row

⇒ D1 = 5(4)(3)–(–2)(1) – 1(5)(4)–(–2)(8) – 3(5)–(3)(8)

⇒ D1 = 512+2 – 120+16 – 35–24

⇒ D1 = 514 – 36 – 3(– 19)

⇒ D1 = 70 – 36 + 57

⇒ D1 = 91

Again, Solve D2 formed by replacing 1st column by B matrices

Here

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 236

Solving determinant

⇒ D2 = 620+16 – 54–2(–2) + (– 3)8–10

⇒ D2 = 636 – 5(8) + (– 3) (– 2)

⇒ D2 = 182

And, Solve D3 formed by replacing 1st column by B matrices

Here

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 237

Solving determinant, expanding along 1st Row

⇒ D3 = 624–5 – 18–10 + 51–6

⇒ D3 = 619 – 1(– 2) + 5(– 5)

⇒ D3 = 114 + 2 – 25

⇒ D3 = 91

Thus by Cramer’s Rule, we have

14. x + y = 5

y + z = 3

x + z = 4

Solution:

Given x + y = 5

y + z = 3

x + z = 4

Let there be a system of n simultaneous linear equations and with n unknown given by

Let Dj be the determinant obtained from D after replacing the jth column by

Now, here we have

x + y = 5

y + z = 3

x + z = 4

So by comparing with theorem, now we have to find D, D1 and D2

Solving determinant, expanding along 1st Row

⇒ D = 11 – 1–1 + 0–1

⇒ D = 1 + 1 + 0

⇒ D = 2

Again, Solve D1 formed by replacing 1st column by B matrices

Here

Solving determinant, expanding along 1st Row

⇒ D1 = 51 – 1(3)(1)–(4)(1) + 00–(4)(1)

⇒ D1 = 5 – 13–4 + 0–4

⇒ D1 = 5 – 1–1 + 0

⇒ D1 = 5 + 1 + 0

⇒ D1 = 6

Again, Solve D2 formed by replacing 1st column by B matrices

Here

Solving determinant

⇒ D2 = 13–4 – 5–1 + 00–3

⇒ D2 = 1–1 + 5 + 0

⇒ D2 = 4

And, Solve D3 formed by replacing 1st column by B matrices

Here

Solving determinant, expanding along 1st Row

⇒ D3 = 14–0 – 10–3 + 50–1

⇒ D3 = 14 – 1(– 3) + 5(– 1)

⇒ D3 = 4 + 3 – 5

⇒ D3 = 2

Thus by Cramer’s Rule, we have

15. 2y – 3z = 0

x + 3y = -4

3x + 4y = 3

Solution:

Given

2y – 3z = 0

x + 3y = -4

3x + 4y = 3

Let there be a system of n simultaneous linear equations and with n unknown given by

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 246

Now, here we have

2y – 3z = 0

x + 3y = – 4

3x + 4y = 3

So by comparing with theorem, now we have to find D, D1 and D2

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 247

Solving determinant, expanding along 1st Row

⇒ D = 00 – 2(0)(1)–0 – 31(4)–3(3)

⇒ D = 0 – 0 – 34–9

⇒ D = 0 – 0 + 15

⇒ D = 15

Again, Solve D1 formed by replacing 1st column by B matrices

Here

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 248

Solving determinant, expanding along 1st Row

⇒ D1 = 00 – 2(0)(–4)–0 – 34(–4)–3(3)

⇒ D1 = 0 – 0 – 3–16–9

⇒ D1 = 0 – 0 – 3(– 25)

⇒ D1 = 0 – 0 + 75

⇒ D1 = 75

Again, Solve D2 formed by replacing 2nd column by B matrices

Here

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 249

Solving determinant

⇒ D2 = 00 – 0(0)(1)–0 – 31(3)–3(–4)

⇒ D2 = 0 – 0 + (– 3) (3 + 12)

⇒ D2 = – 45

And, Solve D3 formed by replacing 3rd column by B matrices

Here

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 250

Solving determinant, expanding along 1st Row

⇒ D3 = 09–(–4)4 – 2(3)(1)–(–4)(3) + 01(4)–3(3)

⇒ D3 = 025 – 2(3 + 12) + 0(4 – 9)

⇒ D3 = 0 – 30 + 0

⇒ D3 = – 30

Thus by Cramer’s Rule, we have

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 251

16. 5x – 7y + z = 11

6x – 8y – z = 15

3x + 2y – 6z = 7

Solution:

Given

5x – 7y + z = 11

6x – 8y – z = 15

3x + 2y – 6z = 7

Let there be a system of n simultaneous linear equations and with n unknown given by

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 252

Now, here we have

5x – 7y + z = 11

6x – 8y – z = 15

3x + 2y – 6z = 7

So by comparing with theorem, now we have to find D, D1 and D2

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 253

Solving determinant, expanding along 1st Row

⇒ D = 5(–8)(–6)–(–1)(2) – 7(–6)(6)–3(–1) + 12(6)–3(–8)

⇒ D = 548+2 – 7–36+3 + 112+24

⇒ D = 250 – 231 + 36

⇒ D = 55

Again, Solve D1 formed by replacing 1st column by B matrices

Here

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 254
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 255

Solving determinant, expanding along 1st Row

⇒ D1 = 11(–8)(–6)–(2)(–1) – (– 7) (15)(–6)–(–1)(7) + 1(15)2–(7)(–8)

⇒ D1 = 1148+2 + 7–90+7 + 130+56

⇒ D1 = 1150 + 7–83 + 86

⇒ D1 = 550 – 581 + 86

⇒ D1 = 55

Again, Solve D2 formed by replacing 2nd column by B matrices

Here

Solving determinant, expanding along 1st Row

⇒ D2 = 5(15)(–6)–(7)(–1) – 11 (6)(–6)–(–1)(3) + 1(6)7–(15)(3)

⇒ D= 5–90+7 – 11–36+3 + 142–45

⇒ D2 = 5–83 – 11(– 33) – 3

⇒ D2 = – 415 + 363 – 3

⇒ D2 = – 55

And, Solve D3 formed by replacing 3rd column by B matrices

Here

Solving determinant, expanding along 1st Row

⇒ D3 = 5(–8)(7)–(15)(2) – (– 7) (6)(7)–(15)(3) + 11(6)2–(–8)(3)

⇒ D3 = 5–56–30 – (– 7) 42–45 + 1112+24

⇒ D3 = 5–86 + 7–3 + 1136

⇒ D3 = – 430 – 21 + 396

⇒ D3 = – 55

Thus by Cramer’s Rule, we have

Chapter 6 Determinants Ex 6.5

Solve each of the following system of homogeneous linear equations:

1. x + y – 2z = 0

2x + y – 3z =0

5x + 4y – 9z = 0

Solution:

Given x + y – 2z = 0

2x + y – 3z =0

5x + 4y – 9z = 0

Any system of equation can be written in matrix form as AX = B

Now finding the Determinant of these set of equations,

= 1(1 × (– 9) – 4 × (– 3)) – 1(2 × (– 9) – 5 × (– 3)) – 2(4 × 2 – 5 × 1)

= 1(– 9 + 12) – 1(– 18 + 15) – 2(8 – 5)

= 1 × 3 –1 × (– 3) – 2 × 3

= 3 + 3 – 6

= 0

Since D = 0, so the system of equation has infinite solution.

Now let z = k

⇒ x + y = 2k

And 2x + y = 3k

Now using the Cramer’s rule

2. 2x + 3y + 4z = 0

x + y + z = 0

2x + 5y – 2z = 0

Solution:

Given

2x + 3y + 4z = 0

x + y + z = 0

2x + 5y – 2z = 0

Any system of equation can be written in matrix form as AX = B

Now finding the Determinant of these set of equations,

RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 262
RD Sharma Solutions for Class 12 Maths Chapter 6 Determinants Image 263

= 2(1 × (– 2) – 1 × 5) – 3(1 × (– 2) – 2 × 1) + 4(1 × 5 – 2 × 1)

= 2(– 2 – 5) – 3(– 2 – 2) + 4(5 – 2)

= 1 × (– 7) – 3 × (– 4) + 4 × 3

= – 7 + 12 + 12

= 17

Since D ≠ 0, so the system of equation has infinite solution.

Therefore the system of equation has only solution as x = y = z = 0.

Read More

RD SHARMA SOLUTION CHAPTER-5 Algebra of Matrices I CLASS 12TH MATHEMATICS-EDUGROWN

Chapter 5 Algebra of Matrices Ex 5.1

1. If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?

Solution:

If a matrix is of order m × n elements, it has m n elements. So, if the matrix has 8 elements, we will find the ordered pairs m and n.

m n = 8

Then, ordered pairs m and n will be

m × n be (8 × 1),(1 × 8),(4 × 2),(2 × 4)

Now, if it has 5 elements

Possible orders are (5 × 1), (1 × 5).

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 1

Solution:

(i)

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 2

Now, Comparing with equation (1) and (2)

a22 = 4 and b21 = – 3

a22 + b21 = 4 + (– 3) = 1

(ii)

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 3

Now, Comparing with equation (1) and (2)

a11 = 2, a22 = 4, b11 = 2, b22 = 4

a11 b11 + a22 b22 = 2 × 2 + 4 × 4 = 4 + 16 = 20

3. Let A be a matrix of order 3 × 4. If R1 denotes the first row of A and C2 denotes its second column, then determine the orders of matrices R1 and C2.

Solution:

Given A be a matrix of order 3 × 4.

So, A = [ai j3×4

R1 = first row of A = [a11, a12, a13, a14]

So, order of matrix R1 = 1 × 4

C2 = second column of

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 4

Therefore order of C2 = 3 × 1

4. Construct a 2 ×3 matrix A = [aj j] whose elements aj j are given by:

(i) ai j = i × j

(ii) ai j = 2i – j

(iii) ai j = i + j

(iv) ai j = (i + j)2/2

Solution:

(i) Given ai j = i × j

Let A = [ai j]2 × 3

So, the elements in a 2 × 3 matrix are[a11, a12, a13, a21, a22, a23]

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 5

a11 = 1 × 1 = 1

a12 = 1 × 2 = 2

a13 = 1 × 3 = 3

a21 = 2 × 1 = 2

a22 = 2 × 2 = 4

a23 = 2 × 3 = 6

Substituting these values in matrix A we get,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 6

(ii) Given ai j = 2i – j

Let A = [ai j]2×3

So, the elements in a 2 × 3 matrix are

a11, a12, a13, a21, a22, a23

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 7

a11 = 2 × 1 – 1 = 2 – 1 = 1

a12 = 2 × 1 – 2 = 2 – 2 = 0

a13 = 2 × 1 – 3 = 2 – 3 = – 1

a21 = 2 × 2 – 1 = 4 – 1 = 3

a22 = 2 × 2 – 2 = 4 – 2 = 2

a23 = 2 × 2 – 3 = 4 – 3 = 1

Substituting these values in matrix A we get,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 8

(iii) Given ai j = i + j

Let A = [a i j2×3

So, the elements in a 2 × 3 matrix are

a11, a12, a13, a21, a22, a23

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 9

a11 = 1 + 1 = 2

a12 = 1 + 2 = 3

a13 = 1 + 3 = 4

a21 = 2 + 1 = 3

a22 = 2 + 2 = 4

a23 = 2 + 3 = 5

Substituting these values in matrix A we get,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 10

(iv) Given ai j = (i + j)2/2

Let A = [ai j]2×3

So, the elements in a 2 × 3 matrix are

a11, a12, a13, a21, a22, a23

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 11

Let A = [ai j]2×3

So, the elements in a 2 × 3 matrix are

a11, a12, a13, a21, a22, a23

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 12

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 13

a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 14

a13 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 15

a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 16

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 17

a23 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 18

Substituting these values in matrix A we get,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 19
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 20

5. Construct a 2 × 2 matrix A = [ai j] whose elements ai j are given by:

(i) (i + j)/2

(ii) ai j = (i – j)/2

(iii) ai j = (i – 2j)/2

(iv) ai j = (2i + j)/2

(v) ai j = |2i – 3j|/2

(vi) ai j = |-3i + j|/2

(vii) ai j = e2ix sin x j

Solution:

(i) Given (i + j)/2

Let A = [ai j]2×2

So, the elements in a 2 × 2 matrix are

a11, a12, a21, a22

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 21

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 22

a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 23

a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 24

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 25

Substituting these values in matrix A we get,

(ii) Given ai j = (i – j)/2

Let A = [ai j]2×2

So, the elements in a 2 × 2 matrix are

a11, a12, a21, a22

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 29

a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 30

a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 31

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 32

Substituting these values in matrix A we get,

(iii) Given ai j = (i – 2j)/2

Let A = [ai j]2×2

So, the elements in a 2 × 2 matrix are

a11, a12, a21, a22

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 36

a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 37

a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 38

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 39

Substituting these values in matrix A we get,

(iv) Given ai j = (2i + j)/2

Let A = [ai j]2×2

So, the elements in a 2 × 2 matrix are

a11, a12, a21, a22

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 43

a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 44

a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 45

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 46

Substituting these values in matrix A we get,

(v) Given ai j = |2i – 3j|/2

Let A = [ai j]2×2

So, the elements in a 2×2 matrix are

a11, a12, a21, a22

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 50

a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 51

a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 52

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 53

Substituting these values in matrix A we get,

(vi) Given ai j = |-3i + j|/2

Let A = [ai j]2×2

So, the elements in a 2 × 2 matrix are

a11, a12, a21, a22

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 57

a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 58

a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 59

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 60

Substituting these values in matrix A we get,

(vii) Given ai j = e2ix sin x j

Let A = [ai j]2×2

So, the elements in a 2 × 2 matrix are

a11, a12, a21, a22,

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 64

a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 65

a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 66

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 67

Substituting these values in matrix A we get,

6. Construct a 3×4 matrix A = [ai j] whose elements ai j are given by:
(i) ai j = i + j

(ii) ai j = i – j

(iii) ai j = 2i

(iv) ai j = j

(v) ai j = ½ |-3i + j|

Solution:

(i) Given ai j = i + j

Let A = [ai j]2×3

So, the elements in a 3 × 4 matrix are

a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 69

a11 = 1 + 1 = 2

a12 = 1 + 2 = 3

a13 = 1 + 3 = 4

a14 = 1 + 4 = 5

a21 = 2 + 1 = 3

a22 = 2 + 2 = 4

a23 = 2 + 3 = 5

a24 = 2 + 4 = 6

a31 = 3 + 1 = 4

a32 = 3 + 2 = 5

a33 = 3 + 3 = 6

a34 = 3 + 4 = 7

Substituting these values in matrix A we get,

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 70

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 71

(ii) Given ai j = i – j

Let A = [ai j]2×3

So, the elements in a 3×4 matrix are

a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 72

a11 = 1 – 1 = 0

a12 = 1 – 2 = – 1

a13 = 1 – 3 = – 2

a14 = 1 – 4 = – 3

a21 = 2 – 1 = 1

a22 = 2 – 2 = 0

a23 = 2 – 3 = – 1

a24 = 2 – 4 = – 2

a31 = 3 – 1 = 2

a32 = 3 – 2 = 1

a33 = 3 – 3 = 0

a34 = 3 – 4 = – 1

Substituting these values in matrix A we get,

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 73

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 74

(iii) Given ai j = 2i

Let A = [ai j]2×3

So, the elements in a 3×4 matrix are

a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 75

a11 = 2×1 = 2

a12 = 2×1 = 2

a13 = 2×1 = 2

a14 = 2×1 = 2

a21 = 2×2 = 4

a22 = 2×2 = 4

a23 = 2×2 = 4

a24 = 2×2 = 4

a31 = 2×3 = 6

a32 = 2×3 = 6

a33 = 2×3 = 6

a34 = 2×3 = 6

Substituting these values in matrix A we get,

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 76

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 77

(iv) Given ai j = j

Let A = [ai j]2×3

So, the elements in a 3×4 matrix are

a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 78

a11 = 1

a12 = 2

a13 = 3

a14 = 4

a21 = 1

a22 = 2

a23 = 3

a24 = 4

a31 = 1

a32 = 2

a33 = 3

a34 = 4

Substituting these values in matrix A we get,

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 79

(vi) Given ai j = ½ |-3i + j|

Let A = [ai j]2×3

So, the elements in a 3×4 matrix are

a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 81

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 82a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 83a13 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 84a14 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 85a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 86

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 87

a23 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 88

a24 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 89a31 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 90a32 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 91a33 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 92a34 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 93

Substituting these values in matrix A we get,

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 94

Multiplying by negative sign we get,

7. Construct a 4 × 3 matrix A = [ai j] whose elements ai j are given by:

(i) ai j = 2i + i/j

(ii) ai j = (i – j)/ (i + j)

(iii) ai j = i

Solution:

(i) Given ai j = 2i + i/j

Let A = [ai j]4×3

So, the elements in a 4 × 3 matrix are

a11, a12, a13, a21, a22, a23, a31, a32, a33, a41, a42, a43

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 95

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 96

a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 97

a13 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 98

a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 99

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image100

a23 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 101

a31 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 102

a32 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 103

a33 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 104

a41 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 105

a42 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 106

a43 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 107

Substituting these values in matrix A we get,

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 108

(ii) Given ai j = (i – j)/ (i + j)

Let A = [ai j]4×3

So, the elements in a 4 × 3 matrix are

a11, a12, a13, a21, a22, a23, a31, a32, a33, a41, a42, a43

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 110

a11 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image111

a12 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 112

a13 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 113

a21 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 114

a22 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 115

a23 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 116

a31 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 117

a32 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 118

a33 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 119

a41 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 120

a42 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 121

a43 =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 122

Substituting these values in matrix A we get,

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 123

(iii) Given ai j = i

Let A = [ai j]4×3

So, the elements in a 4 × 3 matrix are

a11, a12, a13, a21, a22, a23, a31, a32, a33, a41, a42, a43

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 125

a11 = 1

a12 = 1

a13 = 1

a21 = 2

a22 = 2

a23 = 2

a31 = 3

a32 = 3

a33 = 3

a41 = 4

a42 = 4

a43 = 4

Substituting these values in matrix A we get,

A =
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 126

8. Find x, y, a and b if

Solution:

Given

Given that two matrices are equal.

We know that if two matrices are equal then the elements of each matrices are also equal.

Therefore by equating them we get,

3x + 4y = 2 …… (1)

x – 2y = 4 …… (2)

a + b = 5 …… (3)

2a – b = – 5 …… (4)

Multiplying equation (2) by 2 and adding to equation (1), we get

3x + 4y + 2x – 4y = 2 + 8

⇒ 5x = 10

⇒ x = 2

Now, substituting the value of x in equation (1)

3 × 2 + 4y = 2

⇒ 6 + 4y = 2

⇒ 4y = 2 – 6

⇒ 4y = – 4

⇒ y = – 1

Now by adding equation (3) and (4)

a + b + 2a – b = 5 + (– 5)

⇒ 3a = 5 – 5 = 0

⇒ a = 0

Now, again by substituting the value of a in equation (3), we get

0 + b = 5

⇒ b = 5

∴ a = 0, b = 5, x = 2 and y = – 1

9. Find x, y, a and b if

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 130

Solution:

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 131

We know that if two matrices are equal then the elements of each matrices are also equal.

Given that two matrices are equal.

Therefore by equating them we get,

2a + b = 4 …… (1)

And a – 2b = – 3 …… (2)

And 5c – d = 11 …… (3)

4c + 3d = 24 …… (4)

Multiplying equation (1) by 2 and adding to equation (2)

4a + 2b + a – 2b = 8 – 3

⇒ 5a = 5

⇒ a = 1

Now, substituting the value of a in equation (1)

2 × 1 + b = 4

⇒ 2 + b = 4

⇒ b = 4 – 2

⇒ b = 2

Multiplying equation (3) by 3 and adding to equation (4)

15c – 3d + 4c + 3d = 33 + 24

⇒ 19c = 57

⇒ c = 3

Now, substituting the value of c in equation (4)

4 × 3 + 3d = 24

⇒ 12 + 3d = 24

⇒ 3d = 24 – 12

⇒ 3d = 12

⇒ d = 4

∴ a = 1, b = 2, c = 3 and d = 4

10. Find the values of a, b, c and d from the following equations:

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 132

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 133

We know that if two matrices are equal then the elements of each matrices are also equal.

Given that two matrices are equal.

Therefore by equating them we get,

2a + b = 4 …… (1)

And a – 2b = – 3 …… (2)

And 5c – d = 11 …… (3)

4c + 3d = 24 …… (4)

Multiplying equation (1) by 2 and adding to equation (2)

4a + 2b + a – 2b = 8 – 3

⇒ 5a = 5

⇒ a = 1

Now, substituting the value of a in equation (1)

2 × 1 + b = 4

⇒ 2 + b = 4

⇒ b = 4 – 2

⇒ b = 2

Multiplying equation (3) by 3 and adding to equation (4)

15c – 3d + 4c + 3d = 33 + 24

⇒ 19c = 57

⇒ c = 3

Now, substituting the value of c in equation (4)

4 × 3 + 3d = 24

⇒ 12 + 3d = 24

⇒ 3d = 24 – 12

⇒ 3d = 12

⇒ d = 4

∴ a = 1, b = 2, c = 3 and d = 4


Chapter 5 Algebra of Matrices Ex 5.2

1. Compute the following sums:

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 134
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 135

Solution:

(i) Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 136

Corresponding elements of two matrices should be added

Therefore, we get

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 137

Therefore,
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 138

(ii) Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 139

Therefore,

Find each of the following:

(i) 2A – 3B

(ii) B – 4C

(iii) 3A – C

(iv) 3A – 2B + 3C

Solution:

(i) Given

First we have to compute 2A

Now by computing 3B we get,

Now by we have to compute 2A – 3B we get

Therefore

(ii) Given
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 149

First we have to compute 4C,

Now,

Therefore we get,

(iii) Given

First we have to compute 3A,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 154

Now,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 155

Therefore,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 156

(iv) Given

First we have to compute 3A

Now we have to compute 2B

By computing 3C we get,

Therefore,

(i) A + B and B + C

(ii) 2B + 3A and 3C – 4B

Solution:

(i) Consider A + B,

A + B is not possible because matrix A is an order of 2 x 2 and Matrix B is an order of 2 x 3, so the Sum of the matrix is only possible when their order is same.

Now consider B + C

(ii) Consider 2B + 3A

2B + 3A also does not exist because the order of matrix B and matrix A is different, so we cannot find the sum of these matrix.

Now consider 3C – 4B,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 165
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 166

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 167

Now we have to compute 2A – 3B + 4C

5. If A = diag (2 -5 9), B = diag (1 1 -4) and C = diag (-6 3 4), find

(i) A – 2B

(ii) B + C – 2A

(iii) 2A + 3B – 5C

Solution:

(i) Given A = diag (2 -5 9), B = diag (1 1 -4) and C = diag (-6 3 4)

(ii) Given A = diag (2 -5 9), B = diag (1 1 -4) and C = diag (-6 3 4)

We have to find B + C – 2A

Here,

Now we have to compute B + C – 2A

(iii) Given A = diag (2 -5 9), B = diag (1 1 -4) and C = diag (-6 3 4)

Now we have to find 2A + 3B – 5C

Here,

Now consider 2A + 3B – 5C

6. Given the matrices

Verify that (A + B) + C = A + (B + C)

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 176

Now we have to verify (A + B) + C = A + (B + C)

First consider LHS, (A + B) + C,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image177
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 178

Now consider RHS, that is A + (B + C)

Therefore LHS = RHS

Hence (A + B) + C = A + (B + C)

7. Find the matrices X and Y,

Solution:

Consider,

Now by simplifying we get,

Therefore,

Again consider,

Now by simplifying we get,

Therefore,

Solution:

Given

Now by transposing, we get

Therefore,

Solution:

Given

Now by multiplying equation (1) and (2) we get,

Now by adding equation (2) and (3) we get,

Now by substituting X in equation (2) we get,

Solution:

Consider

Now, again consider

Therefore,

And


Chapter 5 Algebra of Matrices Ex 5.3

1. Compute the indicated products:

Solution:

(i) Consider

On simplification we get,

(ii) Consider

On simplification we get,

(iii) Consider

On simplification we get,

2. Show that AB ≠ BA in each of the following cases:

Solution:

(i) Consider,

Again consider,

From equation (1) and (2), it is clear that

AB ≠ BA

(ii) Consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 218

Now again consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 219

From equation (1) and (2), it is clear that

AB ≠ BA

(iii) Consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 220

Now again consider,

From equation (1) and (2), it is clear that

AB ≠ BA

3. Compute the products AB and BA whichever exists in each of the following cases:

Solution:

(i) Consider,

BA does not exist

Because the number of columns in B is greater than the rows in A

(ii) Consider,

Again consider,

(iii) Consider,

AB = 0+(−1)+6+6

AB = 11

Again consider,

(iv) Consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 231
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 232

4. Show that AB ≠ BA in each of the following cases:

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 233
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 234

Solution:

(i) Consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 235

Again consider,

From equation (1) and (2), it is clear that

AB ≠ BA

(ii) Consider,

Again consider,

From equation (1) and (2) it is clear that,

AB ≠ BA

5. Evaluate the following:

Solution:

(i) Given

First we have to add first two matrix,

On simplifying, we get

(ii) Given,

First we have to multiply first two given matrix,

= 82

(iii) Given

First we have subtract the matrix which is inside the bracket,

Solution:

Given

We know that,

Again we know that,

Now, consider,

We have,

Now, from equation (1), (2), (3) and (4), it is clear that A= B2= C2= I2

Solution:

Given

Consider,

Now we have to find,

Solution:

Given

Consider,

Hence the proof.

Solution:

Given,

Consider,

Again consider,

Hence the proof.

Solution:

Given,

Consider,

Hence the proof.

Solution:

Given,

Consider,

We know that,

Again we have,

Solution:

Given,

Consider,

Again consider,

From equation (1) and (2) AB = BA = 03×3

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 285

Consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 286

Again consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 287

From equation (1) and (2) AB = BA = 03×3

Solution:

Given

Now consider,

Therefore AB = A

Again consider, BA we get,

Hence BA = B

Hence the proof.

Solution:

Given,

Consider,

Now again consider, B2

Now by subtracting equation (2) from equation (1) we get,

16. For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A (BC)

Solution:

(i) Given

Consider,

Now consider RHS,

From equation (1) and (2), it is clear that (AB) C = A (BC)

(ii) Given,

Consider the LHS,

Now consider RHS,

From equation (1) and (2), it is clear that (AB) C = A (BC)

17. For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC.

Solution:

(i) Given

Consider LHS,

Now consider RHS,

From equation (1) and (2), it is clear that A (B + C) = AB + AC

(ii) Given,

Consider the LHS

Now consider RHS,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 317
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 318
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 319

Solution:

Given,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 320

Consider the LHS,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 321

Now consider RHS

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 322

From the above equations LHS = RHS

Therefore, A (B – C) = AB – AC.

19. Compute the elements a43 and a22 of the matrix:

Solution:

Given

From the above matrix, a43 = 8and a22 = 0

Solution:

Given

Consider,

Again consider,

Now, consider the RHS

Therefore, A3 = p I + q A + rA2

Hence the proof.

21. If ω is a complex cube root of unity, show that

Solution:

Given

It is also given that ω is a complex cube root of unity,

Consider the LHS,

We know that 1 + ω + ω2 = 0 and ω3 = 1

Now by simplifying we get,

Again by substituting 1 + ω + ω2 = 0 and ω3 = 1 in above matrix we get,

Therefore LHS = RHS

Hence the proof.

Solution:

Given,

Consider A2

Therefore A2 = A

Solution:

Given

Consider A2,

Hence A2 = I3

Solution:

(i) Given

= 2x+1+2+x+3 = 0

= 3x+6 = 0

= 3x = -6

x = -6/3

x = -2

(ii) Given,

On comparing the above matrix we get,

x = 13

Solution:

Given

⇒ (2x+4)x+4(x+2)–1(2x+4) = 0

⇒ 2x2 + 4x + 4x + 8 – 2x – 4 = 0

⇒ 2x2 + 6x + 4 = 0

⇒ 2x2 + 2x + 4x + 4 = 0

⇒ 2x (x + 1) + 4 (x + 1) = 0

⇒ (x + 1) (2x + 4) = 0

⇒ x = -1 or x = -2

Hence, x = -1 or x = -2

Solution:

Given

By multiplying we get,

Solution:

Given

Now we have to prove A2 – A + 2 I = 0

Solution:

Given

Solution:

Given

Hence the proof.

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 372
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 373

Hence the proof.

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 374

Solution:

Given

Solution:

Given

Solution:

Given

Solution:

Given

Solution:

Given

Solution:

Given

I is identity matrix, so

Also given,
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 403

Now, we have to find A2, we get

Now, we will find the matrix for 8A, we get

So,

Substitute corresponding values from eqn (i) and (ii), we get

And to satisfy the above condition of equality, the corresponding entries of the matrices should be equal

Hence,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 413

Therefore, the value of k is 7

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 414

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 415

To show that f (A) = 0

Substitute x = A in f(x), we get

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 416

I is identity matrix, so

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 417

Now, we will find the matrix for A2, we get

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 418

Now, we will find the matrix for 2A, we get

Substitute corresponding values from eqn (ii) and (iii) in eqn (i), we get

So,

Hence Proved

Solution:

Given

So

Now, we will find the matrix for A2, we get

Now, we will find the matrix for λ A, we get

But given, A2 = λ A + μ I

Substitute corresponding values from equation (i) and (ii), we get

And to satisfy the above condition of equality, the corresponding entries of the matrices should be equal

Hence, λ + 0 = 4 ⇒ λ = 4

And also, 2λ + μ = 7

Substituting the obtained value of λ in the above equation, we get

2(4) + μ = 7 ⇒ 8 + μ = 7 ⇒ μ = – 1

Therefore, the value of λ and μ are 4 and – 1 respectively

39. Find the value of x for which the matrix product

Solution:

We know,

is identity matrix of size 3.

So according to the given criteria

Now we will multiply the two matrices on LHS using the formula cij = ai1b1j + ai2b2j + … + ain bnj, we get

And to satisfy the above condition of equality, the corresponding entries of the matrices should be equal

So we get

So the value of x is
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 447


Chapter 5 Algebra of Matrices Ex 5.4

(i) (2A)T = 2 AT

(ii) (A + B)T = AT + BT

(iii) (A – B)T = AT – BT

(iv) (AB)T = BT AT

Solution:

(i) Given

Consider,

Put the value of A

L.H.S = R.H.S

(ii) Given

Consider,

L.H.S = R.H.S

Hence proved.

(iii) Given

Consider,

L.H.S = R.H.S

(iv) Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 471

So,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 472
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 473

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 474
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 475
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 476
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 477

L.H.S = R.H.S

So,
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 479

(i) A + B)T = AT + BT

(ii) (AB)T = BT AT

(iii) (2A)T = 2 AT

Solution:

(i) Given

Consider,

L.H.S = R.H.S

So,
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 487

(ii) Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 488

Consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 489
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 490
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 491
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 492
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 493

L.H.S = R.H.S

So,
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 494

(iii) Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 495

Consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 496
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 497
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 498
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 499

L.H.S = R.H.S

So,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 500
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 501

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 502

Consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 503
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 504
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 505
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 506

L.H.S = R.H.S

So,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 507
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 508

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 509

Now we have to find (AB)T

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 510
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 511
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 512
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 513

So,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 514

Chapter 5 Algebra of Matrices Ex 5.5

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 515

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 516

Consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 517
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 518
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 519

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 520 … (i)

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 521
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 522

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 523 … (ii)

From (i) and (ii) we can see that

A skew-symmetric matrix is a square matrix whose transpose equal to its negative, that is,

X = – XT

So, A – AT is a skew-symmetric.

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 524

Solution:

Given

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 525

Consider,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 526 … (i)

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 527
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 528

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 529 … (ii)

From (i) and (ii) we can see that

A skew-symmetric matrix is a square matrix whose transpose equals its negative, that is,

X = – XT

So, A – AT is a skew-symmetric matrix.

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 530

Solution:

Given,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 531 is a symmetric matrix.

We know that A = [aij]m × n is a symmetric matrix if aij = aji

So,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 532
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 533
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 534
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 535

Hence, x = 4, y = 2, t = -3 and z can have any value.

4. Let. Find matrices X and Y such that X + Y = A, where X is a symmetric and y is a skew-symmetric matrix.

Solution:

Given,
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 537 Then
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 538

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 539
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 540
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 541
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 542
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 543

Now,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 544
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 545
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 546
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 547
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 548

Now,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 549

X is a symmetric matrix.

Now,

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 550
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 551

-Y T = Y

Y is a skew symmetric matrix.

RD Sharma Solutions for Class 12 Maths Chapter 5 Image 552
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 553
RD Sharma Solutions for Class 12 Maths Chapter 5 Image 554

Hence, X + Y = A

Read More

RD SHARMA SOLUTION CHAPTER-3 Binary Operations I CLASS 12TH MATHEMATICS-EDUGROWN

Chapter 3 Binary Operations Ex 3.1

1. Determine whether the following operation define a binary operation on the given set or not:

(i) ‘*’ on N defined by a * b = ab for all a, b ∈ N.

(ii) ‘O’ on Z defined by a O b = ab for all a, b ∈ Z.

(iii)  ‘*’ on N defined by a * b = a + b – 2 for all a, b ∈ N

(iv) ‘×6‘ on S = {1, 2, 3, 4, 5} defined by a ×6 b = Remainder when a b is divided by 6.

(v) ‘+6’ on S = {0, 1, 2, 3, 4, 5} defined by a +6 b

RD Sharma Solutions for Class 12 Maths Chapter 3 Binary Operation Image 1

(vi) ‘⊙’ on N defined by a ⊙ b= ab + ba for all a, b ∈ N

(vii) ‘*’ on Q defined by a * b = (a – 1)/ (b + 1) for all a, b ∈ Q

Solution:

(i) Given ‘*’ on N defined by a * b = ab for all a, b ∈ N.

Let a, b ∈ N. Then,

a∈ N      [∵ ab≠0 and a, b is positive integer]

⇒ a * b ∈ N

Therefore,

a * b ∈ N, ∀ a, b ∈ N

Thus, * is a binary operation on N.

(ii) Given ‘O’ on Z defined by a O b = ab for all a, b ∈ Z.

Both a = 3 and b = -1 belong to Z.

⇒ a * b = 3-1

= 1/3 ∉ Z

Thus, * is not a binary operation on Z.

(iii)  Given ‘*’ on N defined by a * b = a + b – 2 for all a, b ∈ N

If a = 1 and b = 1,

a * b = a + b – 2

= 1 + 1 – 2

= 0 ∉ N

Thus, there exist a = 1 and b = 1 such that a * b ∉ N

So, * is not a binary operation on N.

(iv) Given ‘×6‘ on S = {1, 2, 3, 4, 5} defined by a ×6 b = Remainder when a b is divided by 6.

Consider the composition table,

X612345
112345
224024
330303
442042
554321

Here all the elements of the table are not in S.

⇒ For a = 2 and b = 3,

a ×6 b = 2 ×6 3 = remainder when 6 divided by 6 = 0 ≠ S

Thus, ×6 is not a binary operation on S.

(v) Given ‘+6’ on S = {0, 1, 2, 3, 4, 5} defined by a +6 b

RD Sharma Solutions for Class 12 Maths Chapter 3 Binary Operation Image 2

Consider the composition table,

+6012345
0012345
1123450
2234501
3345012
4450123
5501234

Here all the elements of the table are not in S.

⇒ For a = 2 and b = 3,

a ×6 b = 2 ×6 3 = remainder when 6 divided by 6 = 0 ≠ Thus, ×6 is not a binary operation on S.

(vi) Given ‘⊙’ on N defined by a ⊙ b= ab + ba for all a, b ∈ N

Let a, b ∈ N. Then,

ab, ba ∈ N

⇒ ab + ba ∈ N      ∵AdditionisbinaryoperationonN

⇒ a ⊙ b ∈ N

Thus, ⊙ is a binary operation on N.

(vii) Given ‘*’ on Q defined by a * b = (a – 1)/ (b + 1) for all a, b ∈ Q

If a = 2 and b = -1 in Q,

a * b = (a – 1)/ (b + 1)

= (2 – 1)/ (- 1 + 1)

= 1/0 whichisnotdefined

For a = 2 and b = -1

a * b does not belongs to Q

So, * is not a binary operation in Q.

2. Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
(i) On Z+, defined * by a * b = a – b

(ii) On Z+, define * by a*b = ab

(iii) On R, define * by a*b = ab2

(iv) On Z+ define * by a * b = |a − b|

(v) On Zdefine * by a * b = a

(vi) On R, define * by a * b = a + 4b2

Here, Z+ denotes the set of all non-negative integers.

Solution:

(i) Given On Z+, defined * by a * b = a – b

If a = 1 and b = 2 in Z+, then

a * b = a – b

= 1 – 2

= -1 ∉ Z[because Z+ is the set of non-negative integers]

For a = 1 and b = 2,

a * b ∉ Z+

Thus, * is not a binary operation on Z+.

(ii) Given Z+, define * by a*b = a b

Let a, b ∈ Z+

⇒ a, b ∈ Z+

⇒ a * b ∈ Z+

Thus, * is a binary operation on R.

(iii) Given on R, define by a*b = ab2

Let a, b ∈ R

⇒ a, b2 ∈ R

⇒ ab2 ∈ R

⇒ a * b ∈ R

Thus, * is a binary operation on R.

(iv) Given on Z+ define * by a * b = |a − b|

Let a, b ∈ Z+

⇒ | a – b | ∈ Z+

⇒ a * b ∈ Z+

Therefore,

a * b ∈ Z+, ∀ a, b ∈ Z+

Thus, * is a binary operation on Z+.

(v) Given on Zdefine * by a * b = a

Let a, b ∈ Z+

⇒ a ∈ Z+

⇒ a * b ∈ Z+

Therefore, a * b ∈ Z+ ∀ a, b ∈ Z+

Thus, * is a binary operation on Z+.

(vi) Given On R, define * by a * b = a + 4b2

Let a, b ∈ R

⇒ a, 4b2 ∈ R

⇒ a + 4b2 ∈ R

⇒ a * b ∈ R

Therefore, a *b ∈ R, ∀ a, b ∈ R

Thus, * is a binary operation on R.

3. Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.

Solution:

Given a * b = 2a + b – 3

3 * 4 = 2 (3) + 4 – 3

= 6 + 4 – 3

= 7

4. Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.

Solution:

LCM12345
112345
2226410
33531215
44412420
551015205

In the given composition table, all the elements are not in the set {1, 2, 3, 4, 5}.

If we consider a = 2 and b = 3, a * b = LCM of a and b = 6 ∉ {1, 2, 3, 4, 5}.

Thus, * is not a binary operation on {1, 2, 3, 4, 5}.

5. Let S = {a, b, c}. Find the total number of binary operations on S.

Solution:

Number of binary operations on a set with n elements is (n^{n^{2}})

Here, S = {a, b, c}

Number of elements in S = 3

Number of binary operations on a set with 3 elements is (3^{3^{2}})

Chapter 3 Binary Operations Ex 3.2

1. Let ‘*’ be a binary operation on N defined by a * b = l.c.m. (a, b) for all a, b ∈ N
(i) Find 2 * 4, 3 * 5, 1 * 6.

(ii) Check the commutativity and associativity of ‘*’ on N.

Solution:

(i) Given a * b = 1.c.m. (a, b)

2 * 4 = l.c.m. (2, 4)

= 4

3 * 5 = l.c.m. (3, 5)

= 15

1 * 6 = l.c.m. (1, 6)

= 6

(ii) We have to prove commutativity of *

Let a, b ∈ N

a * b = l.c.m (a, b)

= l.c.m (b, a)

= b * a

Therefore

a * b = b * a ∀ a, b ∈ N

Thus * is commutative on N.

Now we have to prove associativity of *

Let a, b, c ∈ N

a * (b * c ) = a * l.c.m. (b, c)

= l.c.m. (a, (b, c))

= l.c.m (a, b, c)

(a * b) * c = l.c.m. (a, b) * c

= l.c.m. ((a, b), c)

= l.c.m. (a, b, c)

Therefore

(a * (b * c) = (a * b) * c, ∀ a, b , c ∈ N

Thus, * is associative on N.

2. Determine which of the following binary operation is associative and which is commutative:

(i) * on N defined by a * b = 1 for all a, b ∈ N

(ii) * on Q defined by a * b = (a + b)/2 for all a, b ∈ Q

Solution:

(i) We have to prove commutativity of *

Let a, b ∈ N

a * b = 1

b * a = 1

Therefore,

a * b = b * a, for all a, b ∈ N

Thus * is commutative on N.

Now we have to prove associativity of *

Let a, b, c ∈ N

Then a * (b * c) = a * (1)

= 1

(a * b) *c = (1) * c

= 1

Therefore a * (b * c) = (a * b) *c for all a, b, c ∈ N

Thus, * is associative on N.

(ii) First we have to prove commutativity of *

Let a, b ∈ N

a * b = (a + b)/2

= (b + a)/2

= b * a

Therefore, a * b = b * a, ∀ a, b ∈ N

Thus * is commutative on N.

Now we have to prove associativity of *

Let a, b, c ∈ N

a * (b * c) = a * (b + c)/2

= a+(b+c)/2

= (2a + b + c)/4

Now, (a * b) * c = (a + b)/2 * c

= (a+b)/2+c /2

= (a + b + 2c)/4

Thus, a * (b * c) ≠ (a * b) * c

If a = 1, b= 2, c = 3

1 * (2 * 3) = 1 * (2 + 3)/2

= 1 * (5/2)

= 1+(5/2)/2

= 7/4

(1 * 2) * 3 = (1 + 2)/2 * 3

= 3/2 * 3

= (3/2)+3/2

= 4/9

Therefore, there exist a = 1, b = 2, c = 3 ∈ N such that a * (b * c) ≠ (a * b) * c

Thus, * is not associative on N.

3. Let A be any set containing more than one element. Let ‘*’ be a binary operation on A defined by a * b = b for all a, b ∈ A Is ‘*’ commutative or associative on A?

Solution:

Let a, b ∈ A

Then, a * b = b

b * a = a

Therefore a * b ≠ b * a

Thus, * is not commutative on A

Now we have to check associativity:

Let a, b, c ∈ A

a * (b * c) = a * c

= c

Therefore

a * (b * c) = (a * b) * c, ∀ a, b, c ∈ A

Thus, * is associative on A

4. Check the commutativity and associativity of each of the following binary operations:

(i) ‘*’ on Z defined by a * b = a + b + a b for all a, b ∈ Z 

(ii) ‘*’ on N defined by a * b = 2ab for all a, b ∈ N

(iii) ‘*’ on Q defined by a * b = a – b for all a, b ∈ Q

(iv) ‘⊙’ on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q

(v) ‘o’ on Q defined by a o b = (ab/2) for all a, b ∈ Q

(vi) ‘*’ on Q defined by a * b = ab2 for all a, b ∈ Q

(vii) ‘*’ on Q defined by a * b = a + a b for all a, b ∈ Q

(viii) ‘*’ on R defined by a * b = a + b -7 for all a, b ∈ R

(ix) ‘*’ on Q defined by a * b = (a – b)2 for all a, b ∈ Q

(x) ‘*’ on Q defined by a * b = a b + 1 for all a, b ∈ Q

(xi) ‘*’ on N defined by a * b = ab for all a, b ∈ N

(xii) ‘*’ on Z defined by a * b = a – b for all a, b ∈ Z

(xiii) ‘*’ on Q defined by a * b = (ab/4) for all a, b ∈ Q

(xiv) ‘*’ on Z defined by a * b = a + b – ab for all a, b ∈ Z

(xv) ‘*’ on Q defined by a * b = gcd (a, b) for all a, b ∈ Q

Solution:

(i) First we have to check commutativity of *

Let a, b ∈ Z

Then a * b = a + b + ab

= b + a + ba

= b * a

Therefore,

a * b = b * a, ∀ a, b ∈ Z

Now we have to prove associativity of *

Let a, b, c ∈ Z, Then,

a * (b * c) = a * (b + c + b c)

= a + (b + c + b c) + a (b + c + b c)

= a + b + c + b c + a b + a c + a b c

(a * b) * c = (a + b + a b) * c

= a + b + a b + c + (a + b + a b) c

= a + b + a b + c + a c + b c + a b c

Therefore,

a * (b * c) = (a * b) * c, ∀ a, b, c ∈ Z

Thus, * is associative on Z.

(ii) First we have to check commutativity of *

Let a, b ∈ N

a * b = 2ab

= 2ba

= b * a

Therefore, a * b = b * a, ∀ a, b ∈ N

Thus, * is commutative on N

Now we have to check associativity of *

Let a, b, c ∈ N

Then, a * (b * c) = a * (2bc)

=(2^{a*2^{bc}})

(a * b) * c = (2ab) * c

=(2^{ab*2^{c}})

Therefore, a * (b * c) ≠ (a * b) * c

Thus, * is not associative on N

(iii) First we have to check commutativity of *

Let a, b ∈ Q, then

a * b = a – b

b * a = b – a

Therefore, a * b ≠ b * a

Thus, * is not commutative on Q

Now we have to check associativity of *

Let a, b, c ∈ Q, then

a * (b * c) = a * (b – c)

= a – (b – c)

= a – b + c

(a * b) * c = (a – b) * c

= a – b – c

Therefore,

a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Q

(iv) First we have to check commutativity of ⊙

Let a, b ∈ Q, then

a ⊙ b = a2 + b2

= b2 + a2

= b ⊙ a

Therefore, a ⊙ b = b ⊙ a, ∀ a, b ∈ Q

Thus, ⊙ on Q

Now we have to check associativity of ⊙

Let a, b, c ∈ Q, then

a ⊙ (b ⊙ c) = a ⊙ (b2 + c2)

= a2 + (b2 + c2)2

= a2 + b4 + c4 + 2b2c2

(a ⊙ b) ⊙ c = (a2 + b2) ⊙ c

= (a2 + b2)2 + c2

= a4 + b4 + 2a2b2 + c2

Therefore,

(a ⊙ b) ⊙ c ≠ a ⊙ (b ⊙ c)

Thus, ⊙ is not associative on Q.

(v) First we have to check commutativity of o

Let a, b ∈ Q, then

a o b = (ab/2)

= (b a/2)

= b o a

Therefore, a o b = b o a, ∀ a, b ∈ Q

Thus, o is commutative on Q

Now we have to check associativity of o

Let a, b, c ∈ Q, then

a o (b o c) = a o (b c/2)

= a(bc/2)/2

= a(bc/2)/2

= (a b c)/4

(a o b) o c = (ab/2) o c

= (ab/2)c /2

= (a b c)/4

Therefore a o (b o c) = (a o b) o c, ∀ a, b, c ∈ Q

Thus, o is associative on Q.

(vi) First we have to check commutativity of *

Let a, b ∈ Q, then

a * b = ab2

b * a = ba2

Therefore,

a * b ≠ b * a

Thus, * is not commutative on Q

Now we have to check associativity of *

Let a, b, c ∈ Q, then

a * (b * c) = a * (bc2)

= a (bc2)2

= ab2 c4

(a * b) * c = (ab2) * c

= ab2c2

Therefore a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Q.

(vii) First we have to check commutativity of *

Let a, b ∈ Q, then

a * b = a + ab

b * a = b + ba

= b + ab

Therefore, a * b ≠ b * a

Thus, * is not commutative on Q.

Now we have to prove associativity on Q.

Let a, b, c ∈ Q, then

a * (b * c) = a * (b + b c)

= a + a (b + b c)

= a + ab + a b c

(a * b) * c = (a + a b) * c

= (a + a b) + (a + a b) c

= a + a b + a c + a b c

Therefore a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Q.

(viii) First we have to check commutativity of *

Let a, b ∈ R, then

a * b = a + b – 7

= b + a – 7

= b * a

Therefore,

a * b = b * a, for all a, b ∈ R

Thus, * is commutative on R

Now we have to prove associativity of * on R.

Let a, b, c ∈ R, then

a * (b * c) = a * (b + c – 7)

= a + b + c -7 -7

= a + b + c – 14

(a * b) * c = (a + b – 7) * c

= a + b – 7 + c – 7

= a + b + c – 14

Therefore,

a * (b * c ) = (a * b) * c, for all a, b, c ∈ R

Thus, * is associative on R.

(ix) First we have to check commutativity of *

Let a, b ∈ Q, then

a * b = (a – b)2

= (b – a)2

= b * a

Therefore,

a * b = b * a, for all a, b ∈ Q

Thus, * is commutative on Q

Now we have to prove associativity of * on Q

Let a, b, c ∈ Q, then

a * (b * c) = a * (b – c)2

= a * (b2 + c2 – 2 b c)

= (a – b2 – c2 + 2bc)2

(a * b) * c = (a – b)2 * c

= (a2 + b2 – 2ab) * c

= (a2 + b2 – 2ab – c)2

Therefore, a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Q.

(x) First we have to check commutativity of *

Let a, b ∈ Q, then

a * b = ab + 1

= ba + 1

= b * a

Therefore

a * b = b * a, for all a, b ∈ Q

Thus, * is commutative on Q

Now we have to prove associativity of * on Q

Let a, b, c ∈ Q, then

a * (b * c) = a * (bc + 1)

= a (b c + 1) + 1

= a b c + a + 1

(a * b) * c = (ab + 1) * c

= (ab + 1) c + 1

= a b c + c + 1

Therefore, a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Q.

(xi) First we have to check commutativity of *

Let a, b ∈ N, then

a * b = ab

b * a = ba

Therefore, a * b ≠ b * a

Thus, * is not commutative on N.

Now we have to check associativity of *

a * (b * c) = a * (bc)

=
RD Sharma Solutions for Class 12 Maths Chapter 3 Binary Operation Image 7

(a * b) * c = (ab) * c

= (ab)c

= abc

Therefore, a * (b * c) ≠ (a * b) * c

Thus, * is not associative on N

(xii) First we have to check commutativity of *

Let a, b ∈ Z, then

a * b = a – b

b * a = b – a

Therefore,

a * b ≠ b * a

Thus, * is not commutative on Z.

Now we have to check associativity of *

Let a, b, c ∈ Z, then

a * (b * c) = a * (b – c)

= a – (b – c)

= a – (b + c)

(a * b) * c = (a – b) – c

= a – b – c

Therefore, a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Z

(xiii) First we have to check commutativity of *

Let a, b ∈ Q, then

a * b = (ab/4)

= (ba/4)

= b * a

Therefore, a * b = b * a, for all a, b ∈ Q

Thus, * is commutative on Q

Now we have to check associativity of *

Let a, b, c ∈ Q, then

a * (b * c) = a * (b c/4)

= a(bc/4)/4

= (a b c/16)

(a * b) * c = (ab/4) * c

= (ab/4)c/4

= a b c/16

Therefore,

a * (b * c) = (a * b) * c for all a, b, c ∈ Q

Thus, * is associative on Q.

(xiv) First we have to check commutativity of *

Let a, b ∈ Z, then

a * b = a + b – ab

= b + a – ba

= b * a

Therefore, a * b = b * a, for all a, b ∈ Z

Thus, * is commutative on Z.

Now we have to check associativity of *

Let a, b, c ∈ Z

a * (b * c) = a * (b + c – b c)

= a + b + c- b c – ab – ac + a b c

(a * b) * c = (a + b – a b) c

= a + b – ab + c – (a + b – ab) c

= a + b + c – ab – ac – bc + a b c

Therefore,

a * (b * c) = (a * b) * c, for all a, b, c ∈ Z

Thus, * is associative on Z.

(xv) First we have to check commutativity of *

Let a, b ∈ N, then

a * b = gcd (a, b)

= gcd (b, a)

= b * a

Therefore, a * b = b * a, for all a, b ∈ N

Thus, * is commutative on N.

Now we have to check associativity of *

Let a, b, c ∈ N

a * (b * c) = a * gcd(a,b)

= gcd (a, b, c)

(a * b) * c = gcd(a,b) * c

= gcd (a, b, c)

Therefore,

a * (b * c) = (a * b) * c, for all a, b, c ∈ N

Thus, * is associative on N.

5. If the binary operation o is defined by a0b = a + b – ab on the set Q – {-1} of all rational numbers other than 1, show that o is commutative on Q – 1.

Solution:

Let a, b ∈ Q – {-1}.

Then aob = a + b – ab

= b+ a – ba

= boa

Therefore,

aob = boa for all a, b ∈ Q – {-1}

Thus, o is commutative on Q – {-1}

6. Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative?

Solution:

Let a, b ∈ Z

a * b = 3a + 7b

b * a = 3b + 7a

Thus, a * b ≠ b * a

Let a = 1 and b = 2

1 * 2 = 3 × 1 + 7 × 2

= 3 + 14

= 17

2 * 1 = 3 × 2 + 7 × 1

= 6 + 7

= 13

Therefore, there exist a = 1, b = 2 ∈ Z such that a * b ≠ b * a

Thus, * is not commutative on Z.

7. On the set Z of integers a binary operation * is defined by a 8 b = ab + 1 for all a, b ∈ Z. Prove that * is not associative on Z.

Solution:

Let a, b, c ∈ Z

a * (b * c) = a * (bc + 1)

= a (bc + 1) + 1

= a b c + a + 1

(a * b) * c = (ab+ 1) * c

= (ab + 1) c + 1

= a b c + c + 1

Thus, a * (b * c) ≠ (a * b) * c

Thus, * is not associative on Z.

Chapter 3 Binary Operations Ex 3.3

1. Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.

Solution:

Let e be the identity element in I+ with respect to * such that

a * e = a = e * a, ∀ a ∈ I+

a * e = a and e * a = a, ∀ a ∈ I+

a + e = a and e + a = a, ∀ a ∈ I+

e = 0, ∀ a ∈ I+

Thus, 0 is the identity element in I+ with respect to *.

2. Find the identity element in the set of all rational numbers except – 1 with respect to * defined by a * b = a + b + ab

Solution:

Let e be the identity element in I+ with respect to * such that

a * e = a = e * a, ∀ a ∈ Q – {-1}

a * e = a and e * a = a, ∀ a ∈ Q – {-1}

a + e + ae = a and e + a + ea = a, ∀ a ∈ Q – {-1}

e + ae = 0 and e + ea = 0, ∀ a ∈ Q – {-1}

e (1 + a) = 0 and e (1 + a) = 0, ∀ a ∈ Q – {-1}

e = 0, ∀ a ∈ Q – {-1} becauseanotequalto−1

Thus, 0 is the identity element in Q – {-1} with respect to *.


Chapter 3 Binary Operations Ex 3.4

1. Let * be a binary operation on Z defined by a * b = a + b – 4 for all a, b ∈ Z.

(i) Show that * is both commutative and associative.

(ii) Find the identity element in Z

(iii) Find the invertible element in Z.

Solution:

(i) First we have to prove commutativity of *

Let a, b ∈ Z. then,

a * b = a + b – 4

= b + a – 4

= b * a

Therefore,

a * b = b * a, ∀ a, b ∈ Z

Thus, * is commutative on Z.

Now we have to prove associativity of Z.

Let a, b, c ∈ Z. then,

a * (b * c) = a * (b + c – 4)

= a + b + c -4 – 4

= a + b + c – 8

(a * b) * c = (a + b – 4) * c

= a + b – 4 + c – 4

= a + b + c – 8

Therefore,

a * (b * c) = (a * b) * c, for all a, b, c ∈ Z

Thus, * is associative on Z.

(ii) Let e be the identity element in Z with respect to * such that

a * e = a = e * a ∀ a ∈ Z

a * e = a and e * a = a, ∀ a ∈ Z

a + e – 4 = a and e + a – 4 = a, ∀ a ∈ Z

e = 4, ∀ a ∈ Z

Thus, 4 is the identity element in Z with respect to *.

(iii) Let a ∈ Z and b ∈ Z be the inverse of a. Then,

a * b = e = b * a

a * b = e and b * a = e

a + b – 4 = 4 and b + a – 4 = 4

b = 8 – a ∈ Z

Thus, 8 – a is the inverse of a ∈ Z

2. Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by a * b = (3ab/5) for all a, b ∈ Q0. Show that * is commutative as well as associative. Also, find its identity element, if it exists.

Solution:

First we have to prove commutativity of *

Let a, b ∈ Q0

a * b = (3ab/5)

= (3ba/5)

= b * a

Therefore, a * b = b * a, for all a, b ∈ Q0

Now we have to prove associativity of *

Let a, b, c ∈ Q0

a * (b * c) = a * (3bc/5)

= a(3bc/5) /5

= 3 abc/25

(a * b) * c = (3 ab/5) * c

= (3ab/5)c/ 5

= 3 abc /25

Therefore a * (b * c) = (a * b) * c, for all a, b, c ∈ Q0

Thus * is associative on Q0

Now we have to find the identity element

Let e be the identity element in Z with respect to * such that

a * e = a = e * a ∀ a ∈ Q0

a * e = a and e * a = a, ∀ a ∈ Q0

3ae/5 = a and 3ea/5 = a, ∀ a ∈ Q0

e = 5/3 ∀ a ∈ Qbecauseaisnotequalto0

Thus, 5/3 is the identity element in Q0 with respect to *.

3. Let * be a binary operation on Q – {-1} defined by a * b = a + b + ab for all a, b ∈ Q – {-1}. Then,

(i) Show that * is both commutative and associative on Q – {-1}

(ii) Find the identity element in Q – {-1}

(iii) Show that every element of Q – {-1} is invertible. Also, find inverse of an arbitrary element.

Solution:

(i) First we have to check commutativity of *

Let a, b ∈ Q – {-1}

Then a * b = a + b + ab

= b + a + ba

= b * a

Therefore,

a * b = b * a, ∀ a, b ∈ Q – {-1}

Now we have to prove associativity of *

Let a, b, c ∈ Q – {-1}, Then,

a * (b * c) = a * (b + c + b c)

= a + (b + c + b c) + a (b + c + b c)

= a + b + c + b c + a b + a c + a b c

(a * b) * c = (a + b + a b) * c

= a + b + a b + c + (a + b + a b) c

= a + b + a b + c + a c + b c + a b c

Therefore,

a * (b * c) = (a * b) * c, ∀ a, b, c ∈ Q – {-1}

Thus, * is associative on Q – {-1}.

(ii) Let e be the identity element in I+ with respect to * such that

a * e = a = e * a, ∀ a ∈ Q – {-1}

a * e = a and e * a = a, ∀ a ∈ Q – {-1}

a + e + ae = a and e + a + ea = a, ∀ a ∈ Q – {-1}

e + ae = 0 and e + ea = 0, ∀ a ∈ Q – {-1}

e (1 + a) = 0 and e (1 + a) = 0, ∀ a ∈ Q – {-1}

e = 0, ∀ a ∈ Q – {-1} becauseanotequalto−1

Thus, 0 is the identity element in Q – {-1} with respect to *.

(iii) Let a ∈ Q – {-1} and b ∈ Q – {-1} be the inverse of a. Then,

a * b = e = b * a

a * b = e and b * a = e

a + b + ab = 0 and b + a + ba = 0

b (1 + a) = – a Q – {-1}

b = -a/1 + a Q – {-1} becauseanotequalto−1

Thus, -a/1 + a is the inverse of a ∈ Q – {-1}

4. Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation ‘O’ is defined on A as follows: (a, b) O (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R.

(i) Show that ‘O’ is commutative and associative on A

(ii) Find the identity element in A

(iii) Find the invertible element in A.

Solution:

(i) Let X = (a, b) and Y = (c, d) ∈ A, ∀ a, c ∈ Rand b, d ∈ R

Then, X O Y = (ac, bc + d)

And Y O X = (ca, da + b)

Therefore,

X O Y = Y O X, ∀ X, Y ∈ A

Thus, O is not commutative on A.

Now we have to check associativity of O

Let X = (a, b), Y = (c, d) and Z = (e, f), ∀ a, c, e ∈ Rand b, d, f ∈ R

X O (Y O Z) = (a, b) O (ce, de + f)

= (ace, bce + de + f)

(X O Y) O Z = (ac, bc + d) O (e, f)

= (ace, (bc + d) e + f)

= (ace, bce + de + f)

Therefore, X O (Y O Z) = (X O Y) O Z, ∀ X, Y, Z ∈ A

(ii) Let E = (x, y) be the identity element in A with respect to O, ∀ x ∈ Rand y ∈ R

Such that,

X O E = X = E O X, ∀ X ∈ A

X O E = X and EOX = X

(ax, bx +y) = (a, b) and (xa, ya + b) = (a, b)

Considering (ax, bx + y) = (a, b)

ax = a

x = 1

And bx + y = b

y = 0 sincex=1

Considering (xa, ya + b) = (a, b)

xa = a

x = 1

And ya + b = b

y = 0 sincex=1

Therefore (1, 0) is the identity element in A with respect to O.

(iii) Let F = (m, n) be the inverse in A ∀ m ∈ Rand n ∈ R

X O F = E and F O X = E

(am, bm + n) = (1, 0) and (ma, na + b) = (1, 0)

Considering (am, bm + n) = (1, 0)

am = 1

m = 1/a

And bm + n = 0

n = -b/a sincem=1/a

Considering (ma, na + b) = (1, 0)

ma = 1

m = 1/a

And na + b = 0

n = -b/a

Therefore the inverse of (a, b) ∈ A with respect to O is (1/a, -b/a)

Chapter 3 Binary Operations Ex 3.5

1. Construct the composition table for ×4 on set S = {0, 1, 2, 3}.

Solution:

Given that ×4 on set S = {0, 1, 2, 3}

Here,

1 ×4 1 = remainder obtained by dividing 1 × 1 by 4

= 1

0 ×4 1 = remainder obtained by dividing 0 × 1 by 4

= 0

2 ×4 3 = remainder obtained by dividing 2 × 3 by 4

= 2

3 ×4 3 = remainder obtained by dividing 3 × 3 by 4

= 1

So, the composition table is as follows:

×40123
00000
10123
20202
30321

2. Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}

Solution:

1 +1 = remainder obtained by dividing 1 + 1 by 5

= 2

3 +1 = remainder obtained by dividing 3 + 1 by 5

= 2

4 +1 = remainder obtained by dividing 4 + 1 by 5

= 3

So, the composition table is as follows:

+501234
001234
112340
223401
334012
440123

3. Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.

Solution:

Here,

1 ×1 = remainder obtained by dividing 1 × 1 by 6

= 1

3 ×4 = remainder obtained by dividing 3 × 4 by 6

= 0

4 ×5 = remainder obtained by dividing 4 × 5 by 6

= 2

So, the composition table is as follows:

×6012345
0000000
1012345
2024024
3030303
4042042
5054321

4. Construct the composition table for ×5 on set Z5 = {0, 1, 2, 3, 4}

Solution:

Here,

1 ×1 = remainder obtained by dividing 1 × 1 by 5

= 1

3 ×4 = remainder obtained by dividing 3 × 4 by 5

= 2

4 ×4 = remainder obtained by dividing 4 × 4 by 5

= 1

So, the composition table is as follows:

×501234
000000
101234
202413
303142
404321

5. For the binary operation ×10 set S = {1, 3, 7, 9}, find the inverse of 3.

Solution:

Here,

1 ×10 1 = remainder obtained by dividing 1 × 1 by 10

= 1

3 ×10 7 = remainder obtained by dividing 3 × 7 by 10

= 1

7 ×10 9 = remainder obtained by dividing 7 × 9 by 10

= 3

So, the composition table is as follows:

×101379
11379
33917
77193
99731

From the table we can observe that elements of first row as same as the top-most row.

So, 1 ∈ S is the identity element with respect to ×10

Now we have to find inverse of 3

3 ×10 7 = 1

So the inverse of 3 is 7.

Read More

RD SHARMA SOLUTION CHAPTER-4 Inverse Trigonometric Functions| CLASS 12TH MATHEMATICS-EDUGROWN

Chapter 4 Inverse Trigonometric Functions Ex 4.1

Q1. Find the principal value of the following:

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 1
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 2
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 3
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 4
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 5
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 6

Solution:

C:Users	nluserDesktop4.gif
C:Users	nluserDesktop1.gif

(iii) Given functions can be written as

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 9
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 10

(iv) The given question can be written as

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 11

(v) Let

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 12

(vi) Let

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 13

2.

(i) 

(ii) 

Solution:

(i) The given question can be written as,

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 16

(ii) Given question can be written as

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 17

Chapter 4 Inverse Trigonometric Functions Ex 4.2

Q1. Find the domain of definition of f(x) = cos -1 (x2 – 4)

Solution:

Given f(x) = cos -1 (x2 – 4)

We know that domain of cos-1 (x2 – 4) lies in the interval −1,1

Therefore, we can write as

-1 ≤ x2 – 4 ≤ 1

4 – 1 ≤ x2 ≤ 1 + 4

3 ≤ x2 ≤ 5

±√ 3 ≤ x ≤ ±√5

– √5 ≤ x ≤ – √3 and √3 ≤ x ≤ √5

Therefore domain of cos-1 (x2 – 4) is −√5,–√3 ∪ √3,√5

Q2. Find the domain of f(x) = cos-1 2x + sin-1 x.

Solution:

Given that f(x) = cos-1 2x + sin-1 x.

Now we have to find the domain of f(x),

We know that domain of cos-1 x lies in the interval −1,1

Also know that domain of sin-1 x lies in the interval −1,1

Therefore, the domain of cos-1 (2x) lies in the interval −1,1

Hence we can write as,

-1 ≤ 2x ≤ 1

– ½ ≤ x ≤ ½

Hence, domain of cos-1(2x) + sin-1 x lies in the interval ½½−½,½

Chapter 4 Inverse Trigonometric Functions Ex 4.3

Q1. Find the principal value of each of the following:

(i) tan-1 (1/√3)

(ii) tan-1 (-1/√3)

(iii) tan-1 (cos (π/2))

(iv) tan-1 (2 cos (2π/3))

Solution:

(i) Given tan-1 (1/√3)

We know that for any x ∈ R, tan-1 represents an angle in (-π/2, π/2) whose tangent is x.

So, tan-1 (1/√3) = an angle in (-π/2, π/2) whose tangent is (1/√3)

But we know that the value is equal to π/6

Therefore tan-1 (1/√3) = π/6

Hence the principal value of tan-1 (1/√3) = π/6

(ii) Given tan-1 (-1/√3)

We know that for any x ∈ R, tan-1 represents an angle in (-π/2, π/2) whose tangent is x.

So, tan-1 (-1/√3) = an angle in (-π/2, π/2) whose tangent is (1/√3)

But we know that the value is equal to -π/6

Therefore tan-1 (-1/√3) = -π/6

Hence the principal value of tan-1 (-1/√3) = – π/6

(iii) Given that tan-1 (cos (π/2))

But we know that cos (π/2) = 0

We know that for any x ∈ R, tan-1 represents an angle in (-π/2, π/2) whose tangent is x.

Therefore tan-1 (0) = 0

Hence the principal value of tan-1 (cos (π/2) is 0.

(iv) Given that tan-1 (2 cos (2π/3))

But we know that cos π/3 = 1/2

So, cos (2π/3) = -1/2

Therefore tan-1 (2 cos (2π/3)) = tan-1 (2 × – ½)

= tan-1(-1)

= – π/4

Hence, the principal value of tan-1 (2 cos (2π/3)) is – π/4

Chapter 4 Inverse Trigonometric Functions Ex 4.4

Q1. Find the principal value of each of the following:

(i) sec-1 (-√2)

(ii) sec-1 (2)

(iii) sec-1 (2 sin (3π/4))

(iv) sec-1 (2 tan (3π/4))

Solution:

(i) Given sec-1 (-√2)

Now let y = sec-1 (-√2)

Sec y = -√2

We know that sec π/4 = √2

Therefore, -sec (π/4) = -√2

= sec (π – π/4)

= sec (3π/4)

Thus the range of principal value of sec-1 is 0,π – {π/2}

And sec (3π/4) = – √2

Hence the principal value of sec-1 (-√2) is 3π/4

(ii) Given sec-1 (2)

Let y = sec-1 (2)

Sec y = 2

= Sec π/3

Therefore the range of principal value of sec-1 is 0,π – {π/2} and sec π/3 = 2

Thus the principal value of sec-1 (2) is π/3

(iii) Given sec-1 (2 sin (3π/4))

But we know that sin (3π/4) = 1/√2

Therefore 2 sin (3π/4) = 2 × 1/√2

2 sin (3π/4) = √2

Therefore by substituting above values in sec-1 (2 sin (3π/4)), we get

Sec-1 (√2)

Let Sec-1 (√2) = y

Sec y = √2

Sec (π/4) = √2

Therefore range of principal value of sec-1 is 0,π – {π/2} and sec (π/4) = √2

Thus the principal value of sec-1 (2 sin (3π/4)) is π/4.

(iv) Given sec-1 (2 tan (3π/4))

But we know that tan (3π/4) = -1

Therefore, 2 tan (3π/4) = 2 × -1

2 tan (3π/4) = -2

By substituting these values in sec-1 (2 tan (3π/4)), we get

Sec-1 (-2)

Now let y = Sec-1 (-2)

Sec y = – 2

– sec (π/3) = -2

= sec (π – π/3)

= sec (2π/3)

Therefore the range of principal value of sec-1 is 0,π – {π/2} and sec (2π/3) = -2

Thus, the principal value of sec-1 (2 tan (3π/4)) is (2π/3).

Chapter 4 Inverse Trigonometric Functions Ex 4.5

Q1. Find the principal values of each of the following:

(i) cosec-1 (-√2)

(ii) cosec-1 (-2)

(iii) cosec-1 (2/√3)

(iv) cosec-1 (2 cos (2π/3))

Solution:

(i) Given cosec-1 (-√2)

Let y = cosec-1 (-√2)

Cosec y = -√2

– Cosec y = √2

– Cosec (π/4) = √2

– Cosec (π/4) = cosec (-π/4) since–cosecθ=cosec(−θ)

The range of principal value of cosec-1 −π/2,π/2 – {0} and cosec (-π/4) = – √2

Cosec (-π/4) = – √2

Therefore the principal value of cosec-1 (-√2) is – π/4

(ii) Given cosec-1 (-2)

Let y = cosec-1 (-2)

Cosec y = -2

– Cosec y = 2

– Cosec (π/6) = 2

– Cosec (π/6) = cosec (-π/6) since–cosecθ=cosec(−θ)

The range of principal value of cosec-1 −π/2,π/2 – {0} and cosec (-π/6) = – 2

Cosec (-π/6) = – 2

Therefore the principal value of cosec-1 (-2) is – π/6

(iii) Given cosec-1 (2/√3)

Let y = cosec-1 (2/√3)

Cosec y = (2/√3)

Cosec (π/3) = (2/√3)

Therefore range of principal value of cosec-1 is −π/2,π/2 – {0} and cosec (π/3) = (2/√3)

Thus, the principal value of cosec-1 (2/√3) is π/3

(iv) Given cosec-1 (2 cos (2π/3))

But we know that cos (2π/3) = – ½

Therefore 2 cos (2π/3) = 2 × – ½

2 cos (2π/3) = -1

By substituting these values in cosec-1 (2 cos (2π/3)) we get,

Cosec-1 (-1)

Let y = cosec-1 (-1)

– Cosec y = 1

– Cosec (π/2) = cosec (-π/2) since–cosecθ=cosec(−θ)

The range of principal value of cosec-1 −π/2,π/2 – {0} and cosec (-π/2) = – 1

Cosec (-π/2) = – 1

Therefore the principal value of cosec-1 (2 cos (2π/3)) is – π/2

Chapter 4 Inverse Trigonometric Functions Ex 4.6

Q1. Find the principal values of each of the following:

(i) cot-1(-√3)

(ii) Cot-1(√3)

(iii) cot-1(-1/√3)

(iv) cot-1(tan 3π/4)

Solution:

(i) Given cot-1(-√3)

Let y = cot-1(-√3)

– Cot (π/6) = √3

= Cot (π – π/6)

= cot (5π/6)

The range of principal value of cot-1 is (0, π) and cot (5 π/6) = – √3

Thus, the principal value of cot-1 (- √3) is 5π/6

(ii) Given Cot-1(√3)

Let y = cot-1(√3)

Cot (π/6) = √3

The range of principal value of cot-1 is (0, π) and

Thus, the principal value of cot-1 (√3) is π/6

(iii) Given cot-1(-1/√3)

Let y = cot-1(-1/√3)

Cot y = (-1/√3)

– Cot (π/3) = 1/√3

= Cot (π – π/3)

= cot (2π/3)

The range of principal value of cot-1(0, π) and cot (2π/3) = – 1/√3

Therefore the principal value of cot-1(-1/√3) is 2π/3

(iv) Given cot-1(tan 3π/4)

But we know that tan 3π/4 = -1

By substituting this value in cot-1(tan 3π/4) we get

Cot-1(-1)

Now, let y = cot-1(-1)

Cot y = (-1)

– Cot (π/4) = 1

= Cot (π – π/4)

= cot (3π/4)

The range of principal value of cot-1(0, π) and cot (3π/4) = – 1

Therefore the principal value of cot-1(tan 3π/4) is 3π/4

Chapter 4 Inverse Trigonometric Functions Ex 4.7

Q1. Evaluate each of the following:

(i) sin-1(sin π/6)

(ii) sin-1(sin 7π/6)

(iii) sin-1(sin 5π/6)

(iv) sin-1(sin 13π/7)

(v) sin-1(sin 17π/8)

(vi) sin-1{(sin – 17π/8)}

(vii) sin-1(sin 3)

(viii) sin-1(sin 4)

(ix) sin-1(sin 12)

(x) sin-1(sin 2)

Solution:

(i) Given sin-1(sin π/6)

We know that the value of sin π/6 is ½

By substituting this value in sin-1(sin π/6)

We get, sin-1 (1/2)

Now let y = sin-1 (1/2)

Sin (π/6) = ½

The range of principal value of sin-1(-π/2, π/2) and sin (π/6) = ½

Therefore sin-1(sin π/6) = π/6

(ii) Given sin-1(sin 7π/6)

But we know that sin 7π/6 = – ½

By substituting this in sin-1(sin 7π/6) we get,

Sin-1 (-1/2)

Now let y = sin-1 (-1/2)

– Sin y = ½

– Sin (π/6) = ½

– Sin (π/6) = sin (- π/6)

The range of principal value of sin-1(-π/2, π/2) and sin (- π/6) = – ½

Therefore sin-1(sin 7π/6) = – π/6

(iii) Given sin-1(sin 5π/6)

We know that the value of sin 5π/6 is ½

By substituting this value in sin-1(sin 5π/6)

We get, sin-1 (1/2)

Now let y = sin-1 (1/2)

Sin (π/6) = ½

The range of principal value of sin-1(-π/2, π/2) and sin (π/6) = ½

Therefore sin-1(sin 5π/6) = π/6

(iv) Given sin-1(sin 13π/7)

Given question can be written as sin (2π – π/7)

Sin (2π – π/7) can be written as sin (-π/7) sincesin(2π–θ)=sin(−θ)

By substituting these values in sin-1(sin 13π/7) we get sin-1(sin – π/7)

As sin-1(sin x) = x with x ∈ −π/2,π/2

Therefore sin-1(sin 13π/7) = – π/7

(v) Given sin-1(sin 17π/8)

Given question can be written as sin (2π + π/8)

Sin (2π + π/8) can be written as sin (π/8)

By substituting these values in sin-1(sin 17π/8) we get sin-1(sin π/8)

As sin-1(sin x) = x with x ∈ −π/2,π/2

Therefore sin-1(sin 17π/8) = π/8

(vi) Given sin-1{(sin – 17π/8)}

But we know that – sin θ = sin (-θ)

Therefore (sin -17π/8) = – sin 17π/8

– Sin 17π/8 = – sin (2π + π/8) sincesin(2π–θ)=−sin(θ)

It can also be written as – sin (π/8)

– Sin (π/8) = sin (-π/8) since–sinθ=sin(−θ)

By substituting these values in sin-1{(sin – 17π/8)} we get,

Sin-1(sin – π/8)

As sin-1(sin x) = x with x ∈ −π/2,π/2

Therefore sin-1(sin -π/8) = – π/8

(vii) Given sin-1(sin 3)

We know that sin-1(sin x) = x with x ∈ −π/2,π/2 which is approximately equal to −1.57,1.57

But here x = 3, which does not lie on the above range,

Therefore we know that sin (π – x) = sin (x)

Hence sin (π – 3) = sin (3) also π – 3 ∈ −π/2,π/2

Sin-1(sin 3) = π – 3

(viii) Given sin-1(sin 4)

We know that sin-1(sin x) = x with x ∈ −π/2,π/2 which is approximately equal to −1.57,1.57

But here x = 4, which does not lie on the above range,

Therefore we know that sin (π – x) = sin (x)

Hence sin (π – 4) = sin (4) also π – 4 ∈ −π/2,π/2

Sin-1(sin 4) = π – 4

(ix) Given sin-1(sin 12)

We know that sin-1(sin x) = x with x ∈ −π/2,π/2 which is approximately equal to −1.57,1.57

But here x = 12, which does not lie on the above range,

Therefore we know that sin (2nπ – x) = sin (-x)

Hence sin (2nπ – 12) = sin (-12)

Here n = 2 also 12 – 4π ∈ −π/2,π/2

Sin-1(sin 12) = 12 – 4π

(x) Given sin-1(sin 2)

We know that sin-1(sin x) = x with x ∈ −π/2,π/2 which is approximately equal to −1.57,1.57

But here x = 2, which does not lie on the above range,

Therefore we know that sin (π – x) = sin (x)

Hence sin (π – 2) = sin (2) also π – 2 ∈ −π/2,π/2

Sin-1(sin 2) = π – 2

Q2. Evaluate each of the following:

(i) cos-1{cos (-π/4)}

(ii) cos-1(cos 5π/4)

(iii) cos-1(cos 4π/3)

(iv) cos-1(cos 13π/6)

(v) cos-1(cos 3)

(vi) cos-1(cos 4)

(vii) cos-1(cos 5)

(viii) cos-1(cos 12)

Solution:

(i) Given cos-1{cos (-π/4)}

We know that cos (-π/4) = cos (π/4) [since cos (-θ) = cos θ

Also know that cos (π/4) = 1/√2

By substituting these values in cos-1{cos (-π/4)} we get,

Cos-1(1/√2)

Now let y = cos-1(1/√2)

Therefore cos y = 1/√2

Hence range of principal value of cos-1 is 0,π and cos (π/4) = 1/√2

Therefore cos-1{cos (-π/4)} = π/4

(ii) Given cos-1(cos 5π/4)

But we know that cos (5π/4) = -1/√2

By substituting these values in cos-1{cos (5π/4)} we get,

Cos-1(-1/√2)

Now let y = cos-1(-1/√2)

Therefore cos y = – 1/√2

– Cos (π/4) = 1/√2

Cos (π – π/4) = – 1/√2

Cos (3 π/4) = – 1/√2

Hence range of principal value of cos-1 is 0,π and cos (3π/4) = -1/√2

Therefore cos-1{cos (5π/4)} = 3π/4

(iii) Given cos-1(cos 4π/3)

But we know that cos (4π/3) = -1/2

By substituting these values in cos-1{cos (4π/3)} we get,

Cos-1(-1/2)

Now let y = cos-1(-1/2)

Therefore cos y = – 1/2

– Cos (π/3) = 1/2

Cos (π – π/3) = – 1/2

Cos (2π/3) = – 1/2

Hence range of principal value of cos-1 is 0,π and cos (2π/3) = -1/2

Therefore cos-1{cos (4π/3)} = 2π/3

(iv) Given cos-1(cos 13π/6)

But we know that cos (13π/6) = √3/2

By substituting these values in cos-1{cos (13π/6)} we get,

Cos-1(√3/2)

Now let y = cos-1(√3/2)

Therefore cos y = √3/2

Cos (π/6) = √3/2

Hence range of principal value of cos-1 is 0,π and cos (π/6) = √3/2

Therefore cos-1{cos (13π/6)} = π/6

(v) Given cos-1(cos 3)

We know that cos-1(cos θ) = θ if 0 ≤ θ ≤ π

Therefore by applying this in given question we get,

Cos-1(cos 3) = 3, 3 ∈ 0,π

(vi) Given cos-1(cos 4)

We have cos–1(cos x) = x if x ϵ 0,π ≈ 0,3.14

And here x = 4 which does not lie in the above range.

We know that cos (2π – x) = cos(x)

Thus, cos (2π – 4) = cos (4) so 2π–4 belongs in 0,π

Hence cos–1(cos 4) = 2π – 4

(vii) Given cos-1(cos 5)

We have cos–1(cos x) = x if x ϵ 0,π ≈ 0,3.14

And here x = 5 which does not lie in the above range.

We know that cos (2π – x) = cos(x)

Thus, cos (2π – 5) = cos (5) so 2π–5 belongs in 0,π

Hence cos–1(cos 5) = 2π – 5

(viii) Given cos-1(cos 12)

Cos–1(cos x) = x if x ϵ 0,π ≈ 0,3.14

And here x = 12 which does not lie in the above range.

We know cos (2nπ – x) = cos (x)

Cos (2nπ – 12) = cos (12)

Here n = 2.

Also 4π – 12 belongs in 0,π

∴ cos–1(cos 12) = 4π – 12

Q3. Evaluate each of the following:

(i) tan-1(tan π/3)

(ii) tan-1(tan 6π/7)

(iii) tan-1(tan 7π/6)

(iv) tan-1(tan 9π/4)

(v) tan-1(tan 1)

(vi) tan-1(tan 2)

(vii) tan-1(tan 4)

(viii) tan-1(tan 12)

Solution:

(i) Given tan-1(tan π/3)

As tan-1(tan x) = x if x ϵ −π/2,π/2

By applying this condition in the given question we get,

Tan-1(tan π/3) = π/3

(ii) Given tan-1(tan 6π/7)

We know that tan 6π/7 can be written as (π – π/7)

Tan (π – π/7) = – tan π/7

We know that tan-1(tan x) = x if x ϵ −π/2,π/2

Tan-1(tan 6π/7) = – π/7

(iii) Given tan-1(tan 7π/6)

We know that tan 7π/6 = 1/√3

By substituting this value in tan-1(tan 7π/6) we get,

Tan-1 (1/√3)

Now let tan-1 (1/√3) = y

Tan y = 1/√3

Tan (π/6) = 1/√3

The range of the principal value of tan-1 is (-π/2, π/2) and tan (π/6) = 1/√3

Therefore tan-1(tan 7π/6) = π/6

(iv) Given tan-1(tan 9π/4)

We know that tan 9π/4 = 1

By substituting this value in tan-1(tan 9π/4) we get,

Tan-1 (1)

Now let tan-1 (1) = y

Tan y = 1

Tan (π/4) = 1

The range of the principal value of tan-1 is (-π/2, π/2) and tan (π/4) = 1

Therefore tan-1(tan 9π/4) = π/4

(v) Given tan-1(tan 1)

But we have tan-1(tan x) = x if x ϵ −π/2,π/2

By substituting this condition in given question

Tan-1(tan 1) = 1

(vi) Given tan-1(tan 2)

As tan-1(tan x) = x if x ϵ −π/2,π/2

But here x = 2 which does not belongs to above range

We also have tan (π – θ) = –tan (θ)

Therefore tan (θ – π) = tan (θ)

Tan (2 – π) = tan (2)

Now 2 – π is in the given range

Hence tan–1 (tan 2) = 2 – π

(vii) Given tan-1(tan 4)

As tan-1(tan x) = x if x ϵ −π/2,π/2

But here x = 4 which does not belongs to above range

We also have tan (π – θ) = –tan (θ)

Therefore tan (θ – π) = tan (θ)

Tan (4 – π) = tan (4)

Now 4 – π is in the given range

Hence tan–1 (tan 2) = 4 – π

(viii) Given tan-1(tan 12)

As tan-1(tan x) = x if x ϵ −π/2,π/2

But here x = 12 which does not belongs to above range

We know that tan (2nπ – θ) = –tan (θ)

Tan (θ – 2nπ) = tan (θ)

Here n = 2

Tan (12 – 4π) = tan (12)

Now 12 – 4π is in the given range

∴ tan–1 (tan 12) = 12 – 4π.

Chapter 4 Inverse Trigonometric Functions Ex 4.8

Q1. Evaluate each of the following:

(i) sin (sin-1 7/25)

(ii) Sin (cos-1 5/13)

(iii) Sin (tan-1 24/7)

(iv) Sin (sec-1 17/8)

(v) Cosec (cos-1 8/17)

(vi) Sec (sin-1 12/13)

(vii) Tan (cos-1 8/17)

(viii) cot (cos-1 3/5)

(ix) Cos (tan-1 24/7)

Solution:

(i) Given sin (sin-1 7/25)

Now let y = sin-1 7/25

Sin y = 7/25 where y ∈ 0,π/2

Substituting these values in sin (sin-1 7/25) we get

Sin (sin-1 7/25) = 7/25

(ii) Given Sin (cos-1 5/13)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 18
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 19

(iii) Given Sin (tan-1 24/7)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 20
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 21

(iv) Given Sin (sec-1 17/8)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 22
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 23

(v) Given Cosec (cos-1 8/17)

Let cos-1(8/17) = y

cos y = 8/17 where y ∈ 0,π/2

Now, we have to find

Cosec (cos-1 8/17) = cosec y

We know that,

sin2 θ + cos2 θ = 1

sin2 θ = √ (1 – cos2 θ)

So,

sin y = √ (1 – cos2 y)

= √ (1 – (8/17)2)

= √ (1 – 64/289)

= √ (289 – 64/289)

= √ (225/289)

= 15/17

Hence,

Cosec y = 1/sin y = 1/ (15/17) = 17/15

Therefore,

Cosec (cos-1 8/17) = 17/15

(vi) Given Sec (sin-1 12/13)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 26
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 27
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 28

(vii) Given Tan (cos-1 8/17)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 29
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 30
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 31

(viii) Given cot (cos-1 3/5)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 32
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 33
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 34

(ix) Given Cos (tan-1 24/7)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 35.

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 36

Chapter 4 Inverse Trigonometric Functions Ex 4.9

Q1. Evaluate:

(i) Cos {sin-1 (-7/25)}

(ii) Sec {cot-1 (-5/12)}

(iii) Cot {sec-1 (-13/5)}

Solution:

(i) Given Cos {sin-1 (-7/25)}

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 37
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 38

(ii) Given Sec {cot-1 (-5/12)}

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 39
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 40

(iii) Given Cot {sec-1 (-13/5)}

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 41
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 42

Chapter 4 Inverse Trigonometric Functions Ex 4.10

Q1. Evaluate:

(i) Cot (sin-1 (3/4) + sec-1 (4/3))

(ii) Sin (tan-1 x + tan-1 1/x) for x < 0

(iii) Sin (tan-1 x + tan-1 1/x) for x > 0

(iv) Cot (tan-1 a + cot-1 a)

(v) Cos (sec-1 x + cosec-1 x), |x| ≥ 1

Solution:

(i) Given Cot (sin-1 (3/4) + sec-1 (4/3))

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 43

(ii) Given Sin (tan-1 x + tan-1 1/x) for x < 0

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 44
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 45

(iii) Given Sin (tan-1 x + tan-1 1/x) for x > 0

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 46

(iv) Given Cot (tan-1 a + cot-1 a)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 47
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 48

(v) Given Cos (sec-1 x + cosec-1 x), |x| ≥ 1

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 49

= 0

Q2. If cos-1 x + cos-1 y = π/4, find the value of sin-1 x + sin-1 y.

Solution:

Given cos-1 x + cos-1 y = π/4

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 50

Q3. If sin-1 x + sin-1 y = π/3 and cos-1 x – cos-1 y = π/6, find the values of x and y.

Solution:

Given sin-1 x + sin-1 y = π/3 ……. Equation (i)

And cos-1 x – cos-1 y = π/6 ……… Equation (ii)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 51
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 52
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 53
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 54

Q4. If cot (cos-1 3/5 + sin-1 x) = 0, find the value of x.

Solution:

Given cot (cos-1 3/5 + sin-1 x) = 0

On rearranging we get,

(cos-1 3/5 + sin-1 x) = cot-1 (0)

(Cos-1 3/5 + sin-1 x) = π/2

We know that cos-1 x + sin-1 x = π/2

Then sin-1 x = π/2 – cos-1 x

Substituting the above in (cos-1 3/5 + sin-1 x) = π/2 we get,

(Cos-1 3/5 + π/2 – cos-1 x) = π/2

Now on rearranging we get,

(Cos-1 3/5 – cos-1 x) = π/2 – π/2

(Cos-1 3/5 – cos-1 x) = 0

Therefore Cos-1 3/5 = cos-1 x

On comparing the above equation we get,

x = 3/5

Q5. If (sin-1 x)2 + (cos-1 x)2 = 17 π2/36, find x.

Solution:

Given (sin-1 x)2 + (cos-1 x)2 = 17 π2/36

We know that cos-1 x + sin-1 x = π/2

Then cos-1 x = π/2 – sin-1 x

Substituting this in (sin-1 x)2 + (cos-1 x)2 = 17 π2/36 we get

(sin-1 x)2 + (π/2 – sin-1 x)2 = 17 π2/36

Let y = sin-1 x

y2 + ((π/2) – y)2 = 17 π2/36

y2 + π2/4 – y2 – 2y ((π/2) – y) = 17 π2/36

π2/4 – πy + 2 y= 17 π2/36

On rearranging and simplifying, we get

2y2 – πy + 2/9 π2 = 0

18y2 – 9 πy + 2 π2 = 0

18y2 – 12 πy + 3 πy + 2 π2 = 0

6y (3y – 2π) + π (3y – 2π) = 0

Now, (3y – 2π) = 0 and (6y + π) = 0

Therefore y = 2π/3 and y = – π/6

Now substituting y = – π/6 in y = sin-1 x we get

sin-1 x = – π/6

x = sin (- π/6)

x = -1/2

Now substituting y = -2π/3 in y = sin-1 x we get

x = sin (2π/3)

x = √3/2

Now substituting x = √3/2 in (sin-1 x)2 + (cos-1 x)2 = 17 π2/36 we get,

= π/3 + π/6

= π/2 which is not equal to 17 π2/36

So we have to neglect this root.

Now substituting x = -1/2 in (sin-1 x)2 + (cos-1 x)2 = 17 π2/36 we get,

= π2/36 + 4 π2/9

= 17 π2/36

Hence x = -1/2.

Chapter 4 Inverse Trigonometric Functions Ex 4.11

Q1. Prove the following results:

(i) Tan-1 (1/7) + tan-1 (1/13) = tan-1 (2/9)

(ii) Sin-1 (12/13) + cos-1 (4/5) + tan-1 (63/16) = π

(iii) tan-1 (1/4) + tan-1 (2/9) = Sin-1 (1/ √5)

Solution:

(i) Given Tan-1 (1/7) + tan-1 (1/13) = tan-1 (2/9)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 55

Hence, proved.

(ii) Given Sin-1 (12/13) + cos-1 (4/5) + tan-1 (63/16) = π

Consider LHS

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 56
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 57
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 58

Hence, proved.

(iii) Given tan-1 (1/4) + tan-1 (2/9) = Sin-1 (1/ √5)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 59
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 60

Q2. Find the value of tan-1 (x/y) – tan-1 {(x-y)/(x + y)}

Solution:

Given tan-1 (x/y) – tan-1 {(x-y)/(x + y)}

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 61

Chapter 4 Inverse Trigonometric Functions Ex 4.12

Q1. Evaluate: Cos (sin -1 3/5 + sin-1 5/13)

Solution:

Given Cos (sin -1 3/5 + sin-1 5/13)

We know that,

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 62
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 62a

Chapter 4 Inverse Trigonometric Functions Ex 4.13

Q1. If cos-1 (x/2) + cos-1 (y/3) = α, then prove that 9x2 – 12xy cos α + 4y2 = 36 sin2 α

Solution:

Given cos-1 (x/2) + cos-1 (y/3) = α

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 63
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 64

Hence, proved.

Q2. Solve the equation: cos-1 (a/x) – cos-1 (b/x) = cos-1 (1/b) – cos-1 (1/a)

Solution:

Given cos-1 (a/x) – cos-1 (b/x) = cos-1 (1/b) – cos-1 (1/a)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 65
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 66
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 67

Chapter 4 Inverse Trigonometric Functions Ex 4.14

Q1. Evaluate the following:

(i) tan {2 tan-1 (1/5) – π/4}

(ii) Tan {1/2 sin-1 (3/4)}

(iii) Sin {1/2 cos-1 (4/5)}

(iv) Sin (2 tan -1 2/3) + cos (tan-1 √3)

Solution:

(i) Given tan {2 tan-1 (1/5) – π/4}

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 68
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 69

(ii) Given tan {1/2 sin-1 (3/4)}

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 70
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 71
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 72

(iii) Given sin {1/2 cos-1 (4/5)}

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 73
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 74

(iv) Given Sin (2 tan -1 2/3) + cos (tan-1 √3)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 75
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 76

Q2. Prove the following results:

(i) 2 sin-1 (3/5) = tan-1 (24/7)

(ii) tan-1 ¼ + tan-1 (2/9) = ½ cos-1 (3/5) = ½ sin-1 (4/5)

(iii) tan-1 (2/3) = ½ tan-1 (12/5)

(iv) tan-1 (1/7) + 2 tan-1 (1/3) = π/4

(v) sin-1 (4/5) + 2 tan-1 (1/3) = π/2

(vi) 2 sin-1 (3/5) – tan-1 (17/31) = π/4

(vii) 2 tan-1 (1/5) + tan-1 (1/8) = tan-1 (4/7)

(viii) 2 tan-1 (3/4) – tan-1 (17/31) = π/4

(ix) 2 tan-1 (1/2) + tan-1 (1/7) = tan-1 (31/17)

(x) 4 tan-1(1/5) – tan-1(1/239) = π/4

Solution:

(i) Given 2 sin-1 (3/5) = tan-1 (24/7)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 77
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 78

Hence, proved.

(ii) Given tan-1 ¼ + tan-1 (2/9) = ½ cos-1 (3/5) = ½ sin-1 (4/5)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 79
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 80
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 81
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 82

Hence, proved.

(iii) Given tan-1 (2/3) = ½ tan-1 (12/5)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 83
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 84

Hence, proved.

(iv) Given tan-1 (1/7) + 2 tan-1 (1/3) = π/4

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 85
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 86

Hence, proved.

(v) Given sin-1 (4/5) + 2 tan-1 (1/3) = π/2

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 87
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 88
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 89
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 90

(vi) Given 2 sin-1 (3/5) – tan-1 (17/31) = π/4

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 91
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 92
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 93

(vii) Given 2 tan-1 (1/5) + tan-1 (1/8) = tan-1 (4/7)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 94
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 95
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 96

Hence, proved.

(viii) Given 2 tan-1 (3/4) – tan-1 (17/31) = π/4

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 97
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 98
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 99

Hence, proved.

(ix) Given 2 tan-1 (1/2) + tan-1 (1/7) = tan-1 (31/17)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 100
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 101

Hence, proved.

(x) Given 4 tan-1(1/5) – tan-1(1/239) = π/4

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 102
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 103

Hence, proved.

Q3. If sin-1 (2a/1 + a2) – cos-1(1 – b2/1 + b2) = tan-1(2x/1 – x2), then prove that x = (a – b)/ (1 + a b)

Solution:

Given sin-1 (2a/1 + a2) – cos-1(1 – b2/1 + b2) = tan-1(2x/1 – x2)

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 104
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 105

Hence, proved.

Q4. Prove that:

(i) tan-1{(1 – x2)/ 2x)} + cot-1{(1 – x2)/ 2x)} = π/2

(ii) sin {tan-1 (1 – x2)/ 2x) + cos-1 (1 – x2)/ (1 + x2)} = 1

Solution:

(i) Given tan-1{(1 – x2)/ 2x)} + cot-1{(1 – x2)/ 2x)} = π/2

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 106
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 107

Hence, proved.

(ii) Given sin {tan-1 (1 – x2)/ 2x) + cos-1 (1 – x2)/ (1 + x2)}

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 108
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 109
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 110
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 111

Hence, proved.

Q5. If sin-1 (2a/ 1+ a2) + sin-1 (2b/ 1+ b2) = 2 tan-1 x, prove that x = (a + b/ 1 – a b)

Solution:

Given sin-1 (2a/ 1+ a2) + sin-1 (2b/ 1+ b2) = 2 tan-1 x

RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 112
RD Sharma Solutions for Class 12 Maths Chapter 4 Inverse Trigonometric Functions Image 113

Hence, proved.

Read More

RD SHARMA SOLUTION FOR CLASS 6TH MATHEMATICS

Textbook Solutions are considered an extremely helpful resource for exam preparation. EduGrown.in gives its users access to a profuse supply of Textbook questions and their solutions. CBSE Class 6 Math Textbook Solutions are created by experts of the subject, hence, sure to prepare students to score well. The questions provided in Textbook Books are prepared in accordance with CBSE, thus holding higher chances of appearing on CBSE question papers. Not only do these Textbook Solutions for Class 6 Math strengthen students’ foundation in the subject, but also give them the ability to tackle different types of questions easily.

RD Sharma Solutions for class 6

  • RD Sharma Solutions for Class 6 Maths Chapter 1 – Knowing Our Numbers
  • RD Sharma Solutions for Class 6 Maths Chapter 2 – Playing With Numbers
  • RD Sharma Solutions for Class 6 Maths Chapter 3 – Whole Numbers
  • RD Sharma Solutions for Class 6 Maths Chapter 4 – Operations on Whole Numbers
  • RD Sharma Solutions for Class 6 Maths Chapter 5 – Negative Numbers and Integers
  • RD Sharma Solutions for Class 6 Maths Chapter 6 – Fractions
  • RD Sharma Solutions for Class 6 Maths Chapter 7 – Decimals
  • RD Sharma Solutions for Class 6 Maths Chapter 8 – Introduction to Algebra
  • RD Sharma Solutions for Class 6 Maths Chapter 9 – Ratio, Proportion and Unitary Method
  • RD Sharma Solutions for Class 6 Maths Chapter 10 – Basic Geometrical Concepts
  • RD Sharma Solutions for Class 6 Maths Chapter 11 – Angles
  • RD Sharma Solutions for Class 6 Maths Chapter 12 – Triangles
  • RD Sharma Solutions for Class 6 Maths Chapter 13 – Quadrilaterals
  • RD Sharma Solutions for Class 6 Maths Chapter 14 – Circles
  • RD Sharma Solutions for Class 6 Maths Chapter 15 – Pair of Lines and Transversal
  • RD Sharma Solutions for Class 6 Maths Chapter 16 – Understanding Three Dimensional Shapes
  • RD Sharma Solutions for Class 6 Maths Chapter 17 – Symmetry
  • RD Sharma Solutions for Class 6 Maths Chapter 18 – Basic Geometrical Tools
  • RD Sharma Solutions for Class 6 Maths Chapter 19 – Geometrical Constructions
  • RD Sharma Solutions for Class 6 Maths Chapter 20 – Mensuration
  • RD Sharma Solutions for Class 6 Maths Chapter 21 – Data Handling-I(Presentation of Data)
  • RD Sharma Solutions for Class 6 Maths Chapter 22 – Data Handling-II(Pictographs)
  • RD Sharma Solutions for Class 6 Maths Chapter 23 – Data Handling-III(Bar Graphs)
Read More

RD SHARMA SOLUTION FOR CLASS 7TH MATHEMATICS

Textbook Solutions are considered an extremely helpful resource for exam preparation. EduGrown.in gives its users access to a profuse supply of Textbook questions and their solutions. CBSE Class 7 Math Textbook Solutions are created by experts of the subject, hence, sure to prepare students to score well. The questions provided in Textbook Books are prepared in accordance with CBSE, thus holding higher chances of appearing on CBSE question papers. Not only do these Textbook Solutions for Class 7 Math strengthen students’ foundation in the subject, but also give them the ability to tackle different types of questions easily.

RD Sharma Solutions for class 7

Read More