RD SHARMA SOLUTION CHAPTER-14 Coordinate Geometry| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 14 – Co-ordinate Geometry Exercise Ex. 14.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Chapter 14 – Co-ordinate Geometry Exercise Ex. 14.2

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Show that the points A(1,-2), B(3,6), C(5,10) and D(3,2) are the vertices of a parallelogram.Solution 7

Question 8

Prove that the points (1, 7), (4, 2), (-1, -1) and (-4, 4) are the vertices of a square.Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

The points A(2, 9), B(a, 5) and C(5, 5) are the vertices of triangle ABC right angled at B. Find the values of a and hence the area of ⧍ABC.Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Find a point which is equidistant from the points

A (-5, 4) and B (-1, 6). How many such points are there?Solution 21

Question 22

The centre of a circle is (2a, a – 7). Find the values of a if the circle passes through the point (11, -9) and has diameter  units.Solution 22

Question 23

Ayush starts walking from his house to office, Instead of going to the office directly, he goes to bank first, from there to his daughter’s school and then reaches the office. What is the extra distance travelled by Ayush in reaching the office? (Assume that all distance covered are in straight lines). If the house is situated at (2, 4), bank at (5, 8) school at (13, 14) and office at (13, 26) and coordinates are in kilometer.Solution 23

Question 24

Solution 24

Question 25

If (-4, 3) and (4, 3) are two vertices of an equilateral triangle, find the coordinates of the third vertex, given that the origin lies in the (i) interior (ii) exterior of the triangle.Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29(i)

Show that the points A(5,6), B(1,5), C(2,1) and D(6,2) are the vertices of a square.Solution 29(i)

Question 29(ii)

Prove that the points A(2, 3), B(-2, 2), C(-1, -2), and D (3, -1) are the vertices of a square ABCD.Solution 29(ii)

table attributes columnalign left end attributes row cell A B equals square root of left parenthesis 2 minus left parenthesis negative 2 right parenthesis right parenthesis squared plus left parenthesis 3 minus 2 right parenthesis squared end root equals square root of 4 squared plus 1 squared end root end cell row cell B C equals square root of left parenthesis negative 2 minus left parenthesis negative 1 right parenthesis right parenthesis squared plus left parenthesis 2 minus left parenthesis negative 2 right parenthesis right parenthesis squared end root equals square root of 1 squared plus 4 squared end root end cell row cell C D equals square root of left parenthesis negative 1 minus 3 right parenthesis squared plus left parenthesis negative 2 minus left parenthesis negative 1 right parenthesis right parenthesis squared end root equals square root of 4 squared plus 1 squared end root end cell row cell A D equals square root of left parenthesis 2 minus 3 right parenthesis squared plus left parenthesis 3 minus left parenthesis negative 1 right parenthesis right parenthesis squared end root equals square root of 1 squared plus 4 squared end root end cell row cell A B equals B C equals C D equals A D end cell row cell text Now   let   us   find   the   lengths   of   the   diagonals   AC   and   BD. end text end cell row cell text AC = end text square root of left parenthesis 2 minus left parenthesis negative 1 right parenthesis right parenthesis squared plus left parenthesis 3 minus left parenthesis negative 2 right parenthesis right parenthesis squared end root equals square root of 3 squared plus 5 squared end root equals square root of 34 end cell row cell B D equals square root of left parenthesis left parenthesis negative 2 right parenthesis minus 3 right parenthesis squared plus left parenthesis 2 minus left parenthesis negative 1 right parenthesis right parenthesis squared end root equals square root of 5 squared plus 3 squared end root equals square root of 34 end cell row cell text For   ABCD ,  all   sides   are   of   equal   length   and end text end cell row cell text the   lengths   of   the   diagonals   are   also   equal. end text end cell row cell text Hence ,  ABCD   is   a   square. end text end cell end table

Question 29(iii)

Solution 29(iii)

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

If the point P(x,y) is equidistant from the points A(5,1) and B(1,5), prove that x = y.Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

If the point P(k-1, 2) is equidistant from the points A(3, k) and B(k, 5), find the values of k.Solution 36

table attributes columnalign left end attributes row cell text We   know   that end text end cell row cell text PA  =  end text square root of left parenthesis k minus 1 minus 3 right parenthesis squared plus left parenthesis 2 minus k right parenthesis squared end root end cell row cell text and end text end cell row cell text PB  =  end text square root of left parenthesis k minus 1 minus k right parenthesis squared plus left parenthesis 2 minus 5 right parenthesis squared end root end cell row cell text Given   that   PA  =  PB end text end cell row cell text Squaring   both   the   sides , end text end cell row cell P A squared equals P B squared end cell row cell rightwards double arrow left parenthesis k minus 1 minus 3 right parenthesis squared plus left parenthesis 2 minus k right parenthesis squared equals left parenthesis k minus 1 minus k right parenthesis squared plus left parenthesis 2 minus 5 right parenthesis squared end cell row cell rightwards double arrow left parenthesis k minus 4 right parenthesis squared plus left parenthesis 2 minus k right parenthesis squared equals left parenthesis negative 1 right parenthesis squared plus left parenthesis 3 right parenthesis squared end cell row cell rightwards double arrow k squared plus 16 minus 8 k plus 4 plus k squared minus 4 k equals 1 plus 9 end cell row cell rightwards double arrow 2 k squared minus 12 k plus 10 equals 0 end cell row cell rightwards double arrow k squared minus 6 k plus 5 equals 0 end cell row cell rightwards double arrow k squared minus 5 k minus k plus 5 equals 0 end cell row cell rightwards double arrow k left parenthesis k minus 5 right parenthesis minus 1 left parenthesis k minus 5 right parenthesis equals 0 end cell row cell rightwards double arrow left parenthesis k minus 5 right parenthesis left parenthesis k minus 1 right parenthesis equals 0 end cell row cell rightwards double arrow k equals 5 text   or   end text k equals 1 end cell end table

Question 37

If the point A(0, 2) is equidistant from the points B(3, p) and C(p, 5), find p. Also, find the length of AB.Solution 37

table attributes columnalign left end attributes row cell text We   know   that , end text end cell row cell text AB  =  end text square root of left parenthesis 0 minus 3 right parenthesis squared plus left parenthesis 2 minus p right parenthesis squared end root... left parenthesis 1 right parenthesis end cell row cell text and end text end cell row cell text AC  =  end text square root of left parenthesis 0 minus p right parenthesis squared plus left parenthesis 2 minus 5 right parenthesis squared end root end cell row cell text Given   that   AB  =  AC end text end cell row cell text Squaring   both   the   sides ,  we   have , end text end cell row cell A B squared equals A C squared end cell row cell rightwards double arrow left parenthesis 0 minus 3 right parenthesis squared plus left parenthesis 2 minus p right parenthesis squared equals left parenthesis 0 minus p right parenthesis squared plus left parenthesis 2 minus 5 right parenthesis squared end cell row cell rightwards double arrow 9 plus 4 plus p squared minus 4 p equals p squared plus 9 end cell row cell rightwards double arrow 4 p equals 4 end cell row cell rightwards double arrow p equals 1 end cell row cell text Substituting   the   value   p  =  1   in   equation  ( 1 ), end text end cell row cell A B equals square root of left parenthesis 0 minus 3 right parenthesis squared plus left parenthesis 2 minus p right parenthesis squared end root end cell row cell equals square root of 9 plus 1 end root equals square root of 10 end cell end table

Question 38

Solution 38

Question 39

Find the equation of the perpendicular bisector of the line segment joining points (7,1) and (3,5).Solution 39

Question 40

Prove that the points (3,0), (4,5), (-1,4) and (-2,-1), taken in order, form a rhombus. Also, find its area.Solution 40

Question 41

Solution 41

Question 42

Solution 42

Question 43

Solution 43

Question 44

If a point A(0,2) is equidistant from the points B(3,p) and C(p,5), then find the value of p.Solution 44

Question 45

Prove that the points (7, 10), (-2, 5) and (3, -4) are the vertices of an isosceles right triangle.Solution 45

table attributes columnalign left end attributes row cell text Let   the   points   be   A ,  B   and   C   respectively. end text end cell row cell text AB = end text square root of left parenthesis text 7 end text minus left parenthesis negative 2 right parenthesis right parenthesis squared plus left parenthesis 10 minus 5 right parenthesis squared end root equals square root of 9 squared plus 5 squared end root equals square root of 106 end cell row cell B C equals square root of left parenthesis negative 2 minus 3 right parenthesis squared plus left parenthesis 5 minus left parenthesis negative 4 right parenthesis right parenthesis squared end root equals square root of 5 squared plus 9 squared end root equals square root of 106 end cell row cell C A equals square root of left parenthesis 3 minus 7 right parenthesis squared plus left parenthesis negative 4 minus 10 right parenthesis squared end root equals square root of 4 squared plus 14 squared end root equals square root of 212 equals square root of 2 cross times 106 end root end cell row cell rightwards double arrow A B squared plus B C squared equals C A squared end cell row cell text Since   AB = BC   and   end text A B squared plus B C squared equals C A squared comma text   end text capital delta text ABC   is   an end text end cell row cell text isosceles   right   triangle. end text end cell end table

Question 46

If the point P(x, 3) is equidistant from the points A(7, -1) and B(6, 8), find the value of x and the find the distance AP.Solution 46

table attributes columnalign left end attributes row cell text We   know   that   end text end cell row cell text PA = end text square root of left parenthesis x minus 7 right parenthesis squared plus left parenthesis 3 minus left parenthesis negative 1 right parenthesis right parenthesis blank presuperscript 2 end root end cell row cell text and end text end cell row cell text PB = end text square root of left parenthesis x minus 6 right parenthesis squared plus left parenthesis 3 minus 8 right parenthesis squared end root end cell row cell text Given   that   PA  =  PB end text end cell row cell text Squaring   both   the   sides ,  we   have , end text end cell row cell P A squared equals P B squared end cell row cell rightwards double arrow left parenthesis x minus 7 right parenthesis squared plus left parenthesis 3 minus left parenthesis negative 1 right parenthesis right parenthesis equals presuperscript 2 left parenthesis x minus 6 right parenthesis squared plus left parenthesis 3 minus 8 right parenthesis squared end cell row cell rightwards double arrow x squared plus 49 minus 14 x plus 16 equals x squared plus 36 minus 12 x plus 25 end cell row cell rightwards double arrow 2 x equals 4 end cell row cell rightwards double arrow x equals 2 end cell row cell text Substituting   the   value   x  =  2   in   PA ,  we   get , end text end cell row cell P A equals square root of left parenthesis 2 minus 7 right parenthesis squared plus left parenthesis 3 minus left parenthesis negative 1 right parenthesis right parenthesis blank presuperscript 2 end root equals square root of 5 squared plus 4 squared end root equals square root of 41 end cell end table

Question 47

If A(3, y) is equidistant from the points P(8, – 3) and Q(7, 6), find the value of y and find the distance AQ.Solution 47

table attributes columnalign left end attributes row cell text We   know   that   end text end cell row cell text AP = end text square root of left parenthesis 3 minus 8 right parenthesis squared plus left parenthesis y minus left parenthesis negative 3 right parenthesis right parenthesis blank presuperscript 2 end root end cell row cell text and end text end cell row cell text AQ = end text square root of left parenthesis 3 minus 7 right parenthesis squared plus left parenthesis y minus 6 right parenthesis squared end root... left parenthesis 1 right parenthesis end cell row cell text Given   that   AP  =  AQ end text end cell row cell text Squaring   both   the   sides ,  we   get , end text end cell row cell A P squared equals A Q squared end cell row cell rightwards double arrow left parenthesis 3 minus 8 right parenthesis squared plus left parenthesis y minus left parenthesis negative 3 right parenthesis right parenthesis equals presuperscript 2 left parenthesis 3 minus 7 right parenthesis squared plus left parenthesis y minus 6 right parenthesis squared end cell row cell rightwards double arrow 25 plus y squared plus 9 plus 6 y equals 16 plus y squared plus 36 minus 12 y end cell row cell rightwards double arrow 18 y equals 18 end cell row cell rightwards double arrow y equals 1 end cell row cell text Substituting   the   value   y  =  1   in   equation  ( 1 ),  we   get end text end cell row cell A Q equals square root of left parenthesis 3 minus 7 right parenthesis squared plus left parenthesis 1 minus 6 right parenthesis squared end root equals square root of 4 squared plus 5 squared end root equals square root of 41 end cell end table

Question 48

If (0, -3) and (0, 3) are the two vertices of an equilateral triangle, find the coordinates of its third vertex.Solution 48

For an equilateral triangle, the perpendicular bisector of any side passes through the opposite vertex.

Both the points, (0, -3) and (0, 3), lie on the y-axis equidistant from the origin. Hence, the perpendicular bisector joining these two points is the x-axis.

Any point on the x-axis has the coordinates (a, 0).

The distance between (0, -3) and (0, 3) is 6.

Hence, the distance between (a, 0) and (0, 3) should also be 6.

6= (a – 0)+ (0 – 3)2

36 = a+ 9

a= 27

a equals plus-or-minus 3 square root of 3
text Hence ,  the   coordinates   of   the   third   vertex   are   end text left parenthesis plus-or-minus text 3 end text square root of text 3 end text end root comma 0 right parenthesis.

Question 49

If the point P(2, 2) is equidistant from the points A(-2, k) and B(-2k, -3), find k. Also, find the length of AP.Solution 49

table attributes columnalign left end attributes row cell text We   know   that , end text end cell row cell text PA  =  end text square root of left parenthesis 2 minus left parenthesis negative 2 right parenthesis right parenthesis squared plus left parenthesis 2 minus k right parenthesis squared end root end cell row cell text and end text end cell row cell text PB  =  end text square root of left parenthesis 2 minus left parenthesis negative 2 k right parenthesis right parenthesis squared plus left parenthesis 2 minus left parenthesis negative 3 right parenthesis right parenthesis squared end root end cell row cell text Given   that   PA  =  PB end text end cell row cell text Squaring   both   the   sides ,  we   get , end text end cell row cell P A squared equals P B squared end cell row cell rightwards double arrow left parenthesis 2 minus left parenthesis negative 2 right parenthesis right parenthesis squared plus left parenthesis 2 minus k right parenthesis squared equals left parenthesis 2 minus left parenthesis negative 2 k right parenthesis right parenthesis squared plus left parenthesis 2 minus left parenthesis negative 3 right parenthesis right parenthesis squared end cell row cell rightwards double arrow 4 squared plus 4 plus k squared minus 4 k equals 4 plus 4 k squared plus 8 k plus 25 end cell row cell rightwards double arrow 3 k squared plus 12 k plus 9 equals 0 end cell row cell rightwards double arrow k squared plus 4 k plus 3 equals 0 end cell row cell rightwards double arrow k squared plus 3 k plus k plus 3 equals 0 end cell row cell rightwards double arrow k left parenthesis k plus 3 right parenthesis plus 1 left parenthesis k plus 3 right parenthesis equals 0 end cell row cell rightwards double arrow left parenthesis k plus 3 right parenthesis left parenthesis k plus 1 right parenthesis equals 0 end cell row cell rightwards double arrow k equals negative 3 text   or   end text k equals negative 1 end cell row cell F o r text   end text k equals negative 3 comma text   A end text identical to left parenthesis negative 2 comma negative 3 right parenthesis end cell row cell A P equals square root of left parenthesis 2 minus left parenthesis negative 2 right parenthesis right parenthesis squared plus left parenthesis 2 minus left parenthesis negative 3 right parenthesis right parenthesis squared end root equals square root of 4 squared plus 5 squared end root equals square root of 41 end cell row cell F o r text   end text k equals negative 1 comma text   A end text identical to left parenthesis negative 2 comma negative 1 right parenthesis end cell row cell A P equals square root of left parenthesis 2 minus left parenthesis negative 2 right parenthesis right parenthesis squared plus left parenthesis 2 minus left parenthesis negative 1 right parenthesis right parenthesis squared end root equals square root of 4 squared plus 3 squared end root equals square root of 25 equals 5 end cell end table

Question 50

Show that ∆ABC, where A (-2, 0), B (2, 0) C (0, 2) and ∆PQR, where P (-4, 0), Q (4, 0), R (0, 4) are similar.Solution 50

Using the distance formula,

AB=

AC=

BC=

PQ=

PR=

QR=

Now,

ΔABC ~ ΔPQR

by the SSS test.Question 51

Solution 51

Question 52

Find the circumcentre of the triangle whose vertices are (-2,-3), (-1,0), (7,-6).Solution 52

Question 53

Solution 53

Question 54

Find the centre of the circle passing through (5, -8), (2, -9) and (2, 1).Solution 54

Question 55

Solution 55

Question 56

Solution 56

Question 57

Solution 57

Chapter 14 – Co-ordinate Geometry Exercise Ex. 14.3

Question 1

Solution 1

Question 2

Find the points of trisection of the line segment joining the points:

(i) (5, -6) and (-7, 5), (ii) (3, -2) and (-3,-4), (iii) (2,-2) and (-7,4).Solution 2

(i)



(ii)



(iii)

Question 3

Solution 3

Question 4

Solution 4

Question 5

If P(9a – 2, -b) divides the line segment joining A(3a + 1, -3) and B(8a, 5) in the ratio 3 : 1, find the values of a and b.Solution 5

Question 6

If (a, b) is the mid-point of the line segment joining the points A (10, -6), B(k, 4) and a – 2b = 18, find the value of k and the distance AB.Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

If the points P,Q(x, 7), R, S(6, y) in this order divide the line segment joining A(2, p) and B (7, 10) in 5 equal parts, find x, y and p.Solution 9

Question 10

Solution 10

Question 11(i)

Solution 11(i)

Question 11(ii)

Solution 11(ii)

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

  *Note: (i) Answer given in the book is incorrect.Question 15

Solution 15

Question 16

Prove that (4,3), (6,4), (5,6) and (3,5) are the angular points of a square.Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Find the ratio in which the line segment joining the points A (3, -3) and B (-2, 7) is divided by x- axis. Also, find the coordinates of the point of division.Solution 19

Let the point on the x-axis be (a, 0).

Let this point divide the line segment AB in the ratio of r : 1.

Using the section formula for the y-coordinate, we get

table attributes columnalign left end attributes row cell 0 equals fraction numerator 7 r minus 3 over denominator r plus 1 end fraction end cell row cell rightwards double arrow 7 r minus 3 equals 0 end cell row cell rightwards double arrow r equals 3 over 7 end cell row cell text Hence ,  the   line   segment   joining   A   and   B   end text end cell row cell text is   divided   in   the   ratio   of   3  :  7   by   the   x-axis. end text end cell end table

Question 20

Find the ratio in which the point P(x, 2) divides the line segment joining the points A (12, 5) and B (4, -3). Also, find the value of x.Solution 20

table attributes columnalign left end attributes row cell text Let   P   divide   the   line   joining   A   and   B end text end cell row cell text   in   the   ratio   of   r  :  1 end text end cell row cell text Using   the   section   formula   for   the   y-coordinate ,  we   get end text end cell row cell text 2 = end text fraction numerator negative 3 text r + 5 end text over denominator text r + 1 end text end fraction end cell row cell rightwards double arrow 2 r plus 2 equals negative 3 r plus 5 end cell row cell rightwards double arrow 5 r equals 3 end cell row cell rightwards double arrow r equals 3 over 5 end cell row cell text Hence ,  P   divides   the   line   joining   A   and   B end text end cell row cell text   in   the   ratio   of   3  :  5 end text end cell row cell text Using   the   section   formula   for   the   x-coordinate ,  we   get end text end cell row cell x equals fraction numerator 12 plus 60 over denominator 8 end fraction equals 72 over 8 equals 9 end cell end table

Question 21

Find the ratio in which the point P(-1, y) lying on the line segment joining A(-3, 10) and B(6, -8) divides it. Also find the value of y.Solution 21

table attributes columnalign left end attributes row cell text Let   P   divide   A   and   B   in   the   ratio   of   r  :  1 end text end cell row cell text P end text identical to left parenthesis negative 1 comma y right parenthesis comma text   A end text identical to left parenthesis negative 3 comma 10 right parenthesis comma text   end text B identical to left parenthesis 6 comma negative 8 right parenthesis end cell row cell text Using   the   section   formula   for   x   coordinate ,  we   get end text end cell row cell negative 1 equals fraction numerator 6 r minus 3 over denominator r plus 1 end fraction rightwards double arrow negative r minus 1 equals 6 r minus 3 end cell row cell 7 r equals 2 rightwards double arrow r equals 2 over 7 end cell row cell text Hence ,  P   divides   the   line   AB   in   the   ratio   of   2  :  7 end text end cell row cell text Hence ,  using   the   section   formula , end text end cell row cell text y = end text fraction numerator negative text 8 r + 10 end text over denominator r plus 1 end fraction end cell row cell rightwards double arrow therefore y equals fraction numerator negative 16 plus 70 over denominator 2 plus 7 end fraction equals 54 over 9 equals 6 text        end text left square bracket text Substituting   r end text equals 2 over 7 right square bracket end cell end table

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

In what ratio does the point (-4,6) divide the line segment joining the points A(-6,10) and B(3,-8)?Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Find the ratio in which P(4, m) divides the line segment joining the points A(2, 3) and B(6, -3). Hence, find m.Solution 29

Let P divides the line segment AB is the ratio k: 1.

So, the ratio is 1:1.

Also, 

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Show that the points A(1,0) B(5,3), C(2,7) and D(-2,4) are the vertices of a parallelogram.Solution 34

Question 35

Solution 35

Question 36

Solution 36

Question 37

Solution 37

Question 38

Points P, Q, R and S divide the line segment joining the points A(1, 2) and B(6, 7) in 5 equal parts. Find the coordinates of the points P, Q, and R.Solution 38

The difference between the x-coordinates of A and B is 6 – 1 = 5

Similarly, the difference between the y-coordinates of A and B is 7 – 2 = 5

Hence, if the line segment joining A(1, 2) and B(6, 7) is divided into 5 equal parts by the points P, Q, R and S, then the coordinates of P, Q, R and S can be found out by increasing the x and the y coordinates of A by 1 successively.

Hence, the coordinates of P are (1 + 1, 2 + 1) = (2, 3)

The coordinates of Q are (2 + 1, 3 + 1) = (3, 4)

The coordinates of R are (3 + 1, 4 + 1) = (4, 5)Question 39

Solution 39

Question 40

Solution 40

Question 41

Solution 41

Question 42

Solution 42

Question 43

Solution 43

Question 44

Solution 44

Question 45

Solution 45

Question 46

If two vertices of a parallelogram are (3,2), (-1,0) and the diagonals cut at (2,-5), find the other vertices of the parallelogram.Solution 46

Question 47

If the coordinates of the mid-points of the sides of a triangle are (3,4), (4,6), and (5,7), find its vertices.Solution 47

Question 48

Solution 48

Question 49

Solution 49

Question 50 (i)

Solution 50 (i)

Question 50 (ii)

Points A(3, 1), B(5, 1), C(a, b) and D(4, 3) are vertices of a parallelogram ABCD. Find the values of a and b.Solution 50 (ii)

Given: ABCD is a parallelogram

We know that, diagonals of a parallelogram bisect each other.

Therefore, midpoints of diagonals coincide

The midpoints of AC and BD coincide.

Question 51

Solution 51

Question 52 (i)

Points P and Q trisect the line segment joining the points A(-2, 0) and B(0, 8) such that P is near to A. Find the coordinates of P and Q.Solution 52 (i)

As P and Q trisect AB and P is near to A.

Therefore, P divides AB in the ratio 1:2.

Also, Q divides AB in the ration 2:1.

Question 52 (ii)

Solution 52 (ii)

Question 53

Solution 53

Question 54

Solution 54

Question 55

Solution 55

Question 56

A point P divides the line segment joining the points A(3,-5) and B(-4,8), such that  . If P lies on the line x + y = 0, then find the value of k.Solution 56

Given points are A(3,-5) and B(-4,8).

P divides AB in the ratio k : 1.


Using the section formula, we have:

Coordinate of point P are {(-4k+3/k+1)(8k-5/k+1)}

Now it is given, that P lies on the line x+y = 0

Therefore,

-4k+3/k+1 + 8k-5/k+1 =0

=> -4k+3+8k-5 =0

=> 4k -2 =0

=> k=2/4

=> k=1/2

Thus, the value of k is 1/2.Question 57

The mid – point P of the line segment joining the points A (-10, 4) and B (-2, 0) lies on the line segment joining the points C (-9, -4) and D (-4, y). Find the ratio in which P divides CD. Also, find the value of y.Solution 57

table attributes columnalign left end attributes row cell text Coordinates   of   the   midpoint   P   of   A   and   B   are end text end cell row cell left parenthesis fraction numerator negative 10 plus left parenthesis negative 2 right parenthesis over denominator 2 end fraction comma text   end text fraction numerator 4 plus 0 over denominator 2 end fraction right parenthesis identical to left parenthesis negative 6 comma text   2 end text right parenthesis end cell row cell text P   lies   on   the   line   joining   C   and   D. end text end cell row cell text Let   P end text left parenthesis negative 6 comma 2 right parenthesis text   divide   C end text left parenthesis negative 9 comma negative 4 right parenthesis text   and   D end text left parenthesis negative 4 comma y right parenthesis end cell row cell text   in   the   ratio   of   r  :  1 end text end cell row cell text Using   the   section   formula   for   the   x-coordinate   we   get end text end cell row cell negative 6 equals fraction numerator negative 4 r minus 9 over denominator r plus 1 end fraction rightwards double arrow negative 6 r minus 6 equals negative 4 r minus 9 end cell row cell rightwards double arrow 2 r equals 3 rightwards double arrow r equals 3 over 2 end cell row cell text Hence ,  P end text left parenthesis negative 6 comma 2 right parenthesis text   divides   C end text left parenthesis negative 9 comma negative 4 right parenthesis text   and   D end text left parenthesis negative 4 comma y right parenthesis end cell row cell text in   the   ratio   of   3  :  2 end text end cell row cell text Using   the   section   formula   for   y-coordinate   we   get end text end cell row cell 2 equals fraction numerator 3 y minus 8 over denominator 3 plus 2 end fraction rightwards double arrow 10 equals 3 y minus 8 rightwards double arrow 3 y equals 18 end cell row cell rightwards double arrow y equals 6 end cell end table

Question 58

If the point C(-1, 2) divides internally the line segment joining the points A(2, 5) and B(x, y) in the ratio 3 : 4, find the value of x2 + y2.Solution 58

Question 59

ABCD is a parallelogram with vertices A(x1, y1), B(x2, y2) and C (x3, y3). Find the coordinates of the fourth vertex D in terms of x1, x2, x3, y1, y2 and y3.Solution 59

Question 60

The points A (x1, y1), B(x2, y2) and C (x3, y3) are the vertices of ⧍ABC.

 i. The median from A meets BC at D. Find the coordinates of the point D.

 ii. Find the coordinates of the point P on AD such that AP : PD = 2 : 1.

 iii. Find the points of coordinates Q and R on medians BE and CF respectively such that BQ : QE = 2 : 1 and CR : RF = 2 : 1.

 iv. What are the coordinates of the centroid of the triangle ABCSolution 60

Chapter 14 – Co-ordinate Geometry Exercise Ex. 14.4

Question 1(i)

Solution 1(i)

Question 1(ii)

Solution 1(ii)

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Prove analytically that the line segment joining the middle points of two sides of a triangle is equal to half of the third side.Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Chapter 14 – Co-ordinate Geometry Exercise Ex. 14.5

Question 1

Solution 1

Question 1 (iv)

Find the area of a triangle whose vertices are

(1, -1), (-4, 6) and (-3, -5)Solution 1 (iv)

Area of triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is

Therefore, area of triangle with given vertices is

Hence, the area of triangle will be 24 sq. units.Question 1 (v)

Find the area of a triangle whose vertices are

(-5, 7), (-4, -5) and (4, 5)Solution 1 (v)

Area of triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is

Therefore, area of triangle with given vertices is

Hence, the area of triangle will be 53 sq. units.Question 2(i)

Solution 2(i)

Question 2(ii)

Solution 2(ii)

Question 2(iii)

Find the area of the quadrilaterals, the coordinates of whose vertices are

(-4,-2), (-3,-5), (3,-2), (2,3)Solution 2(iii)

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Find the area of a quadrilateral ABCD, the coordinates of whose vertices are A(-3, 2), B(5, 4), C(7, -6) and D(-5, -4).Solution 6

Question 7

In ⧍ABC, the coordinates of vertex A are (0, -1) and D(1, 0) and E(0, 1) respectively the mid-points of the sides AB and AC. If F is the mid-point of side BC, find the area of ⧍DEF.Solution 7

Question 8

Find the area of the triangle PQR with Q (3, 2) and the mid-points of the sides through Q being (2, -1) and (1, 2).Solution 8

Question 9

If P(-5, -3), Q(-4, -6), R(2, -3) and S(1, 2) are the vertices of a quadrilateral PQRS, find its area.Solution 9

begin mathsize 14px style Join space straight P space and space straight R.
Area space of space increment PSR equals 1 half open vertical bar negative 5 left parenthesis 2 plus 3 right parenthesis plus 1 left parenthesis negative 3 plus 3 right parenthesis plus 2 left parenthesis negative 3 minus 2 right parenthesis close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space equals 1 half open vertical bar negative 5 cross times 5 plus 1 cross times 0 plus 2 cross times left parenthesis negative 5 right parenthesis close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space equals 1 half open vertical bar negative 25 plus 0 minus 10 close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space equals 1 half open vertical bar negative 35 close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space equals 35 over 2
Area space of space increment PQR equals 1 half open vertical bar negative 5 left parenthesis negative 6 plus 3 right parenthesis minus 4 left parenthesis negative 3 plus 3 right parenthesis plus 2 left parenthesis negative 3 plus 6 right parenthesis close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space equals 1 half open vertical bar negative 5 cross times left parenthesis negative 3 right parenthesis minus 4 cross times 0 plus 2 cross times 3 close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space equals 1 half open vertical bar 15 plus 0 plus 6 close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space equals 21 over 2
Now comma space area space of space quadrilateral space PQRS equals Area space of space increment PSR plus Area space of space increment PQR
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 35 over 2 plus 21 over 2
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator 35 plus 21 over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 56 over 2
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 28 space space sq. space units end style

Question 10

If A (-3, 5), B(-2, -7), C(1, -8) and D(6, 3) are the vertices of a quadrilateral ABCD, find its area.Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13 (i)

If the vertices of a triangle are (1,-3), (4,p) and (-9, 7) and its area is 15 sq. units, find the value (s) of p.Solution 13 (i)

Let space straight A left parenthesis 1 comma negative 3 right parenthesis comma space straight B left parenthesis 4 comma straight p right parenthesis space and space straight C left parenthesis negative 9 comma 7 right parenthesis space be space the space vertices space of space increment ABC.
Area space of space increment ABC equals 15 space sq. space units
therefore 15 equals 1 half open vertical bar 1 left parenthesis straight p minus 7 right parenthesis plus 4 left parenthesis 7 plus 3 right parenthesis minus 9 left parenthesis negative 3 minus straight p right parenthesis close vertical bar
rightwards double arrow 15 equals 1 half open vertical bar straight p minus 7 plus 40 plus 27 plus 9 straight p close vertical bar
rightwards double arrow 15 equals 1 half open vertical bar 10 straight p plus 60 close vertical bar
rightwards double arrow 30 equals 10 straight p plus 60 space or space 30 equals negative 10 straight p minus 60
rightwards double arrow 10 straight p equals negative 30 space or space 10 straight p equals negative 90
rightwards double arrow straight p equals negative 3 space or space straight p equals negative 9

Question 13 (ii)

Find the value of k so that the area of triangle ABC with A(k + 1, 1), B(4, -3) and C(7, -k) is 6 square units.Solution 13 (ii)

Area of triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is

Hence, the value of k is 3.Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Find the value of a for which the area of the triangle formed by the points A(a, 2a), B(-2, 6) and C (3, 1) is 10 sequare units.Solution 20

Question 21

If a ≠ b ≠ 0, prove that the points (a, a2), (b, b2), (0, 0) are never collinear.Solution 21

Let the points (a, a2), (b, b2), (0, 0) represent a triangle. If we can prove that the area of the triangle so formed is not equal to zero, then we can prove that the points (a, a2), (b, b2), (0, 0) are never collinear.

Area of a triangle is given by

Now b≠a≠0.

So,

b – a≠0,

Δ≠0

Thus, points (a, a2), (b, b2), (0, 0) are never collinear.Question 22

The area of a triangle is 5 sq. units. Two of its vertices are at (2, 1) and (3, -2). If the third vertex is (7/2, y), find y.Solution 22

Area of a triangle is given by  Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

table attributes columnalign left end attributes row cell F i n d text   end text t h e text   end text a r e a text   end text o f text   end text a text   end text p a r a l l e l o g r a m text   end text A B C D text   end text i f text   end text t h r e e text   end text o f text   end text end cell row cell i t s text   end text v e r t i c e s text   end text a r e text    A end text left parenthesis text 2 ,  4 end text right parenthesis text ,  B end text left parenthesis 2 plus square root of 3 comma 5 right parenthesis text    and    C end text left parenthesis text 2 ,  6 end text right parenthesis end cell end table

Solution 29

table attributes columnalign left end attributes row cell text Area   of   ABC   can   be   found   using   formula   for   area. end text end cell row cell capital delta text   =  end text fraction numerator text 1 end text over denominator text 2 end text end fraction vertical line x subscript 1 left parenthesis y subscript 2 minus y subscript 3 right parenthesis plus x subscript 2 left parenthesis y subscript 3 minus y subscript 1 right parenthesis plus x subscript 3 left parenthesis y subscript 1 minus y subscript 2 right parenthesis vertical line end cell row cell equals 1 half vertical line 2 left parenthesis 5 minus 6 right parenthesis plus left parenthesis 2 plus square root of 3 right parenthesis left parenthesis 6 minus 4 right parenthesis plus 2 left parenthesis 4 minus 5 right parenthesis vertical line end cell row cell equals 1 half vertical line minus 2 plus 4 plus 2 square root of 3 minus 2 vertical line end cell row cell equals square root of 3 text   square   units end text end cell row cell text The   triangle   formed   by   any   three   vertices   of   end text end cell row cell text a   parallelogram   has   half   the   area   of   the   parallelogram. end text end cell row cell text Hence ,  area   of   the   parallelogram = 2 end text cross times capital delta text = 2 end text square root of text 3 end text end root text   square   units end text end cell end table

Question 30

Find the value (s) of k for which the points (3k – 1, k – 2), (k, k – 7) and (k – 1, -k – 2) are collinear.Solution 30

Let the points be A, B and C respectively.

If A, B and C are collinear, then the area of ∆ABC is zero.

table attributes columnalign left end attributes row cell capital delta text = end text fraction numerator text 1 end text over denominator text 2 end text end fraction vertical line x subscript 1 left parenthesis y subscript 2 minus y subscript 3 right parenthesis plus x subscript 2 left parenthesis y subscript 3 minus y subscript 1 right parenthesis plus x subscript 3 left parenthesis y subscript 1 minus y subscript 2 right parenthesis vertical line end cell row cell equals 1 half vertical line left parenthesis 3 k minus 1 right parenthesis left parenthesis k minus 7 plus k plus 2 right parenthesis plus k left parenthesis negative k minus 2 minus k plus 2 right parenthesis plus left parenthesis k minus 1 right parenthesis left parenthesis k minus 2 minus k plus 7 right parenthesis vertical line end cell row cell equals 1 half vertical line 4 k squared minus 12 k vertical line end cell end table
table attributes columnalign left end attributes row cell text The   area   of   the   triangle   is   zero   when   the   points end text end cell row cell text are   collinear. end text end cell row cell text 4 k end text to the power of text 2 end text end exponent minus 12 k equals 0 end cell row cell rightwards double arrow 4 k left parenthesis k minus 3 right parenthesis equals 0 end cell row cell rightwards double arrow k equals 0 text   or   end text k minus 3 equals 0 end cell row cell rightwards double arrow k equals 0 text   or   end text k equals 3 end cell end table

Question 31

If the points A(-1, -4), B(b, c) and C(5, -1) are collinear and 2b + c = 4, find the values of b and c.Solution 31

table attributes columnalign left end attributes row cell text Let   the   points   be   A ,  B   and   C   respectively. end text end cell row cell text If   A ,  B   and   C   are   collinear ,  then   area   of   the   end text capital delta text ABC   is   zero. end text end cell row cell capital delta text   =  end text fraction numerator text 1 end text over denominator text 2 end text end fraction vertical line x subscript 1 left parenthesis y subscript 2 minus y subscript 3 right parenthesis plus x subscript 2 left parenthesis y subscript 3 minus y subscript 1 right parenthesis plus x subscript 3 left parenthesis y subscript 1 minus y subscript 2 right parenthesis vertical line end cell row cell equals 1 half vertical line left parenthesis negative 1 right parenthesis left parenthesis c minus left parenthesis negative 1 right parenthesis right parenthesis plus b left parenthesis negative 1 minus left parenthesis negative 4 right parenthesis right parenthesis plus 5 left parenthesis negative 4 minus c right parenthesis vertical line end cell row cell equals 1 half vertical line minus c minus 1 plus 3 b minus 20 minus 5 c vertical line end cell row cell equals 1 half vertical line 3 b minus 6 c minus 21 vertical line end cell row cell text The   area   of   the   triangle   is   zero   when   the   points end text end cell row cell text are   collinear. end text end cell row cell 3 b minus 6 c minus 21 equals 0 end cell row cell rightwards double arrow 3 left parenthesis negative b plus 2 c plus 7 right parenthesis equals 0 end cell row cell rightwards double arrow negative b plus 2 c plus 7 equals 0... left parenthesis 1 right parenthesis end cell row cell text Also   given   that   end text 2 b plus c equals 4... left parenthesis 2 right parenthesis end cell row cell text Solving   equations  ( 1 )  and  ( 2 ),  we   have , end text end cell row cell b equals 3 text   and   end text c equals negative 2 end cell end table

Question 32

If the points A(-2, 1), B(a, b) and C(4, -1) are collinear and a – b = 1, find the values of a and b.Solution 32

table attributes columnalign left end attributes row cell text Let   the   points   be   A ,  B   and   C   respectively. end text end cell row cell text If   A ,  B   and   C   are   collinear ,  then   the   area   of   end text capital delta text ABC   is   zero. end text end cell row cell capital delta text = end text fraction numerator text 1 end text over denominator text 2 end text end fraction vertical line x subscript 1 left parenthesis y subscript 2 minus y subscript 3 right parenthesis plus x subscript 2 left parenthesis y subscript 3 minus y subscript 1 right parenthesis plus x subscript 3 left parenthesis y subscript 1 minus y subscript 2 right parenthesis vertical line end cell row cell equals 1 half vertical line left parenthesis negative 2 right parenthesis left parenthesis b minus left parenthesis negative 1 right parenthesis right parenthesis plus a left parenthesis negative 1 minus 1 right parenthesis plus 4 left parenthesis 1 minus b right parenthesis vertical line end cell row cell equals 1 half vertical line minus 2 b minus 2 minus 2 a plus 4 minus 4 b vertical line end cell row cell equals 1 half vertical line minus 2 a minus 6 b plus 2 vertical line end cell row cell text The   area   of   the   triangle   is   zero   when   the   points end text end cell row cell text are   collinear. end text end cell row cell negative 2 a minus 6 b plus 2 equals 0 end cell row cell rightwards double arrow negative 2 left parenthesis a plus 3 b minus 1 right parenthesis equals 0 end cell row cell rightwards double arrow a plus 3 b minus 1 equals 0... left parenthesis 1 right parenthesis end cell row cell text Also   given   that   end text a minus b equals 1... left parenthesis 2 right parenthesis end cell row cell text Solving   equations  ( 1 )  and  ( 2 ),  we   have , end text end cell row cell a equals 1 text   and   end text b equals 0 end cell end table

Question 33

If the points A(1, -2), B(2, 3), C(a, 2) and D(-4, -3) form a parallelogram, find the value of a and height of the parallelogram taking AB as base.Solution 33

Question 34

A(6, 1), B(8, 2) and C(9, 4) are three vertices of a parallelogram ABCD. If E is the mid-point of DC, find the area of ⧍ADE.Solution 34

Question 35

If D(-1/5, 5/2), E(7, 3) and F(7/2, 7/2) are the mid-points of sides of ⧍ABC, find the area of ⧍ABCSolution 35

Chapter 14 – Co-ordinate Geometry Exercise 14.63

Question 1

begin mathsize 12px style The space distance space between space the space points space left parenthesis cos space straight theta comma space sinθ right parenthesis space and space left parenthesis sin space straight theta space minus space cosθ right parenthesis space is
left parenthesis straight a right parenthesis space square root of 3
left parenthesis straight b right parenthesis space square root of 2
left parenthesis straight c right parenthesis space 2
left parenthesis straight d right parenthesis space 1 end style

Solution 1

begin mathsize 12px style space We space know comma space distance space between space two space point space left parenthesis straight x comma straight y right parenthesis space and space left parenthesis straight a comma straight b right parenthesis space is space calculated space as space
distance space equals space square root of left parenthesis straight x minus straight a right parenthesis squared plus left parenthesis straight y minus straight b right parenthesis squared end root
Here space points space are space left parenthesis cos space straight theta comma sin space straight theta right parenthesis space and space left parenthesis sin space straight theta space minus space cos space straight theta right parenthesis
Hence comma
distance space equals space square root of left parenthesis cosθ minus space sin space straight theta right parenthesis squared plus left parenthesis sinθ plus cosθ right parenthesis squared end root
space space space space space space space space space space space space space space space space space equals square root of left parenthesis cos squared straight theta space plus space sin squared straight theta plus 2 sinθcosθ plus sin squared straight theta plus cos squared straight theta minus 2 sinθcosθ right parenthesis end root space
We space know space sin squared straight theta plus cos squared straight theta space equals space 1
rightwards double arrow space distance space equals space square root of 1 plus 1 end root
space space space space space space space space space space space space space space space space space space space space space space space equals square root of 2 space space space space space space space
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 2

begin mathsize 12px style The space distance space between space the space points space left parenthesis straight a space cos 25 to the power of straight o comma 0 right parenthesis space and space left parenthesis 0 comma straight a space cos space 65 to the power of straight o right parenthesis space is space
left parenthesis straight a right parenthesis space straight a
left parenthesis straight b right parenthesis space 2 straight a
left parenthesis straight c right parenthesis space 3 straight a
left parenthesis straight d right parenthesis space None space of space these end style

Solution 2

begin mathsize 12px style We space know space cos space left parenthesis 90 minus straight theta right parenthesis space equals space sinθ
space space space space space space space space space space space space space space For space straight theta space equals space 25 to the power of straight o space rightwards double arrow cos thin space left parenthesis 65 to the power of straight o right parenthesis space equals space sin space 25 to the power of straight o space minus space circle enclose 1
space space space space space space space space space space space space space and space sin space squared straight theta space plus space cos squared straight theta space space equals space 1 space minus space circle enclose 2
distance space betweem space given space points space equals space square root of left parenthesis acos 25 minus 0 right parenthesis squared plus left parenthesis 0 minus acos 65 to the power of straight o right parenthesis squared end root
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space square root of straight a squared left parenthesis cos squared 25 to the power of straight o plus cos squared 65 to the power of straight o right parenthesis end root
from space circle enclose 1 space and space circle enclose 2
distance space equals space square root of straight a squared end root
space space space space space space space space space space space space space space space space space equals space straight a
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. space space space space end style

Question 3

Error converting from MathML to accessible text.

Solution 3

begin mathsize 12px style distance space equals space square root of left parenthesis straight x minus 3 right parenthesis squared plus left parenthesis 2 plus 6 right parenthesis squared end root
space space space space space space space space space space space rightwards double arrow 10 space equals space square root of left parenthesis straight x minus 3 right parenthesis squared plus 8 squared end root
space space space space space space space space space space space space rightwards double arrow 10 squared space equals space left parenthesis straight x minus 3 right parenthesis squared space plus space 8 squared
space space space space space space space space space space space space rightwards double arrow 100 space equals space 64 space equals space left parenthesis straight x minus 3 right parenthesis squared
space space space space space space space space space space space space rightwards double arrow space left parenthesis straight x minus 3 right parenthesis squared equals space 36
space space space space space space space space space space space space rightwards double arrow straight x minus 3 equals space 6
space space space space space space space space space space space space space rightwards double arrow space box enclose straight x equals 9 end enclose space space or space box enclose straight x equals negative 3 end enclose
But space straight x space is space positive
space space space space space space space space space space space space space space space rightwards double arrow box enclose straight x equals 9 end enclose
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 4

begin mathsize 12px style The space distance space between space the space points space left parenthesis straight a space cos space straight theta space plus space straight b space sin space straight theta comma 0 right parenthesis space and space left parenthesis 0 comma straight a space sin space straight theta space minus space straight b space cos space straight theta right parenthesis space is
left parenthesis straight a right parenthesis space straight a squared space plus space straight b squared
left parenthesis straight b right parenthesis space straight a space plus space straight b
left parenthesis straight c right parenthesis space straight a squared space minus space straight b squared
left parenthesis straight d right parenthesis space square root of straight a squared space plus space straight b squared end root end style

Solution 4

begin mathsize 12px style distance space equals space square root of left parenthesis acosθ space plus space straight b space sinθ space minus 0 right parenthesis squared plus left parenthesis 0 minus asinθ plus bcosθ right parenthesis squared end root
space space space space space space space space space space space space space space space space space space equals square root of left parenthesis straight a squared cos squared straight theta plus straight b squared sin squared straight theta plus 2 absinθcosθ plus straight a squared sin squared straight theta plus straight b squared cos squared straight theta minus space 2 ab space sinθcosθ end root space
space space space space space space space space space space space space space space space space space space equals square root of straight a squared left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis space plus straight b squared space left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis end root
space space space space space space space space space space space space space space space space space space equals square root of straight a squared plus straight b squared end root
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 5

begin mathsize 12px style If space the space distance space between space the space points space left parenthesis 4 comma straight p right parenthesis space and space left parenthesis 1 comma 0 right parenthesis space is space 5 comma space then space straight p equals
left parenthesis straight a right parenthesis thin space space plus-or-minus 4
left parenthesis straight b right parenthesis space 4
left parenthesis straight c right parenthesis space minus 4
left parenthesis straight d right parenthesis space 0 end style

Solution 5

begin mathsize 12px style distance space equals space square root of left parenthesis 4 minus 1 right parenthesis squared plus left parenthesis straight p minus 0 right parenthesis squared end root
space space space space space space space space rightwards double arrow space 5 space equals space square root of 3 squared plus straight p squared end root
space space space space space space space rightwards double arrow 25 space equals space straight q space plus space straight p squared
space space space space space space space rightwards double arrow straight p squared space equals space 16
space space space space space space space rightwards double arrow straight p space equals space plus-or-minus 4
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 6

A line Segement is of length 10 units. If the coordinates of its one end are (2,3) and the abscissa of the other end is 10, then its ordinate is

(a) 9,6

(b) 3,-9

(c) -3,9

(d) 9,-6Solution 6

begin mathsize 12px style Let space the space abscissa space be space straight x.
Then space distance space between space points space left parenthesis 2 comma negative 3 right parenthesis space and space left parenthesis 10 comma straight x right parenthesis space is
equals space square root of left parenthesis 2 minus 10 right parenthesis squared plus left parenthesis negative 3 minus straight x right parenthesis squared end root
equals space square root of 8 squared plus left parenthesis straight x plus 3 right parenthesis squared end root
space 10 equals square root of 64 space plus space left parenthesis straight x plus 3 right parenthesis squared end root
rightwards double arrow space 100 space equals space 64 space plus space open parentheses straight x plus 3 close parentheses squared
rightwards double arrow space left parenthesis straight x plus 3 right parenthesis squared space equals space 36
rightwards double arrow straight x space plus space 3 space equals space 6 space or space straight x space plus space 3 space equals space minus 6
rightwards double arrow straight x space equals space 3 space or space straight x equals space minus 9
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 7

begin mathsize 12px style The space perimeter space of space the space triangle space formed space by space the space points space left parenthesis 0 comma 0 right parenthesis comma left parenthesis 1 comma 0 right parenthesis space and space left parenthesis 0 comma 1 right parenthesis space is
left parenthesis straight a right parenthesis space 1 plus-or-minus space square root of 2
left parenthesis straight b right parenthesis space square root of 2 space plus space 1 end root
left parenthesis straight c right parenthesis space 3
left parenthesis straight d right parenthesis space 2 space plus space square root of 2

end style

Solution 7

begin mathsize 12px style AB equals space square root of left parenthesis 0 minus 1 right parenthesis squared plus left parenthesis 0 minus 0 right parenthesis squared end root
space space space space space space space space space space space space space space space space space space space space space equals space 1
BC space equals space square root of left parenthesis 1 minus 0 right parenthesis squared plus left parenthesis 0 minus 1 right parenthesis squared end root
space space space space space space space space space space space space space space space space space space space space equals square root of 1 plus 1 end root
space space space space space space space space space space space space space space space space space space space space space equals square root of 2
CA space equals space square root of left parenthesis 0 minus 0 right parenthesis 2 space plus space left parenthesis 1 minus 0 right parenthesis squared end root
space space space space space space space space space space space space space space space space space space space space space space equals space 1
Perimeter equals AB plus BC plus AC equals 2 plus square root of 2 end style

So, the correct option is (d).Question 8

begin mathsize 12px style If space straight A space left parenthesis 2 comma 2 right parenthesis comma thin space straight B left parenthesis negative 4 comma negative 4 right parenthesis space and space straight C left parenthesis 5 comma negative 8 right parenthesis space are space the space vertices space of space straight a space triangle comma space then space the space length
of space the space median space through space verte space straight C space is
left parenthesis straight a right parenthesis space square root of 65
left parenthesis straight b right parenthesis space square root of 117
left parenthesis straight c right parenthesis square root of 85
left parenthesis straight d right parenthesis square root of 113 end style

Solution 8

begin mathsize 12px style straight D space is space mid space point space of space straight A space and space straight B
Hence space Coordinates space of space straight D space are
open parentheses fraction numerator 2 plus left parenthesis negative 4 right parenthesis over denominator 2 end fraction comma space fraction numerator 2 plus open parentheses negative 4 close parentheses over denominator 2 end fraction close parentheses
open parentheses fraction numerator negative 2 over denominator 2 end fraction comma fraction numerator negative 2 over denominator 2 end fraction close parentheses
left parenthesis negative 1 comma negative 1 right parenthesis
Length space of space median space CD space equals space square root of left parenthesis 5 plus 1 right parenthesis squared plus left parenthesis negative 8 plus 1 right parenthesis squared end root
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals square root of 6 squared plus 7 squared end root space equals space square root of 36 plus 49 end root space equals space square root of 85 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
space So comma space the space correct space option space is space left parenthesis straight c right parenthesis. space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space end style

Question 9

begin mathsize 12px style If space three space points space left parenthesis 0 comma 0 right parenthesis comma space left parenthesis 3 comma square root of 3 right parenthesis end root space and space left parenthesis 3 comma straight lambda right parenthesis space form space and space equilateral space triangle comma space then space straight lambda space equals
left parenthesis straight a right parenthesis space 2
left parenthesis straight b right parenthesis space minus 3
left parenthesis straight c right parenthesis space minus space 4
left parenthesis straight d right parenthesis space None space of space these space end style

Solution 9

begin mathsize 12px style All space sides space of space straight a space equilateral space traingle space are space equal
space space space space space space space space space space space space space space AC space equals space square root of left parenthesis 3 minus 0 right parenthesis squared plus left parenthesis square root of 3 minus 0 right parenthesis squared end root
space space space space space space space space space space space space space space space space space space space space space equals space square root of 9 plus 3 end root
space space space space space space space space space space space space space space space space space space space space space space equals space square root of 12
space space space space space space space space space space space space space space space AC space equals space 2 square root of 3
AB space equals space square root of left parenthesis 3 minus 0 right parenthesis squared left parenthesis straight lambda minus 0 right parenthesis squared end root
space space space space space space space equals space square root of straight lambda squared plus 9 end root
But space AB space equals space AC
space space rightwards double arrow square root of straight lambda squared plus 9 end root equals square root of 12
space space space rightwards double arrow straight lambda squared plus 9 space equals space 12
space space space rightwards double arrow straight lambda squared space equals space 3
space space space space rightwards double arrow straight lambda space equals space plus-or-minus square root of 3
But space if space straight lambda space equals space square root of 3 space then space straight B space and space straight C space are space same
Hence space box enclose straight lambda space equals space minus square root of 3 end enclose
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 10

begin mathsize 12px style If space the space points space left parenthesis straight k comma 2 straight k right parenthesis comma space left parenthesis 3 straight k comma 3 straight k right parenthesis space and space left parenthesis 3 comma 1 right parenthesis space are space collinear comma space then space straight k
left parenthesis straight a right parenthesis space 1 third
left parenthesis straight b right parenthesis space minus 1 third
left parenthesis straight c right parenthesis space 2 over 3
left parenthesis straight d right parenthesis space minus space 2 over 3 end style

Solution 10

begin mathsize 12px style If space there space points space are space collinear space then space co minus ordinate space if space third space point space must
satisfy space the space straight space line space passing space through space the space first space two space points
rightwards double arrow Straight space line space passing space through space left parenthesis straight k comma 2 straight k right parenthesis space and space left parenthesis 3 straight k comma 3 straight k right parenthesis space is space fraction numerator straight y minus 2 straight k over denominator straight x minus straight k end fraction equals fraction numerator 3 straight k minus 2 straight k over denominator 3 straight k minus straight k end fraction minus space circle enclose 1
The space point space left parenthesis 3 comma 1 right parenthesis space satisfies space eq space circle enclose 1
rightwards double arrow fraction numerator 1 minus 2 straight k over denominator 3 minus straight k end fraction equals fraction numerator straight k over denominator 2 straight k end fraction
rightwards double arrow fraction numerator 1 minus 2 straight k over denominator 3 minus straight k end fraction equals 1 half
rightwards double arrow 2 minus 4 space straight k equals 3 minus straight k
rightwards double arrow negative 1 space equals space 3 straight k
rightwards double arrow straight k space equals space minus 1 third
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Chapter 14 – Co-ordinate Geometry Exercise 14.64

Question 11

begin mathsize 12px style The space coordinates space of space the space point space on space straight x minus axis space which space ar space equidistant space from space the space points space
left parenthesis negative 3 comma 4 right parenthesis space and space left parenthesis 2 comma 5 right parenthesis space are
left parenthesis straight a right parenthesis space left parenthesis 20 comma 0 right parenthesis
left parenthesis straight b right parenthesis space left parenthesis negative 23 comma 0 right parenthesis
left parenthesis straight c right parenthesis space open parentheses 4 over 5 comma 0 close parentheses
left parenthesis straight d right parenthesis space None space of space these end style

Solution 11

begin mathsize 12px style Given space that space point space is space on space straight x minus axis
Hence space let space point space is space left parenthesis straight x comma 0 right parenthesis
space distance space from space space left parenthesis negative 3 comma 4 right parenthesis space equals space square root of left parenthesis straight x plus 3 right parenthesis squared plus left parenthesis 0 minus 4 right parenthesis squared end root space space space space space space space space space space space space space space minus space circle enclose 1
distance space from space left parenthesis 2 comma 5 right parenthesis space equals space square root of left parenthesis straight x minus 2 right parenthesis squared plus left parenthesis 0 minus 5 right parenthesis squared end root space space space space space space space space space space space space space space space space space space space space minus circle enclose 2
But space circle enclose 1 space and space circle enclose 2 space end enclose space are space equal
rightwards double arrow square root of left parenthesis straight x plus 3 right parenthesis squared plus 16 space end root space equals space square root of left parenthesis straight x minus 2 right parenthesis squared plus 25 end root
rightwards double arrow space left parenthesis straight x plus 3 right parenthesis squared space plus space 16 space equals space left parenthesis straight x minus 2 right parenthesis squared space plus space 25
rightwards double arrow straight x squared space plus space 9 space plus space 6 straight x space plus space 16 space equals space straight x squared space minus space 4 straight x space plus space 4 space plus space 25
rightwards double arrow 10 straight x space equals space 4
rightwards double arrow straight x space equals 2 over 5
rightwards double arrow space Coordinates space open parentheses 2 over 5 comma 0 close parentheses
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 12

If (-1,2),(2,-1) and (3,1) are any three vertices of a parallelogram, then

(a) a = 2, b = 0

(b) a = -2, b = 0

(c) a = -2, b = 6

(d) a = 6, b = 2Solution 12

begin mathsize 12px style If space ABCD space is space straight a space paralelogram space then space AB space II space CD space and space AD space II space BC
If space AB space II space CD
Slope space of space AB equals space Slope space of space CD
rightwards double arrow fraction numerator 2 minus left parenthesis negative 1 right parenthesis over denominator negative 1 minus left parenthesis 2 right parenthesis end fraction equals fraction numerator straight b minus 1 over denominator straight a minus 3 end fraction
rightwards double arrow fraction numerator 3 over denominator negative 3 end fraction space equals space fraction numerator straight b minus 1 over denominator straight a minus 3 end fraction
rightwards double arrow space minus 1 space equals space fraction numerator straight b minus 1 over denominator straight a minus 3 end fraction
rightwards double arrow negative straight a plus 3 space equals space straight b minus 1
rightwards double arrow box enclose straight a plus straight b space equals space 4 end enclose space minus space circle enclose 1
And space AD space II space BC
slope space of space AD space equals space slope space of space BC
rightwards double arrow fraction numerator 2 minus straight b over denominator negative 1 minus a end fraction space equals space fraction numerator negative 1 minus 1 over denominator 2 minus 3 end fraction
rightwards double arrow fraction numerator straight b minus 2 over denominator straight a plus 1 end fraction space equals space 2 over 1
rightwards double arrow straight b space minus 2 space equals space 2 straight a plus 2
rightwards double arrow box enclose 2 straight a minus straight b space equals space minus 4 end enclose space minus space circle enclose 2
circle enclose 1 space plus space circle enclose 2
rightwards double arrow space 3 straight a space equals space 0
box enclose straight a space equals space 0 end enclose space and space box enclose straight b space equals space 4 end enclose space space space space space space space space space space space space space end style

Note: The answer does not match the options.Question 13

If A (5,3), B(11,-5) and P(12,y) are the vertices of a right triangle right angled at P, then y = 

(a) – 2,4

(b) -2 ,4

(c) 2, -4

(d) 2,4Solution 13

begin mathsize 12px style AB squared space equals space AP squared space plus space left parenthesis PB right parenthesis to the power of 2 space end exponent minus space circle enclose 1
AB space equals space square root of left parenthesis 11 minus 5 right parenthesis squared space plus space left parenthesis negative 5 minus 3 right parenthesis squared end root
space space space space space space space equals space square root of 6 squared space plus space 8 squared end root
AB space equals space 10 space space space space space space space space minus space circle enclose 2
AP space equals space square root of left parenthesis 12 minus 5 right parenthesis squared left parenthesis straight y minus 3 right parenthesis squared end root
AP space equals space square root of 7 squared plus left parenthesis straight y minus 3 right parenthesis squared end root space minus space circle enclose 3
BP space equals space square root of left parenthesis 12 minus 11 right parenthesis squared plus left parenthesis straight y plus 5 right parenthesis squared end root
space space space space space space space equals space square root of 1 plus open parentheses straight y plus 5 close parentheses squared end root space space minus space circle enclose 4
From space circle enclose 1 comma circle enclose 2 comma circle enclose 3 comma circle enclose 4
rightwards double arrow space 10 squared space equals space open parentheses square root of 7 squared plus open parentheses straight y minus 3 close parentheses squared end root close parentheses space plus space open parentheses square root of 1 plus open parentheses straight y plus 5 close parentheses squared end root close parentheses squared
rightwards double arrow space 100 space equals space 49 plus space left parenthesis straight y minus 3 right parenthesis squared space plus space 1 space plus space open parentheses straight y plus 5 close parentheses squared
rightwards double arrow space 100 space equals space 50 space plus space straight y squared space minus space 6 straight y space plus space 9 space plus space straight y squared space plus space 10 straight y space plus space 25
rightwards double arrow 2 straight y squared space minus space 4 straight y space minus space 16 space equals space 0
rightwards double arrow straight y squared space plus space 2 straight y space minus 8 space equals space 0
rightwards double arrow straight y squared space plus space 4 straight y space minus space 2 straight y space minus space 8 space equals space 0
rightwards double arrow straight y space left parenthesis straight y plus 4 right parenthesis space minus space 2 space left parenthesis straight y plus 4 right parenthesis space equals space 0
rightwards double arrow straight y space equals space 2 comma space minus 4
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 14

The area of the triangle formed by (a,b+c), (b,c+a) and (c,a+b) is 

(a)  a+b+c

(b) abc

(c) (a+b+c)2

(d) 0Solution 14

begin mathsize 12px style We space know space know space if space left parenthesis straight x comma straight y right parenthesis comma space left parenthesis straight x subscript 2 comma straight y subscript 2 right parenthesis space and space left parenthesis straight x subscript 3 comma straight y subscript 3 right parenthesis space are space co minus ordinate space of space any space triangle space then
area space of space triangle space equals space open vertical bar fraction numerator straight x subscript 1 comma left parenthesis straight y subscript 2 minus straight y subscript 3 right parenthesis space plus space straight x subscript 2 left parenthesis straight y subscript 3 minus straight y subscript 1 right parenthesis plus straight x subscript 3 left parenthesis straight y subscript 1 minus straight y subscript 2 right parenthesis over denominator 2 end fraction close vertical bar
rightwards double arrow space Coordinates space are space left parenthesis straight a comma straight b plus straight c right parenthesis comma space left parenthesis straight b comma straight c plus straight a right parenthesis comma space left parenthesis straight c comma straight a plus straight b right parenthesis
rightwards double arrow area space of space triangle space equals space open vertical bar fraction numerator straight a left parenthesis straight c plus straight a right parenthesis minus left parenthesis straight a plus straight b right parenthesis plus straight b left parenthesis straight a plus straight b right parenthesis minus left parenthesis straight b plus straight c right parenthesis plus straight c left parenthesis left parenthesis straight b plus straight c right parenthesis minus left parenthesis straight c plus straight a right parenthesis right parenthesis over denominator 2 end fraction close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open vertical bar fraction numerator straight a left parenthesis straight c minus straight b right parenthesis plus straight b left parenthesis straight a minus straight c right parenthesis plus straight c left parenthesis straight b minus straight a right parenthesis over denominator 2 end fraction close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open vertical bar fraction numerator ac minus ab space plus space ab space minus space bc space plus space bc space minus space ac over denominator 2 end fraction close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 0
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 15

If (x,2),(-3,-4) and (7,-5) are collinear, then x = 

(a) 60

(b) 63

(c) -63

(d) -60Solution 15

begin mathsize 12px style If space 3 space points space are space collinear space comma space then space area space of space triangle space formed space by space theses space 3 space ponts
must space be space 0.
rightwards double arrow space area space equals space open vertical bar fraction numerator straight x left parenthesis negative 4 space plus space 5 right parenthesis space minus space 3 space left parenthesis negative 5 space minus 2 right parenthesis space plus space 7 space left parenthesis 2 plus 4 right parenthesis over denominator 2 end fraction close vertical bar equals 0
rightwards double arrow straight x space plus space 21 space plus space 42 space equals space 0
rightwards double arrow space straight x space equals space minus space 63
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 16

begin mathsize 12px style If space points space left parenthesis straight t comma 2 straight t right parenthesis comma space left parenthesis negative 2 comma 6 right parenthesis space and space left parenthesis 3 comma 1 right parenthesis space are space collinear space then space straight t space equals space
left parenthesis straight a right parenthesis space 3 over 4
left parenthesis straight b right parenthesis space 4 over 3
left parenthesis straight c right parenthesis space 5 over 3
left parenthesis straight d right parenthesis space 3 over 5 end style

Solution 16

begin mathsize 12px style area space equals space open vertical bar fraction numerator straight t left parenthesis 6 minus 1 right parenthesis minus 2 left parenthesis 1 minus 2 straight t right parenthesis plus 3 left parenthesis 2 straight t minus 6 right parenthesis over denominator 2 end fraction close vertical bar equals 0
rightwards double arrow 5 straight t space plus space 4 straight t space minus space 2 space plus space 6 straight t space minus space 18 space equals space 0
rightwards double arrow space 15 straight t space equals space 20
rightwards double arrow straight t space equals space 4 over 3
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 17

begin mathsize 12px style If space the space area space of space the space triangle space formed space by space the space points space left parenthesis straight x comma 2 straight x right parenthesis comma space left parenthesis negative 2 comma 6 right parenthesis space and space left parenthesis 3 comma 1 right parenthesis space is space 5 space square space units comma space then space straight x space equals space
left parenthesis straight a right parenthesis space 2 over 3
left parenthesis straight b right parenthesis space 3 over 5
left parenthesis straight c right parenthesis space 3
left parenthesis straight d right parenthesis space 5 end style

Solution 17

begin mathsize 12px style area space equals space open vertical bar fraction numerator straight x left parenthesis 6 minus 1 right parenthesis minus 2 left parenthesis 1 minus 2 straight x right parenthesis plus 3 left parenthesis 2 straight x minus 6 right parenthesis over denominator 2 end fraction close vertical bar
rightwards double arrow space 5 space equals space open vertical bar fraction numerator 5 straight x space plus space 4 straight x minus 2 space plus space 6 straight x space minus space 18 over denominator 2 end fraction close vertical bar
rightwards double arrow 15 straight x space minus space 20 space equals space 10 space or space 15 straight x space minus space 20 space equals space minus 10
rightwards double arrow 15 straight x equals space 30 space space or space 15 straight x space equals space 10
rightwards double arrow straight x space equals space 2 space or space straight x space equals space 2 over 3
So space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 18

begin mathsize 12px style If space points space left parenthesis straight a comma 0 right parenthesis left parenthesis 0 comma straight b right parenthesis space and space left parenthesis 1 comma 1 right parenthesis space are space collinear comma space then space 1 over straight a plus 1 over straight b equals
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space 2
left parenthesis straight c right parenthesis space 0
left parenthesis straight d right parenthesis space minus 1 end style

Solution 18

begin mathsize 12px style area space equals space open vertical bar fraction numerator straight a left parenthesis straight b minus 1 right parenthesis plus 0 left parenthesis 1 minus 0 right parenthesis plus 1 left parenthesis 0 minus straight b right parenthesis over denominator 2 end fraction close vertical bar
rightwards double arrow 0 space equals space open vertical bar fraction numerator ab space minus space straight a space minus space straight b over denominator 2 end fraction close vertical bar
rightwards double arrow ab space equals space straight a space plus space straight b
rightwards double arrow 1 space equals space fraction numerator straight a plus straight b over denominator ab end fraction
rightwards double arrow 1 over straight a plus 1 over straight b equals 1
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 19

begin mathsize 12px style If space the space centriod space of space straight a space triangle space is space space left parenthesis 1 comma 4 right parenthesis space and space two space if space its space vertices space are space left parenthesis 4 comma negative 3 right parenthesis space and space left parenthesis negative 9 comma 7 right parenthesis comma space then
the space area space of space the space triangle space is
left parenthesis straight a right parenthesis space 183 space sq. units
left parenthesis straight b right parenthesis space 183 over 2 sq. units
left parenthesis straight c right parenthesis space 366 space sq. units
left parenthesis straight d right parenthesis space 183 over 4 sq. units end style

Solution 19

begin mathsize 12px style We space know space if space left parenthesis straight x comma straight y right parenthesis comma space left parenthesis left parenthesis straight x subscript 2 comma straight y subscript 2 right parenthesis comma space straight x subscript 3 comma straight y subscript 3 right parenthesis space are space co minus ordinates space of space triangle space then space coordinate space of space centriod
is space open parentheses fraction numerator straight x subscript 1 plus straight x subscript 2 plus straight x subscript 3 over denominator 3 end fraction comma fraction numerator straight y subscript 1 plus straight y subscript 2 plus straight y subscript 3 over denominator 3 end fraction close parentheses space minus space circle enclose 1
rightwards double arrow space Two space vertices space of space of space triangle space are space left parenthesis 4 comma negative 3 right parenthesis space and space left parenthesis negative 9 comma 7 right parenthesis
Let space third space coordinate space be space left parenthesis straight a comma straight b right parenthesis
Given space centroid space is space left parenthesis 1 comma 4 right parenthesis
Now space form space circle enclose 1
fraction numerator straight a plus 4 minus 9 over denominator 3 end fraction equals 1 space and space fraction numerator straight b minus 3 plus 7 over denominator 3 end fraction equals 4
rightwards double arrow straight a space minus space 5 space equals space 3 space space space space and space space space straight b plus 4 equals 12
box enclose straight a space equals space 8 end enclose space space space space and space space space box enclose straight b equals 8 end enclose
All space co minus ordinates space are space left parenthesis 8 comma 8 right parenthesis comma space left parenthesis 4 comma negative 3 right parenthesis space and space left parenthesis straight a minus 9 comma 7 right parenthesis
area space equals space open double vertical bar fraction numerator 8 left parenthesis negative 3 minus 7 right parenthesis space plus space 4 space left parenthesis 7 space minus space 8 right parenthesis space minus 9 left parenthesis 8 plus 3 over denominator 2 end fraction close double vertical bar
space space space space space space space space space equals open vertical bar fraction numerator negative 80 space minus space 4 space minus space 99 over denominator 2 end fraction close vertical bar
space space space space space space space space equals open vertical bar fraction numerator negative 183 over denominator 2 end fraction close vertical bar
space space space space space space equals space 183 over 2 space square space units
So space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 20

The line segment joining points (-3,4), and (1,-2) is divided by y – axis in the ratio

(a) 1 : 3

(b) 2 : 3

(c) 3 : 1

(d) 2: 3Solution 20

begin mathsize 12px style Let space straight y minus axis space divde space the space space segment space in space straight m colon straight n
straight x space co minus ordinate space of space straight P
rightwards double arrow 0 equals space fraction numerator straight m cross times 1 plus straight n cross times left parenthesis negative 3 right parenthesis over denominator straight m plus straight n end fraction
rightwards double arrow 0 space equals space straight m space minus space 3 straight n
rightwards double arrow straight m over straight n space space equals space 3 colon 1
So comma space the space correct space option space left parenthesis straight c right parenthesis. end style

Question 21

The ratio in which (4,5) divides the join of (2,3) and (7,8) is 

(a) -2 : 3

(b) -3 : 2 

(c) 3 : 2

(d) 2 : 3Solution 21

begin mathsize 12px style We space know space if space any space line space segment space AB space is space decide space by space straight C space in space straight m colon straight n space rather space then
straight x space equals space fraction numerator mx subscript 2 space plus space nx subscript 1 over denominator straight m plus straight n end fraction
straight y space equals space fraction numerator my subscript 2 space plus space ny subscript 1 over denominator straight m plus straight n end fraction
Let space left parenthesis 4 comma 5 right parenthesis decides space the space join space left parenthesis 2 comma 3 right parenthesis space and space left parenthesis 7 comma 8 right parenthesis space in space straight m colon straight n space then space 4 space equals space fraction numerator straight m cross times 7 plus 2 cross times straight n over denominator straight m plus straight n end fraction
rightwards double arrow 4 straight m space plus space 4 straight n space equals space 7 straight m space plus space 2 straight n
rightwards double arrow space 2 straight n space equals space 3 straight m
rightwards double arrow straight m over straight n space equals space 2 over 3
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 22

The ratio in which the x-axis divides the segment joining (3,6) and (12,-3) is

(a) 2:1

(b) 1 :2

(c) -2 : 1

(d) 1 : -2 Solution 22

begin mathsize 12px style 0 space equals space fraction numerator straight m cross times left parenthesis negative 3 right parenthesis space plus space straight n cross times 6 over denominator straight m plus straight n end fraction
rightwards double arrow negative 3 straight m space plus space 6 straight n space equals space 0
rightwards double arrow 3 straight m space equals space 6 straight n
rightwards double arrow straight m over straight n space equals space 2 space colon space 1
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 23

If the centrroid  of the triangle formed by the points (a,b),(b,c) and (c,a) is at the origin, then a3 + b3 + c3 = 

(a) abc

(b) 0

(c) a+b+c

(d) 3abcSolution 23

begin mathsize 12px style Co minus ordinate space of space centriod space equals space open parentheses fraction numerator straight a plus straight b plus straight c over denominator 3 end fraction comma fraction numerator straight a plus straight b plus straight c over denominator 3 end fraction close parentheses
but space given space that space centroid space at space origin space Hence space box enclose straight a plus straight b plus straight c space equals space 0 end enclose space minus space circle enclose 1
We space know space straight a cubed space plus space straight b cubed space plus space straight c cubed space minus space 3 abc space equals space left parenthesis straight a plus straight b plus straight c right parenthesis left parenthesis straight a squared plus straight b squared plus straight c squared space minus space ab space minus space bc space minus space ca right parenthesis space minus space circle enclose 2
from space circle enclose 1 space and space circle enclose 2
straight a cubed space plus space straight b cubed space plus space straight c cubed space equals space 3 abc
Hence comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 25

If the centroid of the triangle formed by (7, x), (y, -6) and (9, 10) is at (6, 3), then (x, y) =

(a) (4, 5)

(b) (5, 4)

(c) (-5, -2)

(d) (5, 2)Solution 25

begin mathsize 12px style Coordinate space of space centroid space equals space open parentheses fraction numerator 7 plus straight y plus 9 over denominator 3 end fraction comma space fraction numerator straight x minus 6 plus 10 over denominator 3 end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses fraction numerator straight y plus 16 over denominator 3 end fraction comma space fraction numerator straight x plus 4 over denominator 3 end fraction close parentheses
Given space left parenthesis 6 comma space 3 right parenthesis
Hence space space space space 6 space equals space fraction numerator straight y plus 16 over denominator 3 end fraction space space space space space space space space space space and space space space 3 space equals space fraction numerator straight x plus 4 over denominator 3 end fraction
space space space space space space space space space space space space rightwards double arrow space 18 space equals space straight y plus 16 space space space space space space space space space space space space space space space space space space space 9 space equals space straight x plus 4
space space space space space space space space space space space space rightwards double arrow space straight y space equals space 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight x space equals space 5
left parenthesis straight x comma space straight y right parenthesis space equals space left parenthesis 5 comma space 2 right parenthesis
Hence comma space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 24

If points A(3, 1), B(5, p) and C(7, -5) are collinear, then p =

(a) -2

(b) 2

(c) -1

(d) 1Solution 24

As the points A, B and C are collinear, then the area formed by these three points is 0.

Area of triangle with vertices (x1, y1), (x2, y2) and (x3, y3) is

Hence, the value of p is -2.

Chapter 14 – Co-ordinate Geometry Exercise 14.65

Question 26

The distance of the point (4, 7) from the x-axis is

(a) 4

(b) 7

(c) 11

(d) begin mathsize 12px style square root of 65 end styleSolution 26

We know, distance of point (x, y) from x-axis is y.

Hence, distance of point (4, 7) from x-axis is 7.

Hence, correct option is (b).Question 27

The distance of the point (4, 7) from the y-axis is

(a) 4

(b) 7

(c) 11

(d) begin mathsize 12px style square root of 65 end styleSolution 27

We know distance of point (x, y) from y-axis is x.

Hence distance of point (4, 7) from y-axis is 4.

Hence, correct option is (a).Question 28

If P is a point on x-axis such that its distance from the origin is 3 units, then the coordinates of a point Q on OY such that OP = OQ, are

(a) (0, 3)

(b) (3, 0)

(c) (0, 0)

(d) (0, -3)Solution 28

Given P is a point on x-axis

Hence P = (x, 0)

Distance from the origin is 3

Hence P = (3, 0)

Given Q is a point on y-axis

So Q is (0, y)

Given that OP = OQ

implies OQ = 3

Distance of Q from the origin is 3

Hence y = 3

implies Q = (0, 3)

Hence, correct option is (a).Question 29

If the point (x, 4) lies on a circle whose centre is at the origin and radius is 5, then x =

(a) ±5

(b) ±3

(c) 0

(d) ±4Solution 29

begin mathsize 12px style Centre space equals space left parenthesis 0 comma space 0 right parenthesis
point space equals space left parenthesis straight x comma space 4 right parenthesis
radius space equals space 5
Distance space between space centre space and space the space point space is space equal space to space the space radius
rightwards double arrow square root of left parenthesis straight x minus 0 right parenthesis squared plus open parentheses 4 minus 0 close parentheses squared end root space equals space 5
rightwards double arrow space straight x squared space plus space 4 squared space equals space 25
rightwards double arrow space straight x squared space equals space 9
rightwards double arrow straight x equals plus-or-minus 3
Hence comma space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 30

If the point P (x, y) is equidistant from A(5, 1) and B (-1, 5), then

(a) 5x = y

(b) x = 5y

(c) 3x = 2y

(d) 2x = 3ySolution 30

begin mathsize 12px style AP space equals space square root of open parentheses straight x minus 5 close parentheses squared plus open parentheses straight y minus 1 close parentheses squared end root
BP space equals space square root of open parentheses straight x plus 1 close parentheses squared plus open parentheses straight y minus 5 close parentheses squared end root
Given space AP space equals space BP
rightwards double arrow square root of open parentheses straight x minus 5 close parentheses squared plus open parentheses straight y minus 1 close parentheses squared end root space equals space square root of open parentheses straight x plus 1 close parentheses squared plus open parentheses straight y minus 5 close parentheses squared end root
rightwards double arrow open parentheses straight x minus 5 close parentheses squared plus open parentheses straight y minus 1 close parentheses squared space equals space open parentheses straight x plus 1 close parentheses squared plus open parentheses straight y minus 5 close parentheses squared
rightwards double arrow space straight x squared space minus space 10 straight x space plus space 25 space plus space straight y squared space minus space 2 straight y space plus space 1 space equals space straight x squared space plus space 2 straight x space plus space 1 space plus space straight y squared space minus space 10 straight y space plus space 25
rightwards double arrow negative 10 straight x space minus space 2 straight y space equals space 2 straight x space minus space 10 straight y
rightwards double arrow space 8 straight y space equals space 12 straight x
rightwards double arrow space 3 straight x space equals space 2 straight y
Hence comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 31

If points A (5, p), B (1, 5), C (2, 1) and D (6, 2) form a square ABCD, then p =

(a) 7

(b) 3

(c) 6

(d) 8Solution 31

begin mathsize 12px style All space sides space of space square space are space equal
AB space equals BC space equals space CD space equals space AD
rightwards double arrow space AB space equals space BC
rightwards double arrow space square root of open parentheses 5 minus 1 close parentheses squared plus open parentheses straight P minus 5 close parentheses squared end root space equals space square root of open parentheses 1 minus 2 close parentheses squared plus open parentheses 5 minus 1 close parentheses squared end root
rightwards double arrow space 4 squared plus space open parentheses straight P minus 5 close parentheses squared space space space space space space space space space space space space space space equals space 1 squared space plus space 4 squared
rightwards double arrow space open parentheses straight p minus 5 close parentheses squared space equals space 1 squared
rightwards double arrow space straight p minus 5 space equals space 1 space space space space space space space space space space space space space space space space space space space space space space space space space or space straight p minus 5 equals negative 1
rightwards double arrow space straight p equals 6 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight p space equals space 4
If space we space take space straight p equals 4 comma
Now comma space BC space equals space space space space square root of open parentheses 1 minus 2 close parentheses squared plus open parentheses 5 minus 1 close parentheses squared end root equals square root of 1 squared space plus space 4 squared end root equals square root of 17
space AD equals square root of open parentheses 5 minus 6 close parentheses squared plus open parentheses 4 minus 2 close parentheses squared end root equals square root of 1 space plus space 4 end root equals square root of 5
So comma space the space sides space of space the space square space are space not space equal space if space straight p equals 4
Hence comma space straight p space equals space 6
Hence comma space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 32

begin mathsize 12px style The space coordinates space of space the space circumcentre space of space the space triangle space formed space by space the space points space straight O space left parenthesis 0 comma 0 right parenthesis comma space straight A space left parenthesis straight a comma space 0 right parenthesis space and space straight B space left parenthesis 0 comma space straight b right parenthesis space are
left parenthesis straight a right parenthesis space left parenthesis straight a comma space straight b right parenthesis
left parenthesis straight b right parenthesis space open parentheses straight a over 2 comma space straight b over 2 close parentheses
left parenthesis straight c right parenthesis space open parentheses straight b over 2 comma space straight a over 2 close parentheses
left parenthesis straight d right parenthesis space left parenthesis straight b comma space straight a right parenthesis end style

Solution 32

begin mathsize 12px style Coordinates space of space the space circumcentre space of space the space triangle space formed space by space left parenthesis straight x subscript 1 comma space straight y subscript 1 right parenthesis space left parenthesis straight x subscript 2 comma space straight y subscript 2 right parenthesis space left parenthesis straight x subscript 3 comma space straight y subscript 3 right parenthesis space is
the space point space of space intersection space of space the space perpendicular space bisectors space of space the space sides.
straight D space is space the space mid minus point space of space OA space equals space open parentheses fraction numerator 0 plus straight a over denominator 2 end fraction comma 0 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses straight a over 2 comma 0 close parentheses
straight E space is space the space mid minus point space of space OB space equals open parentheses 0 comma space fraction numerator 0 plus straight b over denominator 2 end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses 0 comma space straight b over 2 close parentheses space space space
Hence comma space straight F space is space open parentheses straight a over 2 comma space straight b over 2 close parentheses space
Hence comma space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 33

The coordinates of a point on x-axis which lies on the perpendicular bisector of the line segment joining the points (7, 6) and (-3, 4) are

(a) (0, 2)

(b) (3, 0)

(c) (0, 3)

(d) (2, 0)Solution 33

begin mathsize 12px style Coordinates space of space straight a space point space on space the space straight x minus axis space is space left parenthesis straight x comma space 0 right parenthesis
Mid minus point space of space left parenthesis 7 comma space 6 right parenthesis space and space left parenthesis negative 3 comma space 4 right parenthesis space is
open parentheses fraction numerator 7 plus 3 over denominator 2 end fraction comma space fraction numerator 6 minus 4 over denominator 2 end fraction close parentheses equals open parentheses 5 comma space 2 close parentheses
Line space passing space through space left parenthesis 7 comma space 6 right parenthesis space and space left parenthesis negative 3 comma space 4 right parenthesis space is space perpendicular space to space the space line space passing space through space left parenthesis straight x comma space 0 right parenthesis space and space left parenthesis 2 comma space 5 right parenthesis
straight L 1 space rightwards double arrow space Slope space of space the space line space passing space through space left parenthesis 7 comma space 6 right parenthesis space and space left parenthesis negative 3 comma space 4 right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 6 minus 4 over denominator 7 plus 3 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 2 over 10 equals 1 fifth
straight L 2 space rightwards double arrow Slope space of space the space line space passing space through space left parenthesis straight x comma space 0 right parenthesis space and space left parenthesis 2 comma space 5 right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 5 minus 0 over denominator 2 minus straight x end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 5 over denominator 2 minus straight x end fraction
open parentheses Slope space of space straight L 1 close parentheses space cross times space open parentheses Slope space of space straight L 2 close parentheses space equals space minus 1
rightwards double arrow 1 fifth cross times fraction numerator 5 over denominator 2 minus straight x end fraction equals negative 1
rightwards double arrow space 1 space equals space straight x space minus space 2
rightwards double arrow space straight x space equals space 3
So comma space the space coordinates space are space left parenthesis 3 comma space 0 right parenthesis.
Hence comma space correct space option space are space left parenthesis straight b right parenthesis. end style

Question 34

If the centroid of the triangle formed by the points (3, -5), (-7, 4), (10, -k) is at the point (k, – 1), then k =

(a) 3

(b) 1

(c) 2

(d) 4Solution 34

begin mathsize 12px style Coordinates space of space the space centroid space equals space open parentheses fraction numerator 3 minus 7 plus 10 over denominator 3 end fraction comma fraction numerator negative 5 plus 4 minus straight k over denominator 3 end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses 2 comma space fraction numerator negative 1 minus straight k over denominator 3 end fraction close parentheses.... open parentheses 1 close parentheses
Given space centroid space is space at space the space point space open parentheses straight k comma space minus 1 close parentheses space space space.... open parentheses 2 close parentheses
rightwards double arrow space straight k space equals space 2..... space left parenthesis On space compare space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses right parenthesis
Hence comma space correct space option space is space open parentheses straight c close parentheses. end style

Question 35

If (-2, 1) is the Centroid of the triangle having its vertices at (x, 2), (10, -2), (-8, y), then x, y satisfy the relation

a. 3x + 8y = 0

b. 3x – 8y = 0

c. 8x + 3y = 0

d. 8x = 3ySolution 35

The Centroid of the triangle is given by

x=-8 and y=3 satisfy(a) 3x + 8y = 0.Question 36

The coordinates of the fourth vertex of the rectangle formed by the points (0, 0), (2, 0), (0, 3) are

(a) (3, 0)

(b) (0, 2)

(c) (2, 3)

(d) (3, 2)Solution 36

begin mathsize 12px style For space ABCD space to space be space straight a space rectangle
AB space equals space CD space and space BC space equals AD
and space all space angles space must space be space 90 degree. space space space.... open parentheses 1 close parentheses
rightwards double arrow AB space equals space CD space space space and space BC space equals space AD
CB space is space prependicular space distance space of space left parenthesis straight x comma space straight y right parenthesis space from space straight x minus axis
Hence space CB space equals space straight x space space.... open parentheses 2 close parentheses
Similarly comma space CD space is space perpendicular space distance space of space left parenthesis straight x comma space straight y right parenthesis space from space straight y minus axis.
Hence space CD space equals space straight y space space..... open parentheses 3 close parentheses
Also comma space AB space equals 2 space and space AD space equals space 3 space space space space space space space..... open parentheses 4 close parentheses
from space open parentheses 1 close parentheses comma space open parentheses 2 close parentheses comma space open parentheses 3 close parentheses comma space open parentheses 4 close parentheses
straight x space equals space 2 space and space straight y space equals space 3 end style

Question 37

The length of a line segment joining A(2, -3) and B is 10 units. If the abscissa of B is 10 units, then its ordinates can be

(a) 3 or -9

(b) -3 or 9

(c) 6 or 27

(d) -6 or -27Solution 37

begin mathsize 12px style Let space the space abscissa space be space straight x.
Then space distance space between space points space left parenthesis 2 comma negative 3 right parenthesis space and space left parenthesis 10 comma straight x right parenthesis space is
equals space square root of left parenthesis 2 minus 10 right parenthesis squared plus left parenthesis negative 3 minus straight x right parenthesis squared end root
equals space square root of 8 squared plus left parenthesis straight x plus 3 right parenthesis squared end root
space 10 equals square root of 64 space plus space left parenthesis straight x plus 3 right parenthesis squared end root
rightwards double arrow space 100 space equals space 64 space plus space open parentheses straight x plus 3 close parentheses squared
rightwards double arrow space left parenthesis straight x plus 3 right parenthesis squared space equals space 36
rightwards double arrow straight x space plus space 3 space equals space 6 space or space straight x space plus space 3 space equals space minus 6
rightwards double arrow straight x space equals space 3 space or space straight x equals space minus 9
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 38

The ratio in which the line segment joining P(x1, y1) and Q(x2, y2) is divided by x-axis is

(a) y1 : y2

(b) -y1 : y2

(c) x1 : x2

(d) -x1 : x2Solution 38

begin mathsize 12px style straight y minus coordinate space of space the space intersection space of space the space straight x minus axis space and space PQ space equals space fraction numerator my subscript 2 space plus space ny subscript 1 over denominator straight m plus straight n end fraction
rightwards double arrow space 0 space equals space fraction numerator my subscript 2 space plus space ny subscript 1 over denominator straight m plus straight n end fraction
rightwards double arrow space my subscript 2 space plus space ny subscript 1 space equals space 0
rightwards double arrow space straight m over straight n equals fraction numerator negative straight y subscript 1 over denominator straight y subscript 2 end fraction
Hence comma space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 39

The ratio in which the line segment joining points A(a1, b1) and B(a2, b2) is divided by y-axis is

(a) -a1 : a2

(b) a1 : a2

(c) b1 : b2

(d) -b1 : b2Solution 39

begin mathsize 12px style straight x minus coordinate space of space the space intersection space of space the space straight y minus axis space and space AB equals space fraction numerator ma subscript 2 plus na subscript 1 over denominator straight m plus straight n end fraction
space space space space space space space space space space space space space space space space space space space rightwards double arrow space 0 space equals fraction numerator ma subscript 2 plus na subscript 1 over denominator straight m plus straight n end fraction
space space space space space space space space space space space space space space space space space space space rightwards double arrow ma subscript 2 plus na subscript 1 space equals space 0
space space space space space space space space space space space space space space space space space space space rightwards double arrow space straight m over straight n equals fraction numerator negative straight a subscript 1 over denominator straight a subscript 2 end fraction
Hence comma space correct space option space is space left parenthesis straight a right parenthesis. end style

Chapter 6 – Co-ordinate Geometry Exercise 6.66

Question 40

Solution 40

begin mathsize 12px style straight P space divide s space AB space in space 1 space colon space 2 space ratio
Hence comma
straight P space equals space open parentheses fraction numerator 1 cross times 1 plus 2 cross times 3 over denominator 1 plus 2 end fraction comma space fraction numerator 1 cross times 2 plus 2 cross times open parentheses negative 4 close parentheses over denominator 1 plus 2 end fraction close parentheses
straight P space equals space open parentheses 7 over 3 comma space minus 2 close parentheses
But space straight P space equals space left parenthesis straight a comma space minus 2 right parenthesis
So space on space comparison
straight a equals space 7 over 3
straight Q space divide s space AB space in space 2 space colon space 1
Hence comma space straight Q space equals space open parentheses fraction numerator 2 cross times 1 plus 1 cross times 3 over denominator 2 plus 1 end fraction comma space space fraction numerator 2 cross times 2 minus 1 cross times 4 over denominator 2 plus 1 end fraction close parentheses
space space space space space space space space space space space space space space space space space space equals space open parentheses 5 over 3 comma space 0 close parentheses
Given space straight Q space equals space open parentheses 5 over 3 comma space space straight b close parentheses
Hence comma space straight b space equals space 0
Hence comma space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 41

If the coordinates of one end of a diameter of a circle are (2, 3) and the coordinates of its centre are (-2, 5), then the coordinates of the other end of the diameter are

(a) (-6, 7)

(b) (6, -7)

(c) (6, 7)

(d) -6, -7)Solution 41

begin mathsize 12px style We space know space that space centre space is space the space mid minus point space of space the space diameter.
Let space the space other space coordinate space of space the space diameter space be space left parenthesis straight x comma straight y right parenthesis.
negative 2 space equals space fraction numerator straight x plus 2 over denominator 2 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space and space space space space space space space space space space space space space space space space space space space space space space space space space space space fraction numerator straight y plus 3 over denominator 2 end fraction equals 5
rightwards double arrow straight x plus 2 space equals space minus 4 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight y plus 3 equals 10
rightwards double arrow straight x space equals space minus 6 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight y space equals space 7
Hence comma space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 42

The coordinates of the point P dividing the line segment joining the points A (1, 3) and B (4, 6) in the ratio 2 : 1 are

(a) (2, 4)

(b) (3, 5)

(c) (4, 2)

(d) (5, 3)Solution 42

begin mathsize 12px style Let space straight P left parenthesis straight x comma space straight y right parenthesis space divide space AB space in space 2 space colon space 1
straight x space equals space fraction numerator 2 cross times 4 plus 1 cross times 1 over denominator 2 plus 1 end fraction
space space space equals space 9 over 3
straight x space equals space 3
straight y space equals space fraction numerator 2 cross times 6 plus 1 cross times 3 over denominator 2 plus 1 end fraction
space space space equals space 15 over 3
straight y space equals space 5
Hence comma space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 43

In the figure, the area of ΔABC (in square units) is

(a) 15

(b) 10

(c) 7.5

(d) 2.5Solution 43

begin mathsize 12px style area space equals space fraction numerator open vertical bar 1 cross times open parentheses 0 minus 0 close parentheses minus 1 open parentheses 0 minus 3 close parentheses plus 4 open parentheses 3 minus 0 close parentheses close vertical bar over denominator 2 end fraction
space space space space space space space space space space equals open vertical bar fraction numerator 3 plus 12 over denominator 2 end fraction close vertical bar
space space space space space space space space space space equals open vertical bar 15 over 2 close vertical bar
space space space space space space space space space space space equals space 7.5
Hence comma space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 44

The point on the x-axis which is equidistant from points (-1, 0) and (5, 0) is

(a) (0, 2)

(b) (2, 0)

(c) (3, 0)

(d) (0, 3)Solution 44

begin mathsize 12px style Let space point space on space straight x minus axis space be space left parenthesis straight x comma space 0 right parenthesis
straight D subscript 1 space equals space distance space between space left parenthesis negative 1 comma space 0 right parenthesis space and space left parenthesis straight x comma space 0 right parenthesis space equals space square root of open parentheses straight x plus 1 close parentheses squared plus 0 squared end root
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open vertical bar straight x plus 1 close vertical bar
straight D subscript 2 space equals space distance space between space left parenthesis 5 comma space 0 right parenthesis space and space left parenthesis straight x comma space 0 right parenthesis space equals space square root of open parentheses straight x minus 5 close parentheses squared plus 0 squared end root
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open vertical bar straight x minus 5 close vertical bar
rightwards double arrow space straight D subscript 1 space equals space straight D subscript 2
rightwards double arrow open vertical bar straight x plus 1 close vertical bar equals open vertical bar straight x minus 5 close vertical bar
rightwards double arrow straight x plus 1 equals negative open parentheses straight x minus 5 close parentheses
rightwards double arrow straight x plus 1 space equals space minus straight x plus 5
rightwards double arrow 2 straight x space equals space 4
rightwards double arrow straight x space equals space 2
left parenthesis 2 comma space 0 right parenthesis space is space co minus ordinate
Hence comma space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 45

begin mathsize 12px style If space straight A left parenthesis 4 comma 9 right parenthesis comma space straight B left parenthesis 2 comma 3 right parenthesis space and space straight C left parenthesis 6 comma 5 right parenthesis space are space the space vertices space of space triangle ABC comma space then space the space length space of space median space through space straight C space is
left parenthesis straight a right parenthesis space 5 space units
left parenthesis straight b right parenthesis space square root of 10 space units
left parenthesis straight c right parenthesis space 25 space units
left parenthesis straight d right parenthesis space 10 space units end style

Solution 45

begin mathsize 12px style straight M space is space mid minus point space of space AB
straight M space equals space open parentheses fraction numerator 4 plus 2 over denominator 2 end fraction comma space fraction numerator 9 plus 3 over denominator 2 end fraction close parentheses
space space space space equals space open parentheses 3 comma space 6 close parentheses
straight M space equals space square root of open parentheses 6 minus 3 close parentheses squared plus open parentheses 5 minus 6 close parentheses squared end root
space space space space space equals space square root of 3 squared plus 1 squared end root
space space space space space space equals square root of 10
Hence comma space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 46

If P(2, 4), Q(0,3), R (3, 6) and S (5, y) are the vertices of a parallelogram PQRS, then the value of y is

(a) 7

(b) 5

(c) -7

(d) -8Solution 46

begin mathsize 12px style If space PQRS space is space straight a space parallelogram
then space PQ space parallel to space SR space and space PS space parallel to space QR
Hence space slope space of space PQ space equals space slope space of space SR
rightwards double arrow fraction numerator 4 minus 3 over denominator 2 minus 0 end fraction equals fraction numerator straight y minus 6 over denominator 5 minus 3 end fraction
rightwards double arrow 1 half equals fraction numerator straight y minus 6 over denominator 5 minus 3 end fraction
rightwards double arrow 1 half equals fraction numerator straight y minus 6 over denominator 2 end fraction
rightwards double arrow straight y minus 6 equals 1
rightwards double arrow straight y space equals space 7
Hence comma space correct space option space is space left parenthesis straight a right parenthesis end style

Question 47

If A(x, 2), B (-3, -4) and C (7, -5) are collinear, then the value of x is

(a) -63

(b) 63

(c) 60

(d) -60Solution 47

begin mathsize 12px style If space straight A comma space straight B comma space straight C space are space collinear space then space area space of space triangle space ABC space in space zero
area space equals space open vertical bar fraction numerator straight x open parentheses negative 4 plus 5 close parentheses minus 3 left parenthesis negative 5 minus 2 right parenthesis plus 7 left parenthesis 2 plus 4 right parenthesis over denominator 2 end fraction close vertical bar
rightwards double arrow space 0 space equals space open vertical bar straight x plus 21 plus 42 close vertical bar
rightwards double arrow space straight x space plus 63 space equals 0 space
rightwards double arrow space straight x space equals negative space 63
Hence comma space correct space option space is space left parenthesis straight a right parenthesis end style

Question 48

begin mathsize 12px style The space perimeter space of space straight a space triangle space with space vertices space left parenthesis 0 comma space 4 right parenthesis space and space left parenthesis 0 comma space 0 right parenthesis space and space left parenthesis 3 comma space 0 right parenthesis space is
left parenthesis straight a right parenthesis space 7 space plus space square root of 5
left parenthesis straight b right parenthesis space 5
left parenthesis straight c right parenthesis space 10
left parenthesis straight d right parenthesis space 12 end style

Solution 48

begin mathsize 12px style AB space equals space square root of 0 squared plus open parentheses 4 minus 0 close parentheses squared end root
AB space equals space 4
AC space equals space square root of open parentheses 3 minus 0 close parentheses squared plus 0 squared end root
AC space equals space 3
BC space equals space square root of open parentheses 3 minus 0 close parentheses squared plus open parentheses 0 minus 4 close parentheses squared end root
space space space space space space space equals square root of 9 plus 16 end root
space space space space space space space space equals square root of 25 equals 5
Perimeter space of space triangle space ABC space equals space AB plus BC plus AC
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 4 plus 5 plus 3
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 12
Hence comma space correct space option space is space left parenthesis straight d right parenthesis end style

Chapter 14 – Co-ordinate Geometry Exercise 14.67

Question 49

If the point P(2, 1) lies on the line segment joining points A (4, 2) and B (8, 4), then

Solution 49

Question 50

A line intersects the y-axis and x-axis at P and Q, respectively, If (2, -5) is the mid-point of PQ, then the coordinates of P and Q are respectively

a. (0, -5) and (2, 0)

b. (0, 10) and (-4, 0)

c. (0, 4) and (-10, 0)

d. (0, -10) and (4, 0)Solution 50

Question 51

If the point (k, 0) divides the line segment joining the points A(2, -2) and B(-7, 4) in the ratio 1 : 2, then the value of k is

(a) 1

(b) 2

(c) -2

(d) -1Solution 51

As the point (k, 0) divides the line segment AB in the 1:2

Hence, option (d) is correct.

Read More

RD SHARMA SOLUTION CHAPTER- 13 Probability| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 13 – Probability Exercise Ex. 13.1

Question 1

Solution 1

Question 2

A die is thrown. Find the probability of getting:

(i) a prime number

(ii) 2 or 4

(iii) a multiple of 2 or 3

(iv) an even prime number

(v) a number greater than 5

(vi) a number lying between 2 and 6

(vii) A die is thrown. Find the probability of getting: a composite number.Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 6(xix)

A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither a king nor a queen.Solution 6(xix)

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

If the probability of winning a game is 0.3, what is the probability of loosing it?Solution 15

Question 16

A bag contains 5 black, 7 red and 3 white balls. A ball is drawn from the bag at random. Find the probability that the ball drawn is:

(i) red (ii) black or white (iii) not blackSolution 16

Question 17

A bag contains 4 red, 5 black and 6 white balls. A ball is drawn from the bag at random. Find the probability that the ball drawn is:

(i) white (ii) red (iii) not black (iv) red or whiteSolution 17

Question 18

One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting

(i) a king of red suit

(ii) a face card

(iii) a red face card

(iv) a queen of black suit

(v) a jack of hearts

(vi) a spadeSolution 18

Question 19(i)

Five cards-ten, jack, queen, king, and an ace of diamonds are shuffled face downwards. One card is picked at random.

(i) What is the probability that the card is a queen?


Solution 19(i)

open parentheses straight i close parentheses space Total space number space of space cards space equals space 5
Total space number space of space space queen space equals space 1
straight P open parentheses getting space straight a space queen close parentheses equals fraction numerator Number space of space favourable space outcomes over denominator Total space number space of space outcomes end fraction equals 1 fifth

Question 19(ii)

Five cards – ten, jack, queen, king, and an ace of diamonds are shuffled face downwards.  One card is picked at random.

If a king is drawn first and put aside, what is the probability that the second card picked up is the

(i)ace? (ii)king?Solution 19(ii)

table attributes columnalign left end attributes row cell S i n c e text    end text t h e text    end text f i r s t text    end text c a r d text    end text d r a w n text    end text i s text    end text a text    end text k i n g comma text    end text t h e r e f o r e text    end text t h e r e text    end text a r e end cell row cell 4 text    end text r e m a i n i n g text    end text c a r d s. end cell row cell left parenthesis i right parenthesis n left parenthesis t o t a l text    end text o u t c o m e s right parenthesis equals 4 end cell row cell n left parenthesis f a v o u r a b l e text    end text o u t c o m e right parenthesis equals 1 end cell row cell P left parenthesis s e c o n d text    end text c a r d text    end text i s text    end text a n text    end text a c e right parenthesis equals 1 fourth end cell row blank row cell S i n c e text    end text t h e text    end text f i r s t text    end text c a r d text    end text d r a w n text    end text i s text    end text a text    end text k i n g comma text    end text t h e r e f o r e text    end text t h e r e text    end text a r e end cell row cell 4 text    end text r e m a i n i n g text    end text c a r d s text    end text a n d text    end text t h e r e text    end text a r e text    end text n o text    end text r e m a i n i n g text     end text k i n g s text   end text. end cell row cell left parenthesis i i right parenthesis n left parenthesis t o t a l text    end text o u t c o m e s right parenthesis equals 5 end cell row cell n left parenthesis f a v o u r a b l e text    end text o u t c o m e right parenthesis equals 0 end cell row cell P left parenthesis s e c o n d text    end text c a r d text    end text i s text    end text a text    end text k i n g right parenthesis equals 0 over 5 equals 0 end cell end table

Question 20

A bag contains 3 red balls and 5 black balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is (i) red? (ii) black?Solution 20

Question 21

Solution 21

Question 22

In A Class, there are 18 girls and 16 boys. The class teacher wants to choose one pupil for class monitor. What she does, she writes the name of each pupil on a card and puts them into a basket and mixed  thoroughly. A child is asked to one card from the basket. What is the probability that the name written on the card is

(i) The name of a girl  

(ii) The name of a boySolution 22

Question 23

Solution 23

A coin has only two options-head and tail and both are equally likely events i.e. the probability of occurrence of both is same. Hence, a coin is a fair option to decide which team will choose ends in the game.Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

Solution 36

Question 37

Solution 37

Question 38

Harpreet tosses two different coins simultaneously (say, one is of Re 1 and other of Rs 2). What is the probability that gets at least one head?Solution 38

Question 39

Solution 39

Question 40

Solution 40

Question 41

Fill in the blanks:

(i) Probability of a sure event is ________.

(ii) Probability of an impossible event is _______.

(iii) The probability of an event (other than sure and impossible event) lies between ______.

(iv) Every elementary event associated to a random experiment has _______ probability.

(v) Probability of an event A + Probability of an event ‘not A’ = ___________.

(vi) Sum of the probabilities of each outcome in an experiment is ____________.Solution 41

(i) 1

(ii) 0

(iii) 0 and 1

(iv) equal

(v) 1

(vi) 1Question 42

Solution 42

Question 43

A box contains 100 red cards, 200 yellow cards and 50 blue cards. If a card is drawn at random from the box, then find the probability that it will be (i) a blue card (ii) not a yellow card (iii) neither yellow nor a blue card.Solution 43

Question 44

A box contains cards numbered 3,5,7,9,…,35,37. A card is drawn at random from the box. Find the probability that the number on the drawn card is a prime number.Solution 44

table attributes columnalign left end attributes row cell N u m b e r e d text   cards  =  end text left curly bracket text 3 ,  5 ,  7 ,  9 ,  11 ,  13 ,  15 ,  17 ,  19 ,  21 ,  23 ,  25 ,  27 ,  29 ,  31 ,  33 ,  35 ,  37 end text right curly bracket end cell row cell n left parenthesis t o t a l text    end text n u m b e r text    end text o f text    end text o u t c o m e s right parenthesis equals 18 end cell row cell N u m b e r text   of   prime   cards = end text left curly bracket text 3 ,  5 ,  7 ,  11 ,  13 ,  17 ,  19 ,  23 ,  29 ,  31 ,  37 end text right curly bracket end cell row cell n left parenthesis f a v o u r a b l e text    end text o u t c o m e s right parenthesis equals 11 end cell row blank row cell P left parenthesis n u m b e r text    end text d r a w n text    end text i s text    end text a text    end text p r i m e text    end text n u m b e r right parenthesis equals 11 over 18 end cell row blank row cell asterisk times N o t e colon text   Answer   given   in   the   book   is   incorrect. end text end cell end table

Question 45

A group consists of 12 persons, of which 3 are extremely patient, 6 are extremely honest and the rest are extremely kind. A person from the group is selected at random. Assuming that each person is equally likely to be selected, find the probability of selecting a person who is (i) extremely patient (ii) extremely kind or honest. Which of the above would you prefer more?Solution 45

table attributes columnalign left end attributes row cell n left parenthesis T o t a l text    end text n u m b e r text    end text o f text    end text p e r s o n s right parenthesis equals 12 end cell row cell n left parenthesis e x t r e m e l y text    end text p a t i e n t right parenthesis equals 3 end cell row cell n left parenthesis e x t r e m e l y text    end text h o n e s t right parenthesis equals 6 end cell row cell n left parenthesis e x t r e m e l y text    end text k i n d right parenthesis equals 3 end cell row cell left parenthesis i right parenthesis P left parenthesis e x t r e m e l y text    end text p a t i e n t right parenthesis equals fraction numerator n left parenthesis e x t r e m e l y text    end text p a t i e n t right parenthesis over denominator n left parenthesis T o t a l text    end text n u m b e r text    end text o f text    end text p e r s o n s right parenthesis end fraction end cell row cell equals 3 over 12 equals 1 fourth end cell row cell left parenthesis i i right parenthesis P left parenthesis e x t r e m e l y text    end text k i n d text    end text o r text    end text h o n e s t right parenthesis equals fraction numerator n left parenthesis e x t r e m e l y text    end text k in d text    end text o r text    end text h o n e s t right parenthesis over denominator n left parenthesis T o t a l text    end text n u m b e r text    end text o f text    end text p e r s o n s right parenthesis end fraction end cell row cell equals 6 over 12 plus 3 over 12 equals fraction numerator 6 plus 3 over denominator 12 end fraction equals 9 over 12 equals 3 over 4 end cell row cell I text   would   prefer   the   person   selected   to   be   kind   and   honest. end text end cell end table

Question 46

Cards numbered 1 to 30 are put in a bag. A card is drawn at random from this bag. Find the probability that the number on the drawn card is,

(i) Not divisible by 3

(ii) A prime number greater than 7

(iii) Not a perfect square number.Solution 46

Question 47

A piggy bank contains hundred 50 paise coins, fifty Rs. 1 coins, twenty Rs. 2 coins and ten Rs. 5 coins. If it is equally likely that one of the coins will fall out when the bank is turned upside down, find the probability that the coin which falls out

(i) is a 50 paise win

(ii) is of value more than Rs. 1

(iii) is of value less than Rs. 5

(iv) is a Rs. 1 or Rs. 2 coinSolution 47

table attributes columnalign left end attributes row cell n left parenthesis 50 text    end text p a i s a text    end text c o i n s right parenthesis equals 100 end cell row cell n left parenthesis R e.1 text    end text c o i n s right parenthesis equals 50 end cell row cell n left parenthesis R s.2 text    end text c o i n s right parenthesis equals 20 end cell row cell n left parenthesis R s.5 text    end text c o i n s right parenthesis equals 10 end cell row cell n left parenthesis T o t a l text    end text n o. text    end text o f text    end text c o i n s right parenthesis equals 180 end cell row blank row cell left parenthesis i right parenthesis P left parenthesis w i l l text    end text b e text    end text a text    end text 50 text    end text p a i s a text    end text w i n right parenthesis equals 100 over 180 equals 5 over 9 end cell row cell left parenthesis i i right parenthesis P left parenthesis w i l l text    end text b e text   end text o f text    end text v a l u e text    end text m o r e text    end text t h a n text    end text R e.1 right parenthesis equals 30 over 180 equals 1 over 6 end cell row cell left parenthesis i i i right parenthesis P left parenthesis w i l l text    end text b e text    end text o f text    end text v a l u e text    end text l e s s text    end text t h a n text    end text R s.5 right parenthesis equals 170 over 180 equals 17 over 18 end cell row cell left parenthesis i v right parenthesis P left parenthesis w i l l text    end text b e text    end text a text    end text R e.1 text    end text o r text    end text R s.2 text    end text c o i n s right parenthesis equals 70 over 180 equals 7 over 18 end cell end table

Question 48

A bag contains cards numbered from 1 to 49. A card is drawn from the bag at random, after mixing the card thoroughly. Find the probability that the number on the drawn card is

(i) an odd number

(ii) a multiple of 5

(iii) a perfect square

(iv) an even prime numberSolution 48

Question 49

A box contains 20 cards numbered from 1 to 20. A card is drawn at random from the box. Find the probability that the number on the drawn card is

  1. divisible 2 or 3
  2. a prime number

Solution 49

Question 50

left parenthesis x i v right parenthesis space A n space e v e n space n u m b e r space o n space e a c h space d i c e
left parenthesis x v right parenthesis space 5 space a s space t h e space s u m

Solution 50

left parenthesis x i v right parenthesis
table attributes columnalign left end attributes row cell text Consider   the   set   of   ordered   pairs end text end cell row cell open curly brackets table row cell left parenthesis 1 comma 1 right parenthesis end cell cell left parenthesis 1 comma 2 right parenthesis end cell cell left parenthesis 1 comma 3 right parenthesis end cell cell left parenthesis 1 comma 4 right parenthesis end cell cell left parenthesis 1 comma 5 right parenthesis end cell cell left parenthesis 1 comma 6 right parenthesis end cell row cell left parenthesis 2 comma 1 right parenthesis end cell cell left parenthesis 2 comma 2 right parenthesis end cell cell left parenthesis 2 comma 3 right parenthesis end cell cell left parenthesis 2 comma 4 right parenthesis end cell cell left parenthesis 2 comma 5 right parenthesis end cell cell left parenthesis 2 comma 6 right parenthesis end cell row cell left parenthesis 3 comma 1 right parenthesis end cell cell left parenthesis 3 comma 2 right parenthesis end cell cell left parenthesis 3 comma 3 right parenthesis end cell cell left parenthesis 3 comma 4 right parenthesis end cell cell left parenthesis 3 comma 5 right parenthesis end cell cell left parenthesis 3 comma 6 right parenthesis end cell row cell left parenthesis 4 comma 1 right parenthesis end cell cell left parenthesis 4 comma 2 right parenthesis end cell cell left parenthesis 4 comma 3 right parenthesis end cell cell left parenthesis 4 comma 4 right parenthesis end cell cell left parenthesis 4 comma 5 right parenthesis end cell cell left parenthesis 4 comma 6 right parenthesis end cell row cell left parenthesis 5 comma 1 right parenthesis end cell cell left parenthesis 5 comma 2 right parenthesis end cell cell left parenthesis 5 comma 3 right parenthesis end cell cell left parenthesis 5 comma 4 right parenthesis end cell cell left parenthesis 5 comma 5 right parenthesis end cell cell left parenthesis 5 comma 6 right parenthesis end cell row cell left parenthesis 6 comma 1 right parenthesis end cell cell left parenthesis 6 comma 2 right parenthesis end cell cell left parenthesis 6 comma 3 right parenthesis end cell cell left parenthesis 6 comma 4 right parenthesis end cell cell left parenthesis 6 comma 5 right parenthesis end cell cell left parenthesis 6 comma 6 right parenthesis end cell end table close curly brackets end cell row cell C l e a r l y comma text   there   are   36   elementary   events. end text end cell row cell therefore n left parenthesis T o t a l text    end text n u m b e r text    end text o f text    end text t h r o w s right parenthesis equals 36 end cell row cell G e t t i n g text   an   even   number   on   each   dice   can   be   selected end text end cell row cell text as   listed   below : end text end cell row cell open curly brackets table row cell left parenthesis 1 comma 1 right parenthesis end cell cell left parenthesis 1 comma 2 right parenthesis end cell cell left parenthesis 1 comma 3 right parenthesis end cell cell left parenthesis 1 comma 4 right parenthesis end cell cell left parenthesis 1 comma 5 right parenthesis end cell cell left parenthesis 1 comma 6 right parenthesis end cell row cell left parenthesis 2 comma 1 right parenthesis end cell cell left parenthesis 2 comma 2 right parenthesis end cell cell left parenthesis 2 comma 3 right parenthesis end cell cell left parenthesis 2 comma 4 right parenthesis end cell cell left parenthesis 2 comma 5 right parenthesis end cell cell left parenthesis 2 comma 6 right parenthesis end cell row cell left parenthesis 3 comma 1 right parenthesis end cell cell left parenthesis 3 comma 2 right parenthesis end cell cell left parenthesis 3 comma 3 right parenthesis end cell cell left parenthesis 3 comma 4 right parenthesis end cell cell left parenthesis 3 comma 5 right parenthesis end cell cell left parenthesis 3 comma 6 right parenthesis end cell row cell left parenthesis 4 comma 1 right parenthesis end cell cell left parenthesis 4 comma 2 right parenthesis end cell cell left parenthesis 4 comma 3 right parenthesis end cell cell left parenthesis 4 comma 4 right parenthesis end cell cell left parenthesis 4 comma 5 right parenthesis end cell cell left parenthesis 4 comma 6 right parenthesis end cell row cell left parenthesis 5 comma 1 right parenthesis end cell cell left parenthesis 5 comma 2 right parenthesis end cell cell left parenthesis 5 comma 3 right parenthesis end cell cell left parenthesis 5 comma 4 right parenthesis end cell cell left parenthesis 5 comma 5 right parenthesis end cell cell left parenthesis 5 comma 6 right parenthesis end cell row cell left parenthesis 6 comma 1 right parenthesis end cell cell left parenthesis 6 comma 2 right parenthesis end cell cell left parenthesis 6 comma 3 right parenthesis end cell cell left parenthesis 6 comma 4 right parenthesis end cell cell left parenthesis 6 comma 5 right parenthesis end cell cell left parenthesis 6 comma 6 right parenthesis end cell end table close curly brackets end cell row blank row cell T h e r e f o r e comma text   end text n left parenthesis F a v o u r a b l e text    end text e v e n t s right parenthesis equals 9 end cell row blank row cell P left parenthesis g e t t i n g text    end text a n text    end text e v e n text    end text n u m b e r text    end text o n text    end text e a c h text    end text d i c e right parenthesis end cell row cell equals fraction numerator g e t t i n g text    end text e v e n text    end text n u m b e r text    end text o n text    end text e a c h text    end text d i c e over denominator T o t a l text    end text n u m b e r text    end text o f text    end text t h r o w s end fraction end cell row cell equals 9 over 36 end cell row cell equals 1 fourth end cell end table
left parenthesis x v right parenthesis
table attributes columnalign left end attributes row cell text Consider   the   set   of   ordered   pairs end text end cell row cell open curly brackets table row cell left parenthesis 1 comma 1 right parenthesis end cell cell left parenthesis 1 comma 2 right parenthesis end cell cell left parenthesis 1 comma 3 right parenthesis end cell cell left parenthesis 1 comma 4 right parenthesis end cell cell left parenthesis 1 comma 5 right parenthesis end cell cell left parenthesis 1 comma 6 right parenthesis end cell row cell left parenthesis 2 comma 1 right parenthesis end cell cell left parenthesis 2 comma 2 right parenthesis end cell cell left parenthesis 2 comma 3 right parenthesis end cell cell left parenthesis 2 comma 4 right parenthesis end cell cell left parenthesis 2 comma 5 right parenthesis end cell cell left parenthesis 2 comma 6 right parenthesis end cell row cell left parenthesis 3 comma 1 right parenthesis end cell cell left parenthesis 3 comma 2 right parenthesis end cell cell left parenthesis 3 comma 3 right parenthesis end cell cell left parenthesis 3 comma 4 right parenthesis end cell cell left parenthesis 3 comma 5 right parenthesis end cell cell left parenthesis 3 comma 6 right parenthesis end cell row cell left parenthesis 4 comma 1 right parenthesis end cell cell left parenthesis 4 comma 2 right parenthesis end cell cell left parenthesis 4 comma 3 right parenthesis end cell cell left parenthesis 4 comma 4 right parenthesis end cell cell left parenthesis 4 comma 5 right parenthesis end cell cell left parenthesis 4 comma 6 right parenthesis end cell row cell left parenthesis 5 comma 1 right parenthesis end cell cell left parenthesis 5 comma 2 right parenthesis end cell cell left parenthesis 5 comma 3 right parenthesis end cell cell left parenthesis 5 comma 4 right parenthesis end cell cell left parenthesis 5 comma 5 right parenthesis end cell cell left parenthesis 5 comma 6 right parenthesis end cell row cell left parenthesis 6 comma 1 right parenthesis end cell cell left parenthesis 6 comma 2 right parenthesis end cell cell left parenthesis 6 comma 3 right parenthesis end cell cell left parenthesis 6 comma 4 right parenthesis end cell cell left parenthesis 6 comma 5 right parenthesis end cell cell left parenthesis 6 comma 6 right parenthesis end cell end table close curly brackets end cell row cell C l e a r l y comma text   there   are   36   elementary   events. end text end cell row cell therefore n left parenthesis T o t a l text    end text n u m b e r text    end text o f text    end text t h r o w s right parenthesis equals 36 end cell row cell N u m b e r text   of   pairs   in   end text g e t t i n g text    end text 5 text   end text a s text   end text t h e text   end text s u m text   can   be   selected end text end cell row cell text as   listed   below : end text end cell row cell open curly brackets table row cell left parenthesis 1 comma 1 right parenthesis end cell cell left parenthesis 1 comma 2 right parenthesis end cell cell left parenthesis 1 comma 3 right parenthesis end cell cell left parenthesis 1 comma 4 right parenthesis end cell cell left parenthesis 1 comma 5 right parenthesis end cell cell left parenthesis 1 comma 6 right parenthesis end cell row cell left parenthesis 2 comma 1 right parenthesis end cell cell left parenthesis 2 comma 2 right parenthesis end cell cell left parenthesis 2 comma 3 right parenthesis end cell cell left parenthesis 2 comma 4 right parenthesis end cell cell left parenthesis 2 comma 5 right parenthesis end cell cell left parenthesis 2 comma 6 right parenthesis end cell row cell left parenthesis 3 comma 1 right parenthesis end cell cell left parenthesis 3 comma 2 right parenthesis end cell cell left parenthesis 3 comma 3 right parenthesis end cell cell left parenthesis 3 comma 4 right parenthesis end cell cell left parenthesis 3 comma 5 right parenthesis end cell cell left parenthesis 3 comma 6 right parenthesis end cell row cell left parenthesis 4 comma 1 right parenthesis end cell cell left parenthesis 4 comma 2 right parenthesis end cell cell left parenthesis 4 comma 3 right parenthesis end cell cell left parenthesis 4 comma 4 right parenthesis end cell cell left parenthesis 4 comma 5 right parenthesis end cell cell left parenthesis 4 comma 6 right parenthesis end cell row cell left parenthesis 5 comma 1 right parenthesis end cell cell left parenthesis 5 comma 2 right parenthesis end cell cell left parenthesis 5 comma 3 right parenthesis end cell cell left parenthesis 5 comma 4 right parenthesis end cell cell left parenthesis 5 comma 5 right parenthesis end cell cell left parenthesis 5 comma 6 right parenthesis end cell row cell left parenthesis 6 comma 1 right parenthesis end cell cell left parenthesis 6 comma 2 right parenthesis end cell cell left parenthesis 6 comma 3 right parenthesis end cell cell left parenthesis 6 comma 4 right parenthesis end cell cell left parenthesis 6 comma 5 right parenthesis end cell cell left parenthesis 6 comma 6 right parenthesis end cell end table close curly brackets end cell row blank row cell T h e r e f o r e comma text   end text n left parenthesis F a v o u r a b l e text    end text e v e n t s right parenthesis equals 4 end cell row blank row cell P left parenthesis g e t t i n g text    end text 5 text   as   the   sum end text right parenthesis end cell row cell equals fraction numerator n u m b e r text   of   pairs   in   end text g e t t i n g text    end text 5 text   end text a s text   end text t h e text   end text s u m over denominator T o t a l text    end text n u m b e r text    end text o f text    end text t h r o w s end fraction end cell row cell equals 4 over 36 end cell row cell equals 1 over 9 end cell end table

  Question 50(xvi)

In a simultaneous throw of a pair of dice, find the probability that:

2 will come up at least onceSolution 50(xvi)

Question 50(xvii)

In a simultaneous throw of a pair of dice, find the probability that:

2 will not come either timeSolution 50(xvii)

Question 51

What is the probability that an ordinary year has 53 Sundays?Solution 51

Question 52

Solution 52

Question 53

(viii) that the product of numbers appearing on the top of the dice is less than 9.

(ix) that the difference of the numbers appearing on the top of the two dice is 2.

(x) that the numbers obtained have a product less than 16.Solution 53

left parenthesis v i i i right parenthesis
table attributes columnalign left end attributes row cell text Consider   the   set   of   ordered   pairs end text end cell row cell open curly brackets table row cell left parenthesis 1 comma 1 right parenthesis end cell cell left parenthesis 1 comma 2 right parenthesis end cell cell left parenthesis 1 comma 3 right parenthesis end cell cell left parenthesis 1 comma 4 right parenthesis end cell cell left parenthesis 1 comma 5 right parenthesis end cell cell left parenthesis 1 comma 6 right parenthesis end cell row cell left parenthesis 2 comma 1 right parenthesis end cell cell left parenthesis 2 comma 2 right parenthesis end cell cell left parenthesis 2 comma 3 right parenthesis end cell cell left parenthesis 2 comma 4 right parenthesis end cell cell left parenthesis 2 comma 5 right parenthesis end cell cell left parenthesis 2 comma 6 right parenthesis end cell row cell left parenthesis 3 comma 1 right parenthesis end cell cell left parenthesis 3 comma 2 right parenthesis end cell cell left parenthesis 3 comma 3 right parenthesis end cell cell left parenthesis 3 comma 4 right parenthesis end cell cell left parenthesis 3 comma 5 right parenthesis end cell cell left parenthesis 3 comma 6 right parenthesis end cell row cell left parenthesis 4 comma 1 right parenthesis end cell cell left parenthesis 4 comma 2 right parenthesis end cell cell left parenthesis 4 comma 3 right parenthesis end cell cell left parenthesis 4 comma 4 right parenthesis end cell cell left parenthesis 4 comma 5 right parenthesis end cell cell left parenthesis 4 comma 6 right parenthesis end cell row cell left parenthesis 5 comma 1 right parenthesis end cell cell left parenthesis 5 comma 2 right parenthesis end cell cell left parenthesis 5 comma 3 right parenthesis end cell cell left parenthesis 5 comma 4 right parenthesis end cell cell left parenthesis 5 comma 5 right parenthesis end cell cell left parenthesis 5 comma 6 right parenthesis end cell row cell left parenthesis 6 comma 1 right parenthesis end cell cell left parenthesis 6 comma 2 right parenthesis end cell cell left parenthesis 6 comma 3 right parenthesis end cell cell left parenthesis 6 comma 4 right parenthesis end cell cell left parenthesis 6 comma 5 right parenthesis end cell cell left parenthesis 6 comma 6 right parenthesis end cell end table close curly brackets end cell row cell C l e a r l y comma text   there   are   36   elementary   events. end text end cell row cell therefore n left parenthesis T o t a l text    end text n u m b e r text    end text o f text    end text t h r o w s right parenthesis equals 36 end cell row cell text Number   of   pairs   such   that   the   product   of   the   end text end cell row cell text number   on   each   dice   is   less   than   9   are end text end cell row cell text as   listed   below : end text end cell row cell open curly brackets table row cell left parenthesis 1 comma 1 right parenthesis end cell cell left parenthesis 1 comma 2 right parenthesis end cell cell left parenthesis 1 comma 3 right parenthesis end cell cell left parenthesis 1 comma 4 right parenthesis end cell cell left parenthesis 1 comma 5 right parenthesis end cell cell left parenthesis 1 comma 6 right parenthesis end cell row cell left parenthesis 2 comma 1 right parenthesis end cell cell left parenthesis 2 comma 2 right parenthesis end cell cell left parenthesis 2 comma 3 right parenthesis end cell cell left parenthesis 2 comma 4 right parenthesis end cell cell left parenthesis 2 comma 5 right parenthesis end cell cell left parenthesis 2 comma 6 right parenthesis end cell row cell left parenthesis 3 comma 1 right parenthesis end cell cell left parenthesis 3 comma 2 right parenthesis end cell cell left parenthesis 3 comma 3 right parenthesis end cell cell left parenthesis 3 comma 4 right parenthesis end cell cell left parenthesis 3 comma 5 right parenthesis end cell cell left parenthesis 3 comma 6 right parenthesis end cell row cell left parenthesis 4 comma 1 right parenthesis end cell cell left parenthesis 4 comma 2 right parenthesis end cell cell left parenthesis 4 comma 3 right parenthesis end cell cell left parenthesis 4 comma 4 right parenthesis end cell cell left parenthesis 4 comma 5 right parenthesis end cell cell left parenthesis 4 comma 6 right parenthesis end cell row cell left parenthesis 5 comma 1 right parenthesis end cell cell left parenthesis 5 comma 2 right parenthesis end cell cell left parenthesis 5 comma 3 right parenthesis end cell cell left parenthesis 5 comma 4 right parenthesis end cell cell left parenthesis 5 comma 5 right parenthesis end cell cell left parenthesis 5 comma 6 right parenthesis end cell row cell left parenthesis 6 comma 1 right parenthesis end cell cell left parenthesis 6 comma 2 right parenthesis end cell cell left parenthesis 6 comma 3 right parenthesis end cell cell left parenthesis 6 comma 4 right parenthesis end cell cell left parenthesis 6 comma 5 right parenthesis end cell cell left parenthesis 6 comma 6 right parenthesis end cell end table close curly brackets end cell row blank row cell T h e r e f o r e comma text   end text n left parenthesis F a v o u r a b l e text    end text e v e n t s right parenthesis equals 16 end cell row cell n left parenthesis T o t a l text    end text n u m b e r text    end text o f text    end text o u t c o m e s right parenthesis equals 36 end cell row blank row cell P left parenthesis g e t t i n g text    end text 9 text   as   the   product end text right parenthesis end cell row cell equals fraction numerator n u m b e r text   of   pairs   in   end text g e t t i n g text    end text 9 text   end text a s text   end text t h e text   end text p r o d u c t over denominator T o t a l text    end text n u m b e r text    end text o f text    end text t h r o w s end fraction end cell row cell equals 16 over 36 end cell row cell equals 4 over 9 end cell row blank row blank row cell P left parenthesis P r o d u c t text    end text o f text    end text t h e text    end text n u m b e r s text    end text a p p e a r i n g text    end text o n text    end text t h e text    end text t o p text    end text o f text    end text t h e text   end text end cell row cell d i c e text    end text i s text    end text l e s s text    end text t h a n text    end text 9 right parenthesis equals 4 over 9 end cell end table
left parenthesis i x right parenthesis
table attributes columnalign left end attributes row cell text Consider   the   set   of   ordered   pairs end text end cell row cell open curly brackets table row cell left parenthesis 1 comma 1 right parenthesis end cell cell left parenthesis 1 comma 2 right parenthesis end cell cell left parenthesis 1 comma 3 right parenthesis end cell cell left parenthesis 1 comma 4 right parenthesis end cell cell left parenthesis 1 comma 5 right parenthesis end cell cell left parenthesis 1 comma 6 right parenthesis end cell row cell left parenthesis 2 comma 1 right parenthesis end cell cell left parenthesis 2 comma 2 right parenthesis end cell cell left parenthesis 2 comma 3 right parenthesis end cell cell left parenthesis 2 comma 4 right parenthesis end cell cell left parenthesis 2 comma 5 right parenthesis end cell cell left parenthesis 2 comma 6 right parenthesis end cell row cell left parenthesis 3 comma 1 right parenthesis end cell cell left parenthesis 3 comma 2 right parenthesis end cell cell left parenthesis 3 comma 3 right parenthesis end cell cell left parenthesis 3 comma 4 right parenthesis end cell cell left parenthesis 3 comma 5 right parenthesis end cell cell left parenthesis 3 comma 6 right parenthesis end cell row cell left parenthesis 4 comma 1 right parenthesis end cell cell left parenthesis 4 comma 2 right parenthesis end cell cell left parenthesis 4 comma 3 right parenthesis end cell cell left parenthesis 4 comma 4 right parenthesis end cell cell left parenthesis 4 comma 5 right parenthesis end cell cell left parenthesis 4 comma 6 right parenthesis end cell row cell left parenthesis 5 comma 1 right parenthesis end cell cell left parenthesis 5 comma 2 right parenthesis end cell cell left parenthesis 5 comma 3 right parenthesis end cell cell left parenthesis 5 comma 4 right parenthesis end cell cell left parenthesis 5 comma 5 right parenthesis end cell cell left parenthesis 5 comma 6 right parenthesis end cell row cell left parenthesis 6 comma 1 right parenthesis end cell cell left parenthesis 6 comma 2 right parenthesis end cell cell left parenthesis 6 comma 3 right parenthesis end cell cell left parenthesis 6 comma 4 right parenthesis end cell cell left parenthesis 6 comma 5 right parenthesis end cell cell left parenthesis 6 comma 6 right parenthesis end cell end table close curly brackets end cell row cell C l e a r l y comma text   there   are   36   elementary   events. end text end cell row cell therefore n left parenthesis T o t a l text    end text n u m b e r text    end text o f text    end text t h r o w s right parenthesis equals 36 end cell row cell text Number   of   pairs   such   that   difference   of   the   numbers   end text end cell row cell text appearing   on   top   of   the   two   die   is   2   can   be   selected end text end cell row cell text as   listed   below : end text end cell row cell open curly brackets table row cell left parenthesis 1 comma 1 right parenthesis end cell cell left parenthesis 1 comma 2 right parenthesis end cell cell left parenthesis 1 comma 3 right parenthesis end cell cell left parenthesis 1 comma 4 right parenthesis end cell cell left parenthesis 1 comma 5 right parenthesis end cell cell left parenthesis 1 comma 6 right parenthesis end cell row cell left parenthesis 2 comma 1 right parenthesis end cell cell left parenthesis 2 comma 2 right parenthesis end cell cell left parenthesis 2 comma 3 right parenthesis end cell cell left parenthesis 2 comma 4 right parenthesis end cell cell left parenthesis 2 comma 5 right parenthesis end cell cell left parenthesis 2 comma 6 right parenthesis end cell row cell left parenthesis 3 comma 1 right parenthesis end cell cell left parenthesis 3 comma 2 right parenthesis end cell cell left parenthesis 3 comma 3 right parenthesis end cell cell left parenthesis 3 comma 4 right parenthesis end cell cell left parenthesis 3 comma 5 right parenthesis end cell cell left parenthesis 3 comma 6 right parenthesis end cell row cell left parenthesis 4 comma 1 right parenthesis end cell cell left parenthesis 4 comma 2 right parenthesis end cell cell left parenthesis 4 comma 3 right parenthesis end cell cell left parenthesis 4 comma 4 right parenthesis end cell cell left parenthesis 4 comma 5 right parenthesis end cell cell left parenthesis 4 comma 6 right parenthesis end cell row cell left parenthesis 5 comma 1 right parenthesis end cell cell left parenthesis 5 comma 2 right parenthesis end cell cell left parenthesis 5 comma 3 right parenthesis end cell cell left parenthesis 5 comma 4 right parenthesis end cell cell left parenthesis 5 comma 5 right parenthesis end cell cell left parenthesis 5 comma 6 right parenthesis end cell row cell left parenthesis 6 comma 1 right parenthesis end cell cell left parenthesis 6 comma 2 right parenthesis end cell cell left parenthesis 6 comma 3 right parenthesis end cell cell left parenthesis 6 comma 4 right parenthesis end cell cell left parenthesis 6 comma 5 right parenthesis end cell cell left parenthesis 6 comma 6 right parenthesis end cell end table close curly brackets end cell row blank row cell T h e r e f o r e comma text   end text n left parenthesis F a v o u r a b l e text    end text e v e n t s right parenthesis equals 8 end cell row blank row cell P left parenthesis text difference   of   the   numbers   is   2 end text right parenthesis end cell row cell equals fraction numerator table attributes columnalign left end attributes row cell text Number   of   pairs   such   that   difference   of   the   numbers   end text end cell row cell text Appearing   on   the   top   of   the   two   dice   is   2   end text end cell end table over denominator T o t a l text    end text n u m b e r text    end text o f text    end text t h r o w s end fraction end cell row cell equals 8 over 36 end cell row cell equals 2 over 9 end cell end table

(x)

When a black die and a white die are thrown at the same time, the sample space is given by

S = {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),

(2,1)(2,2),(2,3),(2,4),(2,5),(2,6),

(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),

(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),

(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),

(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}

n(S) = 36

Let A be the event that the numbers obtained have a product less than 16.

A = {{(1,1),(1,2),(1,3),(1,4),(1,5),

(1,6),(2,1)(2,2),(2,3),(2,4),(2,5),

(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),

(4,1),(4,2),(4,3), (5,1),(5,2),

(5,3),(6,1),(6,2)}}

n(A) = 25

P(A) =  Question 54

Solution 54

Question 55

Solution 55

Question 56

Solution 56

Question 57

Solution 57

Question 58

Solution 58

Question 59

Solution 59

Question 60

Solution 60

Question 61

(iv) card  (v) diamondSolution 61

Question 62

Solution 62

Question 63

A number is selected at random from first 50 natural numbers. Find the probability that it is a multiple of 3 and 4.Solution 63

Question 64

A dice is rolled twice. Find the probability that

(i) 5 will not come up either time.

(ii) 5 will come up exactly once.Solution 64

Question 65

All the black face cards are removed from a pack of 52 cards. The remaining cards are well shuffled and then a card is drawn at random. Find the probability of getting a

(i) Face card

(ii) Red card

(iii) Black card

(iv) KingSolution 65

table attributes columnalign left end attributes row cell T h e text   number   of   black   face   cards  =  6 end text end cell row cell S i n c e comma a l l text    end text t h e text    end text b l a c k text   end text f a c e text   end text c a r d s text    end text h a v e text    end text b e e n text    end text r e m o v e d comma t h e r e f o r e end cell row cell t h e text    end text r e m a i n i n g text    end text n u m b e r text    end text o f text    end text c a r d s equals 52 minus 6 equals 46 end cell row cell n left parenthesis t o t a l text    end text n u m b e r text    end text o f text    end text c a r d s text    end text r e m a i n i n g right parenthesis equals 46 end cell row blank row cell left parenthesis i right parenthesis T o t a l text   number   of   face   cards  =  6  +  6  =  12 end text end cell row cell W h e n text   removing   all   black   face   cards ,  there   are   6   red   face   cards. end text end cell row cell rightwards double arrow n left parenthesis g e t t i n g text    end text a text    end text f a c e text    end text c a r d right parenthesis equals 6 end cell row cell rightwards double arrow P left parenthesis g e t t i n g text    end text a text    end text f a c e text    end text c a r d right parenthesis equals 6 over 46 equals 3 over 23 end cell row cell left parenthesis i i right parenthesis T o t a l text   number   of   red   card = 26   end text end cell row cell rightwards double arrow n left parenthesis g e t t i n g text    end text a text    end text r e d text    end text c a r d right parenthesis equals 26 end cell row cell rightwards double arrow P left parenthesis g e t t i n g text    end text a text    end text r e d text    end text c a r d right parenthesis equals 26 over 46 equals 13 over 23 end cell row cell left parenthesis i i i right parenthesis N u m b e r text   of   black   face   cards  =  6 end text end cell row cell text Total   number   of   black   cards  =  26 end text end cell row cell text Remaining   number   of   black   cards = 26 end text minus 6 equals 20 end cell row cell rightwards double arrow n left parenthesis g e t t i n g text    end text a text    end text b l a c k text    end text c a r d right parenthesis equals 20 end cell row cell rightwards double arrow P left parenthesis g e t t i n g text    end text a text    end text b l a c k text    end text c a r d right parenthesis equals 20 over 46 equals 10 over 23 end cell row cell left parenthesis i v right parenthesis N u m b e r text   of   black   king   cards  =  2 end text end cell row cell text Total   number   of   king   cards  =  4 end text end cell row cell text Remaining   number   of   red   king   cards  =  2 end text end cell row cell rightwards double arrow n left parenthesis g e t t i n g text    end text a text    end text k i n g right parenthesis equals 2 end cell row cell rightwards double arrow P left parenthesis g e t t i n g text    end text a text    end text k i n g right parenthesis equals 2 over 46 equals 1 over 23 end cell end table

Question 66

Cards numbered from 11 to 60 are kept in a box. If a card is drawn at random from the box, find the probability that the number on the drawn cards is

(i) an odd number

(ii) a perfect square number

(iii) divisible by 5

(iv) a prime number less than 20Solution 66

Question 67

All kings and queens are removed from a pack of 52 cards. The remaining cards are well-shuffled and then a card is randomly drawn from it. Find the probability that this card is

(i) a red face card

(ii) a black cardSolution 67

table attributes columnalign left end attributes row cell F a c e text   end text c a r d s text   queen   and   king ,  that   is   4   end text q u e e n s text    end text end cell row cell a n d text    end text 4 text    end text k i n g s text    end text a r e text    end text r e m o v e d. end cell row cell T h u s comma text   in   total   4  +  4  =  8   cards   are   removed. end text end cell row cell T h e text    end text r e m a i n i n g text   end text n u m b e r text    end text o f text    end text c a r d s equals 52 minus 8 equals 44 end cell row cell n left parenthesis t o t a l text    end text r e m a n i n g text    end text c a r d s right parenthesis equals 44 end cell row cell left parenthesis i right parenthesis end cell row cell T o t a straight l text   number   of   face   cards  =  6  +  6  =  12 end text end cell row cell text Number   of   red   face   cards  =  2  +  2  +  2  =  6 end text end cell row cell W h e n text   we   remove   four   red   face   cards   queen   and   king , end text end cell row cell text two   jack   red   face   cards   are   remaining. end text end cell row cell rightwards double arrow n left parenthesis a text    end text r e d text    end text f a c e text    end text c a r d right parenthesis equals 2 end cell row cell rightwards double arrow P left parenthesis a text    end text r e d text    end text f a c e text    end text c a r d right parenthesis equals 2 over 44 equals 1 over 22 end cell row cell left parenthesis i i right parenthesis end cell row cell text When   we   remove   four   black   face   cards   queen   and   king ,  end text end cell row cell text the   number   of   balck   cards   is   26 end text minus text 4 = 22 end text end cell row cell rightwards double arrow n left parenthesis a text    end text b l a c k text    end text c a r d right parenthesis equals 22 end cell row cell rightwards double arrow P left parenthesis a text    end text b l a c k text    end text c a r d right parenthesis equals 22 over 44 equals 1 half end cell end table

Question 68

All jacks, queens and kings are removed from a pack of 52 cards. The remaining cards are well-shuffled and then a card is randomly drawn from it. Find the probability that this card is

(i) a black face card

(ii) a red cardSolution 68

table attributes columnalign left end attributes row cell F a c e text   end text c a r d s text   are   jack ,  queen   and   king. end text end cell row cell 4 text   end text j a c k s comma text   4   end text q u e e n s text    end text a n d text    end text 4 text    end text k i n g s text    end text a r e text    end text r e m o v e d. end cell row cell T h u s comma text   in   total   4  +  4  +  4  =  12   cards   are   removed. end text end cell row cell T h e text    end text r e m a i n i n g text   end text n u m b e r text    end text o f text    end text c a r d s equals 52 minus 12 equals 40 end cell row cell n left parenthesis t o t a l text    end text r e m a n i n g text    end text c a r d s right parenthesis equals 40 end cell row blank row cell left parenthesis i right parenthesis end cell row cell W h e n text   we   remove   all   the   face   cards ,  both   black   and end text end cell row cell text red ,  the   number   of   black   face   cards   is   zero. end text end cell row cell rightwards double arrow n left parenthesis b l a c k text    end text f a c e text    end text c a r d right parenthesis equals 0 end cell row cell rightwards double arrow P left parenthesis b l a c k text    end text f a c e text    end text c a r d right parenthesis equals 0 over 40 equals 0 end cell row cell left parenthesis i i right parenthesis end cell row cell T h e r e text   are   26   red   cards   and   in   that    there   are   6   face   cards end text end cell row cell text When   we   remove   all   the   face   cards ,  the   number   of end text end cell row cell text red   cards   is   26 end text minus text 6 = 20 end text end cell row cell rightwards double arrow n left parenthesis a text    end text r e d text    end text c a r d right parenthesis equals 20 end cell row cell rightwards double arrow P left parenthesis a text    end text r e d text    end text c a r d right parenthesis equals 20 over 40 equals 1 half end cell end table

Question 69

Red queens and black jacks are removed from a pack of 52 playing  is drawn at random from the remaining cards, after reshuffling them. Find the probability that the card drawn is

(i) a king

(ii) of red colour

(iii) a face card

(iv) a queenSolution 69

table attributes columnalign left end attributes row cell S i n c e text    end text r e d text    end text q u e e n s text    end text a n d text    end text b l a c k text    end text c a r d s text    end text a r e text    end text r e m o v e d text    end text f r o m text    end text a text    end text p a c k text    end text o f end cell row cell 52 text    end text c a r d s comma r e m a i n i n g text    end text c a r d s equals 44 minus 4 equals 48 end cell row cell n left parenthesis t o t a l text    end text n u m b e r text    end text o f text    end text c a r d s right parenthesis equals 48 end cell row cell n left parenthesis a text    end text k i n g right parenthesis equals 4 end cell row cell n left parenthesis o f text    end text r e d text    end text c o l o u r right parenthesis equals 24 end cell row cell n left parenthesis a text    end text f a c e text    end text c a r d right parenthesis equals 8 end cell row cell n left parenthesis a text    end text q u e e n right parenthesis equals 2 end cell row cell left parenthesis i right parenthesis P left parenthesis a text    end text k i n g right parenthesis equals text   end text 4 over 48 equals 1 over 12 end cell row cell left parenthesis i i right parenthesis P left parenthesis o f text    end text r e d text    end text c o l o u r right parenthesis equals 24 over 48 equals 1 half end cell row cell left parenthesis i i i right parenthesis P left parenthesis a text    end text f a c e text    end text c a r d right parenthesis equals 8 over 48 equals 1 over 6 end cell row cell left parenthesis i v right parenthesis P left parenthesis a text    end text q u e e n right parenthesis equals 2 over 48 equals 1 over 24 end cell end table

Question 70

In a bag there are 44 identical cards with figure of circle or square on them. There are 24 circles, of which 9 are blue and rest are green and 20 squares of which 11 are blue and rest are green. One card is drawn from the bag at random. Find the probability that it has the figure

  1. square
  2. green colour,
  3. blue circle and
  4. green square.

Solution 70

Question 71

All red face cards are removed from a pack of playing cards. The remaining cards are well shuffled and then a card is drawn at random from them. Find the probability that the drawn card is

  1. a red card
  2. a face card and
  3. a card of clubs.

Solution 71

Question 72

Two customers are visiting a particular shop in the same week (Monday to Saturday). Each is equally likely to visit the shop on any day as on another day. What is the probability that both will visit the shop on (i) the same day? (ii) different days? (iii) consecutive days?Solution 72

Question 3(i)

Three coins are tossed together. Find the probability of getting :Exactly two headsSolution 3(i)

Sample space when three coins are tossed together is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

n(S) = 8

Let A be the event ofgetting exactly two heads.

A = {HHT, THH, HHT}

n (A) = 3

P(A) =   Question 3(ii)

Three coins are tossed together. Find the probability of getting :At most two headsSolution 3(ii)

Sample space when three coins are tossed together is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

n(S) = 8

Let A be the event of getting at most two heads.

A = {TTT, HTT, THT, TTH, HHT, THH, HHT}

n (A) = 7

P(A) =   Question 3(iii)

Three coins are tossed together. Find the probability of getting :At least one head and one tail.Solution 3(iii)

Sample space when three coins are tossed together is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

n(S) = 8

Let A be the event of getting at least one head and one tail.

A = {HHT, HTH, THH, HTT, THT, TTH }

n (A) = 6

P(A) =   Question 3(iv)

Three coins are tossed together. Find the probability of getting :No tailsSolution 3(iv)

Sample space when three coins are tossed together is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

n(S) = 8

Let A be the event ofgetting no tails.

A = {HHH}

n (A) = 1

P(A) =   

Chapter 13 – Probability Exercise Ex. 13.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

A target shown in Fig. 16.11 consists of three concentric circles of radii 3, 7 and 9 cm respectively. A dart is thrown and lands on the target. What is the probability that the dart will land on the shaded region?

Solution 3

Assume first circle to be the circle with the smallest radius, that is 3. Similarly, second circle to be the circle with radius 7 and third circle to be the circle with radius 9.

Question 4

In Fig. 16.12, points A, B, C and D are the centres of four circles that each have a radius of length one unit. If a point is selected at random from the interior of square ABCD. What is the probability that the point will be chosen from the shaded region?

Solution 4

Question 5

In the fig., JKLM is a square with sides of length 6 units. Points A and B are the mid-points of sides KL and LM respectively. If a point is selected at random from the interior of the square. What is the probability that the point will be chosen from the interior of JAB?
Solution 5

Question 6

In the fig., a square dart board is shown. The length of a side of the larger square is 1.5 times the length of a side of the smaller square. If a dart is thrown and lands on the larger square. What is the probability that it will land in the interior of the smaller square?

Solution 6

Chapter 13 – Probability Exercise 13.35

Question 1

If a digit is chosen at random from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, then the probability that it is odd, is

begin mathsize 12px style open parentheses straight a close parentheses space 4 over 9
open parentheses straight b close parentheses space 5 over 9
open parentheses straight c close parentheses space 1 over 9
open parentheses straight d close parentheses space 2 over 3 end style

Solution 1

n(E) = total numbers

       = 9

n(0) = odd numbers {1, 3, 5, 7, 9}

       = 5

begin mathsize 12px style straight P left parenthesis straight E right parenthesis space equals space Probability space that space number space is space odd
space space space space space space space space space equals space fraction numerator straight n open parentheses 0 close parentheses over denominator straight n open parentheses straight E close parentheses end fraction
space space space space space space space space space space equals space 5 over 9 end style

So, the correct option is (b).Question 2

In Q. No. 1, the probability that the digit is even, is

begin mathsize 12px style open parentheses straight a close parentheses space 4 over 9
open parentheses straight b close parentheses space 5 over 9
open parentheses straight c close parentheses space 1 over 9
open parentheses straight d close parentheses space 2 over 3 end style

Solution 2

n(E) = 9

n(4) = no. is even {2, 4, 6, 8}

       = 4

begin mathsize 12px style straight P left parenthesis straight E right parenthesis space equals space Probability space that space number space is space even
space space space space space space space space space equals space fraction numerator straight n open parentheses straight A close parentheses over denominator straight n open parentheses straight E close parentheses end fraction
space space space space space space space space space equals space 4 over 9 end style

So, the correct option is (a).

Chapter 13 – Probability Exercise 13.36

Question 3

In Q. No. 1, the probability that the digit is a multiple of 3 is

begin mathsize 12px style open parentheses straight a close parentheses space 1 third
open parentheses straight b close parentheses space 2 over 3
open parentheses straight c close parentheses space 1 over 9
open parentheses straight d close parentheses space 2 over 9 end style

Solution 3

n(E) = 9

n(A) = no. is multiple of 3 {3, 6, 9}

       = 3

begin mathsize 12px style straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight A close parentheses over denominator straight n open parentheses straight E close parentheses end fraction
space space space space space space space space space equals space 3 over 9
space space space space space space space space space equals space 1 third end style

So, the correct option is (a).Question 4

If three coins are tossed simultaneously, then the probability of getting at least two heads, is

begin mathsize 12px style open parentheses straight a close parentheses space 3 over 4
open parentheses straight b close parentheses space 3 over 8
open parentheses straight c close parentheses space 1 half
open parentheses straight d close parentheses space 1 fourth end style

Solution 4

3 coins are tossed simultaneously.

Hence sample space = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Event (E) = at least two Heads

              = {HHH, HHT, HTH, THH}

n(s) = 8

n(E) = 4

begin mathsize 12px style straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction
space space space space space space space space space space equals space 4 over 8 space equals space 1 half end style

So, the correct option is (c).Question 5

In a single throw of a die, the probability of getting a multiple of 3 is

begin mathsize 12px style open parentheses straight a close parentheses space 1 half
open parentheses straight b close parentheses space 1 third
open parentheses straight c close parentheses space 1 over 6
open parentheses straight d close parentheses space 2 over 3 end style

Solution 5

sample space (s) = {1, 2, 3, 4, 5, 6}

n(s) = 6

Event (E) = getting a multiple of 3

              = {3, 6}

n(E) = 2

begin mathsize 12px style straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction
space space space space space space space space space space equals space 2 over 6
space space space space space space space space space space equals space 1 third end style

So, the correct option is (b).Question 6

begin mathsize 12px style The space probability space of space guessing space the space correct space answer space to space straight a space certain space test space questions space is space straight x over 12. space If space the space probability space of space not space guessing space the space correct space answer space to space this space question space is space 2 over 3 comma space then space straight x space equals
open parentheses straight a close parentheses space 2
open parentheses straight b close parentheses space 3
open parentheses straight c close parentheses space 4
open parentheses straight d close parentheses space 6 end style

Solution 6

begin mathsize 12px style We space know space that comma space for space any space question comma space either space he space gives space the space answer space correctly space or space incorrectly.
So comma
straight P open parentheses correct space answer close parentheses space plus space straight P open parentheses wrong space answer close parentheses space equals space 1 space space space space space space space space space space...... open parentheses 1 close parentheses
It space is space given space that
straight P left parenthesis correct space answer right parenthesis space equals space straight x over 12 space space space space space space...... open parentheses 2 close parentheses
straight P open parentheses wrong space answer close parentheses space equals space 2 over 3 space space space space space space..... open parentheses 3 close parentheses
from space open parentheses 1 close parentheses comma space open parentheses 2 close parentheses space & space open parentheses 3 close parentheses
straight x over 12 space plus space 2 over 3 space equals space 1
straight x over 12 equals space 1 third
straight x space equals space 4
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 7

A bag contains three green marbles, four blue marbles, and two orange marbles. If a marble is picked at random, then the probability that it is not an orange marble is

begin mathsize 12px style open parentheses straight a close parentheses space 1 fourth
open parentheses straight b close parentheses space 1 third
open parentheses straight c close parentheses space 4 over 9
open parentheses straight d close parentheses space 7 over 9 end style

Solution 7

begin mathsize 12px style Total space Marbles space equals 3 space green space plus space 4 space blue space plus space 2 space orange
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 9
Total space orange space marbles space equals space 2
Probability space that space picked space marble space is space an space orange space straight P open parentheses 0 close parentheses space equals space fraction numerator orange space marbles over denominator Total space marble end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 2 over 9
Probability space that space picked space marble space is space not space orange space equals space 1 space minus space straight P open parentheses 0 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 space minus space 2 over 9
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 7 over 9
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 8

A number is selected at random from the numbers 3, 5, 5, 7, 7, 7, 9, 9, 9, 9 The probability that the selected number is their average is

begin mathsize 12px style open parentheses straight a close parentheses space 1 over 10
open parentheses straight b close parentheses space 3 over 10
open parentheses straight c close parentheses space 7 over 10
open parentheses straight d close parentheses space 9 over 10 end style

Solution 8

begin mathsize 12px style Sample space space space open parentheses straight s close parentheses space equals space left curly bracket 3 comma space 5 comma space 5 comma space 7 comma space 7 comma space 7 comma space 9 comma space 9 comma space 9 comma space 9 right curly bracket
straight n open parentheses straight s close parentheses space equals space 10
average space of space these space numbers space equals space fraction numerator 3 space plus space 5 space plus space 5 space plus space 7 space plus space 7 space plus space 7 space plus space 9 space plus space 9 space plus space 9 space plus space 9 over denominator 10 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 70 over 10
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 7
so space we space have space to space find space the space probability space that space the space picked space number space is space 7
space space space space space space space space space space space space space space equals fraction numerator frequency space of space 7 over denominator straight n open parentheses straight s close parentheses end fraction
space space space space space space space space space space space space space space equals space 3 over 10
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 9

The probability of throwing a number greater than 2 with a fair dice is

begin mathsize 12px style open parentheses straight a close parentheses space 3 over 5
open parentheses straight b close parentheses space 2 over 5
open parentheses straight c close parentheses space 2 over 3
open parentheses straight d close parentheses space 1 third end style

Solution 9

Sample space (S) = {1, 2, 3, 4, 5, 6}

n(S) = 6

Event (E) = getting number greater than 2

              = {3, 4, 5, 6}

n(E) = 4

begin mathsize 12px style straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction space equals space 4 over 6 space equals space 2 over 3 end style

So, the correct option is (c).Question 10

A card is accidently dropped from a pack of 52 playing cards. The probability that it is an ace is

begin mathsize 12px style open parentheses straight a close parentheses space 1 fourth
open parentheses straight b close parentheses space 1 over 13
open parentheses straight c close parentheses space 1 over 52
open parentheses straight d close parentheses space 12 over 13 end style

Solution 10

n(S) = 52

no. of ace in a pack of 52 cards = 4

n(E) = 4

begin mathsize 12px style Probability space that space dropped space card space is space ace space space straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 4 over 52 equals space 1 over 13 end style

So, the correct option is (b).Question 11

A number is selected from numbers 1 to 25. The probability that it is prime is

begin mathsize 10px style left parenthesis straight a right parenthesis 2 over 3
left parenthesis straight b right parenthesis space 1 over 6
left parenthesis straight c right parenthesis 9 over 25
left parenthesis straight d right parenthesis space 5 over 6 end style

Solution 11

n(S) = 25

Event (E) = prime numbers between 1 to 25

              = {2, 3, 5, 7, 11, 13, 17, 19, 23}

n(E) = 9

begin mathsize 12px style straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction
space space space space space space space space space space equals space 9 over 25 space end style

Note: The answer does not match the options in the question.Question 12

Which of the following cannot be the probability of an event?

begin mathsize 12px style open parentheses straight a close parentheses space 2 over 3
open parentheses straight b close parentheses space minus 1.5
open parentheses straight c close parentheses space 15 percent sign
open parentheses straight d close parentheses space 0.7 end style

Solution 12

We know probability P(E) of an event lies between 0 < P(E) < 1     ……(1)

(a), (c), (d) satisfies the (1) but (b) is a negative number. It can’t be the probability of an event.

So, the correct option is (b).Question 13

If P(E) = 0.05, then P(not E) =

(a) – 0.05

(b) 0.5

(c) 0.9

(d) 0.95Solution 13

We know

P(E) + P(not E) = 1

given P(E) = 0.05

so P(not E) = 1 – 0.05

                 = 0.95

So, the correct option is (d).Question 14

Which of the following cannot be the probability of occurrence of an event?

(a) 0.2

(b) 0.4

(c) 0.8

(d) 1.6Solution 14

We know 0 < P(E) < 1

(a), (b), (c) fullfill the condition. But (d) doesn’t 

Hence (d) is correct option.

So, the correct option is (d).Question 15

The probability of a certain event is

(a) 0

(b) 1

(c) 1/2

(d) no existentSolution 15

An event that is certain to occur is called Certain event.

Probability of certain event is 1.

Ex: If it is Monday, the probability that tomorrow is Tuesday is certain and therefore probability is 1.

So, the correct option is (b).

Chapter 13 – Probability Exercise 13.37

Question 16

The probability of an impossible event is

(a) 0

(b) 1

(c) 1/2

(d) non-existentSolution 16

Events that are not possible are impossible event.

Probability of impossible event is 0.

So, the correct option is (a).Question 17

Aarushi sold 100 lottery tickets in which 5 tickets carry prizes. If Priya purchased a ticket, what is the probability of Priya winning a prize?

begin mathsize 12px style open parentheses straight a close parentheses space 19 over 20
open parentheses straight b close parentheses space 1 over 25
open parentheses straight c close parentheses space 1 over 20
open parentheses straight d close parentheses space 17 over 20 end style

Solution 17

begin mathsize 12px style straight n left parenthesis straight S right parenthesis space equals space 100 space space
Event space left parenthesis straight E right parenthesis space equals space winnig space straight a space prize space space
straight n left parenthesis straight E right parenthesis space equals space There space are space only space 5 space tickets space which space carry space prize.
so space straight n left parenthesis straight E right parenthesis space equals space 5
so space probability space of space priya space winnig space straight a space prize space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 5 over 100 equals space 1 over 20
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 18

A number is selected from first 50 natural numbers. What is the probability that it is a multiple of 3 or 5 ?

begin mathsize 12px style open parentheses straight a close parentheses space 13 over 25
open parentheses straight b close parentheses space 21 over 50
open parentheses straight c close parentheses space 12 over 25
open parentheses straight d close parentheses space 23 over 50 end style

Solution 18

begin mathsize 12px style straight n left parenthesis straight s right parenthesis space equals space 50
If space straight a space number space is space straight a space multiple space of space 5 space equals space left curly bracket 5 comma space 10 comma space 15 comma space 20 comma space 25 comma space 30 comma space 35 comma space 40 comma space 45 comma space 50 right curly bracket
straight n left parenthesis straight E 1 right parenthesis space equals space 10
If space straight a space number space is space straight a space multiple space of space 3 space equals space left curly bracket 3 comma space 6 comma space 9 comma space 12 comma space 15 comma space 18 comma space 21 comma space 24 comma space 27 comma space 30 comma space 33 comma space 36 comma space 39 comma space 42 comma space 45 comma space 48 right curly bracket
straight n left parenthesis straight E 2 right parenthesis space equals space 16
If space straight a space number space is space straight a space multiple space of space both space 3 space and space 5 space equals space left curly bracket 15 comma space 30 comma space 45 right curly bracket
straight n open parentheses straight E 1 space intersection space straight E 2 close parentheses space equals space 3
Probability space that space straight a space number space is space multiple space of space 3 space or space 5
straight P open parentheses straight E 1 space union space straight E 2 close parentheses space equals space straight P open parentheses straight E 1 close parentheses space plus space straight P open parentheses straight E 2 close parentheses space minus space straight P open parentheses straight E 1 space intersection space straight E 2 close parentheses
equals space fraction numerator straight n open parentheses straight E 1 close parentheses over denominator straight n open parentheses straight S close parentheses end fraction space plus space fraction numerator straight n open parentheses straight E 2 close parentheses over denominator straight n open parentheses straight S close parentheses end fraction space minus space fraction numerator straight n open parentheses straight E 1 space intersection space straight E 2 close parentheses over denominator straight n open parentheses straight S close parentheses end fraction
equals space 10 over 50 space plus space 16 over 50 space minus space 3 over 50
equals space 23 over 50
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 19

begin mathsize 12px style straight A space month space is space selected space at space random space in space straight a space year. space The space probability space that space it space is space March space or space October comma space is
open parentheses straight a close parentheses space 1 over 12
open parentheses straight b close parentheses space 1 over 6
open parentheses straight c close parentheses space 3 over 4
open parentheses straight d close parentheses space None space of space these end style

Solution 19

begin mathsize 12px style Total space month space in space straight a space year comma space straight n open parentheses straight S close parentheses space equals space 12
Month space is space either space march space or space october comma space straight n open parentheses straight E close parentheses space equals space 2
straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction equals 2 over 12 equals space 1 over 6
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 20

begin mathsize 12px style From space the space letter space of space the space word space

Solution 20

begin mathsize 12px style straight n open parentheses straight S close parentheses space equals space 6
vowels space in space

Question 21

begin mathsize 12px style straight A space die space is space thrown space once. space The space probability space of space getting space straight a space prime space number space is
open parentheses straight a close parentheses space 2 over 3
open parentheses straight b close parentheses space 1 third
open parentheses straight c close parentheses space 1 half
open parentheses straight d close parentheses space 1 over 6 end style

Solution 21

begin mathsize 12px style If space straight a space dice space is space thrown comma space possible space outcomes space equals space open curly brackets 1 comma space 2 comma space 3 comma space 4 comma space 5 comma space 6 close curly brackets
straight n open parentheses straight S close parentheses space equals space 6
prime space numbers space equals space open curly brackets 2 comma space 3 comma space 5 close curly brackets
straight n open parentheses straight E close parentheses space equals space 3
straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction
space space space space space space space space space equals space 3 over 6 space equals space 1 half
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 22

begin mathsize 12px style The space probability space of space getting space an space even space number comma space when space straight a space die space is space thrown space once space is
open parentheses straight a close parentheses space 1 half
open parentheses straight b close parentheses space 1 third
open parentheses straight c close parentheses space 1 over 6
open parentheses straight d close parentheses space 5 over 6 end style

Solution 22

begin mathsize 12px style straight n open parentheses straight S close parentheses space equals space 6
Even space number space equals space open curly brackets 2 comma space 4 comma space 6 close curly brackets
straight n open parentheses straight E close parentheses space equals space 3
straight P open parentheses straight E close parentheses space equals space 3 over 6 space equals space 1 half
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 23

begin mathsize 12px style straight A space box space contains space 90 space discs comma space numbered space from space 1 space to space 90. space If space one space disc space is space drawn space at space random space from space the space box comma space the space probability space that space it space bears space straight a space prime space number space less space than space 23 comma space is
open parentheses straight a close parentheses space 7 over 90
open parentheses straight b close parentheses space 10 over 90
open parentheses straight c close parentheses space 4 over 45
open parentheses straight d close parentheses space 9 over 89 end style

Solution 23

begin mathsize 12px style straight n open parentheses straight S close parentheses space equals space 90
prime space numbers space less space than space 23 space equals space left curly bracket 2 comma space 3 comma space 5 comma space 7 comma space 11 comma space 13 comma space 17 comma space 19 right curly bracket
straight n open parentheses straight E close parentheses space equals space 8
straight P open parentheses straight E close parentheses space equals space 8 over 90
space space space space space space space space space equals space 4 over 45
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 24

begin mathsize 12px style The space probability space that space straight a space number space selected space at space random space from space the space number space 1 comma space 2 comma space 3 comma space.... comma space 15 space is space straight a space mutiple space of space 4 comma space is
open parentheses straight a close parentheses space 4 over 15
open parentheses straight b close parentheses space 2 over 15
open parentheses straight c close parentheses space 1 fifth
open parentheses straight d close parentheses space 1 third end style

Solution 24

begin mathsize 12px style straight n open parentheses straight S close parentheses space equals space 15
selected space number space is space multiple space of space 4 space equals space open curly brackets 4 comma space 8 comma space 12 close curly brackets
straight n open parentheses straight E close parentheses space equals space 3
straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction
space space space space space space space space space equals space 3 over 15 equals space 1 fifth space
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 25

begin mathsize 12px style Two space different space coins space are space tossed space simultaneously. space The space probability space of space getting space at space least space one space head space is
open parentheses straight a close parentheses space 1 fourth
open parentheses straight b close parentheses space 1 over 8
open parentheses straight c close parentheses space 3 over 4
open parentheses straight d close parentheses space 7 over 8 end style

Solution 25

begin mathsize 12px style sample space space space open parentheses straight S close parentheses space equals space open curly brackets HH comma space HT comma space TH comma space TT close curly brackets
straight n open parentheses straight S close parentheses space equals space 4
sample space having space at space least space one space head space equals space open curly brackets HH comma space HT comma space TH close curly brackets
straight n open parentheses straight E close parentheses space equals space 3
straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction
space space space space space space space space space equals space 3 over 4 space
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 26

begin mathsize 12px style If space two space different space dice space are space rolled space together comma space the space probability space of space getting space an space even space number space on space both space dice comma space is
open parentheses straight a close parentheses space 1 over 36
open parentheses straight b close parentheses space 1 half
open parentheses straight c close parentheses space 1 over 6
open parentheses straight d close parentheses space 1 fourth end style

Solution 26

begin mathsize 12px style straight n open parentheses straight S close parentheses space equals space 36
Event space open parentheses straight E close parentheses space equals space open curly brackets open parentheses 2 comma space 2 close parentheses comma space open parentheses 2 comma space 4 close parentheses comma space open parentheses 2 comma space 6 close parentheses comma space open parentheses 4 comma space 2 close parentheses comma space open parentheses 4 comma space 4 close parentheses comma space open parentheses 4 comma space 6 close parentheses comma space open parentheses 6 comma space 2 close parentheses comma space open parentheses 6 comma space 4 close parentheses comma space open parentheses 6 comma 6 close parentheses close curly brackets
straight n open parentheses straight E close parentheses space equals space 9
straight P left parenthesis straight E right parenthesis space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction space equals space 9 over 36 equals space 1 fourth
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 27

begin mathsize 12px style straight A space number space is space selected space at space random space from space the space numbers space 1 space to space 30. space The space probability space that space it space is space straight a space prime space number space is
open parentheses straight a close parentheses space 2 over 3
open parentheses straight b close parentheses space 1 over 6
open parentheses straight c close parentheses space 1 third
open parentheses straight d close parentheses space 11 over 30 end style

Solution 27

begin mathsize 12px style straight n open parentheses straight S close parentheses space equals space 30
sample space of space prime space number space equals space open curly brackets 2 comma space 3 comma space 5 comma space 7 comma space 11 comma space 13 comma space 17 comma space 19 comma space 23 comma space 29 close curly brackets
straight n open parentheses straight E close parentheses space equals space 10
straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction space equals space 10 over 30 space equals space 1 third
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Chapter 13 – Probability Exercise 13.38

Question 28

begin mathsize 12px style straight A space card space is space drawn space at space random space from space straight a space pack space of space 52 space cards. space The space probability space that space the space drawn space card space is space not space an space ace space is
open parentheses straight a close parentheses space 1 over 13
open parentheses straight b close parentheses space 9 over 13
open parentheses straight c close parentheses space 4 over 13
open parentheses straight d close parentheses space 12 over 13 end style

Solution 28

begin mathsize 12px style straight n open parentheses straight S close parentheses space equals space 52
There space are space 4 space ace space in space straight a space pack space of space 52 space cards
Hence space straight n open parentheses straight E close parentheses space equals space 4
Probability space that space drawn space card space is space ace space comma space straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction equals space 4 over 52 space equals space 1 over 13
Probability space that space drawn space card space is space not space ace space equals space 1 space minus space card space is space ace
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 space minus space straight P open parentheses straight E close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 space minus space 1 over 13
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 12 over 13
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 29

A number x is chosen at random from the numbers -3, -2, -1, 0, 1, 2, 3 the probability that |x| < 2 is

begin mathsize 12px style open parentheses straight a close parentheses space 5 over 7
open parentheses straight b close parentheses space 2 over 7
open parentheses straight c close parentheses space 3 over 7
open parentheses straight d close parentheses space 1 over 7 end style

Solution 29

Sample space (s) = {-3, -2, -1, 0, 1, 2, 3}

n(s) = 7

Event (E) = |x| < 2

             = {-1, 0, 1}

n(E) = 3

begin mathsize 12px style straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight s close parentheses end fraction space equals space 3 over 7 end style

So, the correct option is (c).Question 30

If a number x is chosen from the numbers 1, 2, 3, and a number y is selected from the number 1, 4, 9. Then, P(xy < 9)

begin mathsize 12px style open parentheses straight a close parentheses space 7 over 9
open parentheses straight b close parentheses space 5 over 9
open parentheses straight c close parentheses space 2 over 3
open parentheses straight d close parentheses space 1 over 9 end style

Solution 30

begin mathsize 12px style straight x space element of space open curly brackets 1 comma space 2 comma space 3 close curly brackets
straight y space element of space open curly brackets 1 comma space 4 comma space 9 close curly brackets
Now space set space xy space element of space left curly bracket 1 space cross times space 1 comma space 1 space cross times space 4 comma space 1 space cross times space 9 comma space 2 space cross times space 1 comma space 2 space cross times space 4 comma space 2 space cross times space 9 comma space 3 space cross times space 1 comma space 3 space cross times space 4 comma space 3 space cross times space 9 right curly bracket
space space space space space space space space space space space space space space space space space space xy space element of space open curly brackets 1 comma space 4 comma space 9 comma space 2 comma space 8 comma space 18 comma space 3 comma space 12 comma space 27 close curly brackets
sample space space space straight n open parentheses straight S close parentheses comma space xy space element of space open curly brackets 1 comma space 2 comma space 3 comma space 4 comma space 8 comma space 9 comma space 12 comma space 18 comma space 27 close curly brackets
straight n open parentheses straight S close parentheses space equals space 9
Event space open parentheses straight E close parentheses space equals space xy space less than space 9
space space space space space space space space space space space space space space space space space space space equals open curly brackets 1 comma space 2 comma space 3 comma space 4 comma space 8 close curly brackets
straight n open parentheses straight E close parentheses space equals space 5
straight P open parentheses xy space less than space straight a close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction space equals space 5 over 9
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 31

The probability that a non-leap year has 53 Sundays, is

begin mathsize 12px style open parentheses straight a close parentheses space 2 over 7
open parentheses straight b close parentheses space 5 over 7
open parentheses straight c close parentheses space 6 over 7
open parentheses straight d close parentheses space 1 over 7
end style

Solution 31

There are 365 days in a non-leap year.

52 complete weeks and 1 spare day.

so This day can be any out of 7 day of week.

Hence n(s) = 7

Now, year already have 52 Sundays. so for a total of 53 Sundays in a calendar year, this spare day must be a Sunday.

Hence n(E) = 1

begin mathsize 12px style straight P open parentheses straight E close parentheses space equals space probability space that space non space leap space year space has space 53 space sundays
space space space space space space space space space equals space 1 over 7 end style

So, the correct option is (d).Question 32

In a single throw of a pair of dice, the probability of getting the sum a perfect sqaure is

begin mathsize 12px style open parentheses straight a close parentheses space 1 over 18
open parentheses straight b close parentheses space 7 over 36
open parentheses straight c close parentheses space 1 over 6
open parentheses straight d close parentheses space 2 over 9 end style

Solution 32

We know on throwing a pair of die there are a total of 36 possible outcomes.

n(S) = sum is a perfect square

        = {(1, 3), (2, 2), (3, 1), (3, 6), (4, 5), (5, 4), (6, 3)}

n(E) = 7

begin mathsize 12px style straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction space equals space 7 over 36 end style

So, the correct option is (b).Question 33

What is the probability that a non-leap year has 53 Sundays ?

begin mathsize 12px style open parentheses straight a close parentheses space 6 over 7
open parentheses straight b close parentheses space 1 over 7
open parentheses straight c close parentheses space 5 over 7
open parentheses straight d close parentheses space None space of space these
end style

Solution 33

There are 365 days in a non-leap year.

52 complete weeks and 1 spare day.

So this day can be any out of 7 day of a week.

Hence n(s) = 7

Now, a non-leap year already has 52 Sundays. So for a total of 53 Sundays in a calendar year, this spare day must be a Sunday.

Hence n(E) = 1

begin mathsize 12px style straight P open parentheses straight E close parentheses space equals space probability space that space non space leap space year space has space 53 space sundays
space space space space space space space space space equals space 1 over 7 end style

So, the correct option is (b).Question 34

Error converting from MathML to accessible text.

Solution 34

Error converting from MathML to accessible text.

Question 35

Two dice are rolled simultaneously. The probability that they show different faces is

begin mathsize 12px style open parentheses straight a close parentheses space 2 over 3
open parentheses straight b close parentheses space 1 over 6
open parentheses straight c close parentheses space 1 third
open parentheses straight d close parentheses space 5 over 6 end style

Solution 35

begin mathsize 12px style If space two space dices space are space rolled space simultaneously space there space are space 36 space possible space outcomes.
straight n open parentheses straight S close parentheses space equals space 36
Event space open parentheses straight E close parentheses space equals space faces space show space same space number
space space space space space space space space space space space space space space space space space space space space equals space left curly bracket open parentheses 1 comma space 1 close parentheses comma space open parentheses 2 comma space 2 close parentheses comma space open parentheses 3 comma space 3 close parentheses comma space open parentheses 4 comma space 4 close parentheses comma space open parentheses 5 comma space 5 close parentheses comma space open parentheses 6 comma space 6 close parentheses right curly bracket
straight n open parentheses straight E close parentheses space equals space 6
Probability space that space faces space show space same space number space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction equals space 6 over 36 space equals space 1 over 6
Probability space that space faces space show space different equals space 1 space minus space straight P open parentheses straight E close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 space minus space 1 over 6
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 5 over 6 space space space space space space space space space space space space space space space space space space space
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 36

What is the probability that a leap year has 52 Mondays?

begin mathsize 12px style open parentheses straight a close parentheses space 2 over 7
open parentheses straight b close parentheses space 4 over 7
open parentheses straight c close parentheses space 5 over 7
open parentheses straight d close parentheses space 6 over 7 end style

Solution 36

begin mathsize 12px style straight A space leap space year space has space 366 space days space in space which space 52 space weeks space and space 2 space spare space days.
So space for space straight a space leap space year space to space have space 52 space Mondays comma space non space of space the space spare space days space can space be space straight a space Monday.
Possible space combinations space for space these space two space days
sample space space space open parentheses straight S close parentheses space equals space open curly brackets open parentheses Monday comma space Tuesday close parentheses comma space open parentheses Tuesday comma space Wednesday close parentheses comma space open parentheses Wednesday comma space Thursday close parentheses comma space open parentheses Thursday comma space Friday close parentheses comma space open parentheses Friday comma space Saturday close parentheses comma space open parentheses Saturday comma space Sunday close parentheses comma space open parentheses Sunday comma space Monday close parentheses close curly brackets
straight n open parentheses straight S close parentheses space equals space 7
Event space that space none space of space the space combinations space have space monday
straight n open parentheses straight E close parentheses space equals space 5
straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction space equals space 5 over 7
So comma space the space correct space option space is space left parenthesis straight c right parenthesis.
end style

Question 37

begin mathsize 12px style If space straight a space two space digit space number space is space chosen space at space random comma space then space the space probability space that space the space number space chosen space is space straight a space multiple space of space 3 comma space is
open parentheses straight a close parentheses space 3 over 10
open parentheses straight b close parentheses space 29 over 100
open parentheses straight c close parentheses space 1 third
open parentheses straight d close parentheses space 7 over 25 end style

Solution 37

begin mathsize 12px style two space digit space number space is space from space 10 space to space 99
Hence space straight n open parentheses straight S close parentheses space equals space 90
If space number space choosen space is space straight a space multiple space of space 3 space then space it space starts space from space 12 space to space 99 space at space an space interval space of space 3.
Hence space order space is space 12 comma space 15 comma space 18 comma space........... space 99
It space is space an space AP space with space straight a space equals space 12 space and space straight d equals space 3 comma space last space term space 99
straight a space plus space open parentheses straight r space minus space 1 close parentheses straight d space equals space 99
12 space plus space open parentheses straight r space minus space 1 close parentheses 3 space equals space 99
open parentheses straight r space minus space 1 close parentheses space 3 space equals space 87
open parentheses straight r space minus space 1 close parentheses space equals space 29
straight r space equals space 30
Hence space straight n open parentheses straight E close parentheses space equals space 30
straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction space equals space 30 over 90 space equals space 1 third
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 38

begin mathsize 12px style Two space dice space are space thrown space together. space The space probability space of space getting space the space same space number space on space both space dice space is
open parentheses straight a close parentheses space 1 half
open parentheses straight b close parentheses space 1 third
open parentheses straight c close parentheses space 1 over 6
open parentheses straight d close parentheses space 1 over 12 end style

Solution 38

begin mathsize 12px style When space we space throw space two space dice space together
straight n open parentheses straight S close parentheses space equals space 36
Event space that space both space dice space have space same space number space is
open curly brackets open parentheses 1 comma space 1 close parentheses comma space open parentheses 2 comma space 2 close parentheses comma space open parentheses 3 comma space 3 close parentheses comma space open parentheses 4 comma space 4 close parentheses comma space open parentheses 5 comma space 5 close parentheses comma space open parentheses 6 comma space 6 close parentheses close curly brackets
straight n open parentheses straight E close parentheses space equals space 6
straight P open parentheses straight E close parentheses space equals space 6 over 36 space equals space 1 over 6
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Chapter 13 – Probability Exercise 13.39

Question 39

begin mathsize 12px style In space straight a space family space of space 3 space children comma space the space probability space of space having space at space least space one space boy space is
open parentheses straight a close parentheses space 7 over 8
open parentheses straight b close parentheses space 1 over 8
open parentheses straight c close parentheses space 5 over 8
open parentheses straight d close parentheses space 3 over 4
end style

Solution 39

begin mathsize 12px style straight B space minus space Boy
straight G space minus space Girl
Possible space combinations space equals space open curly brackets BBB comma space BBG comma space BGB comma space GBB comma space BGG comma space GBG comma space GGB comma space GGG close curly brackets
straight n open parentheses straight S close parentheses space equals space 8
probability space having space at space least space one space boy space equals space 1 space minus space probability space of space having space no space boys
cases space in space which space no space boys comma space straight n open parentheses straight E close parentheses space equals space 1
Probability space of space having space no space boys space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction space equals space 1 over 8
probability space having space at space least space one space boy space equals space 1 space minus space 1 over 8
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 7 over 8
So comma space the space correct space option space is space left parenthesis straight a right parenthesis.
end style

Question 40

begin mathsize 12px style straight A space bag space contains space cards space numbered space from space 1 space to space 25. space straight A space card space is space drawn space at space random space from space the space bag. space The space probability space that space the space number space on space this space card space is space divisible space by space both space 2 space and space 3 space is
open parentheses straight a close parentheses space 1 fifth
open parentheses straight b close parentheses space 3 over 25
open parentheses straight c close parentheses space 4 over 25
open parentheses straight d close parentheses space 2 over 25 space end style

Solution 40

begin mathsize 12px style straight n open parentheses straight S close parentheses space equals space 25
numbers space which space are space divisible space by space both space 2 space and space 3 space equals space open curly brackets 6 comma space 12 comma space 18 comma space 24 close curly brackets
straight n open parentheses straight E close parentheses space equals space 4
straight P open parentheses straight E close parentheses space equals space fraction numerator straight n open parentheses straight E close parentheses over denominator straight n open parentheses straight S close parentheses end fraction
space space space space space space space space space equals space 4 over 25
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style
Read More

RD SHARMA SOLUTION CHAPTER- 11 Constructions| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 11 – Constructions Exercise Ex. 11.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Draw a line segment of length 8 cm and divide it internally in the radio 4:5.Solution 4

1. Draw segment AB of length 8 cm.

2. Draw any ray AX making acute angle ∠BAX with AB.

3. Draw BY parallel to AX by making ∠ABY = ∠BAX.

4. Mark four points A1, A2,…..,A4 on AX and five points B1, B2,…..,B5 on BY such that AA1=A1A2=…..= A3A4=BB1=B1B2=….=B4B5

5. Join A4B5; it intersects AB at P. P divides AB in the ratio 4:5. 

Chapter 11 – Constructions Exercise Ex. 11.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Construct a triangle with sides 5 cm, 6cm and 7 cm and then another triangle whose sides are   of the corresponding sides of the first triangle. Solution 5

Steps of construction

(1) Draw a line segment BC with 6 cm.

(2) Taking centres B and C and radii 5 cm and 7 cm respectively, draw two arcs (one from each centre) which intersect each other at A.

(3) Join AB and AC.

(4) At B, draw an angle CBX of any acute measure.

(5) Starting from B, cut 3 equal parts on BX such that BX1 = X1X2 = X2X3 = X3X4 = X4X5 = X5X6 = X6X7.

(6) Join X7C.

(7) Through X5, draw X5Q ‖ X7C.

(8) Through Q, draw QP ‖ CA.

∴ ∆PBQ ∼ ∆ABC.Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Construct a traingle similar to a given XYZ with its sides equal to (3/4)th of the corresponding sides of XYZ. Write the steps of construction.Solution 11

Question 12

Solution 12

Question 13

Construct a triangle with sides 5 cm, 5.5 cm and 6.5 cm. Now construct another triangle, whose sides are 3/5 times the corresponding sides of the given triangle.Solution 13

Steps of construction:

  1. Draw a line segment AB = 6.5 cm
  2. With A as the centre and radius AC = 5.5 cm, draw an arc.
  3. With B as the centre and radius BC = 5 cm, draw an arc intersecting the arc drawn in step 2 at C
  4. Join AC and BC to obtain ∆ABC.
  5. Below AB make an acute ∠BAX.
  6. Along AX, mark off five points as the sides of triangle to be 3/5th of original triangle, the sides to be divided into five equal parts. Mark A1, A2, A3, A4, A5 along AX such that AA= A1A= A2A3 = A3A4 = A4A5
  7. Join A5B.
  8. Consider three parts out of five equal parts on AX. From point A3, draw A3B’ ∥ A5B meeting AB at B’ such that ∠AA5B = ∠AA3B’.
  9. From B’, draw B’C’ ∥ BC meeting AC at C’ such that  ∠ABC = ∠AB’C’
  10. ∆AB’C’ is the required triangle, each of whose sides is 3/5th of the corresponding sides of ∆ABC

Question 14

Construct a ∆PQR with side QR = 7 cm, PQ = 6 cm and m∠PQR = 60°. Then construct another triangle whose sides are 3/5 of the corresponding sides of ∆PQR.Solution 14

Steps of construction:

  1. Draw a line segment PQ = 6 cm
  2. To construct ∠ PQR = 60°, taking Q as the centre and with an arbitrary radius draw an arc cutting PQ on S.
  3. Taking S as the centre, and the same radius, draw an arc cutting the previous arc at T. Join Q and T, extend QT further.
  4. With Q as the centre and a radius of 7 cm, draw an arc on the extended line segment QT at R.
  5. Join PR and QR to obtain ∆PQR.
  6. Below PQ make an acute angle QPX.
  7. Along PX, mark off five points as the sides of triangle to be 3/5th of original triangle, the sides to be divided into five equal parts. Mark P1, P2, P3, P4, P5 along PX, such that PP= P1P2 = P2P3 =P3P4 = P4P5.
  8. Join P5Q.
  9. Consider three parts out of the five equal parts on PX. From point P3, draw P3Q’ ∥ P5Q meeting PQ at Q’ by making ∠QP5P = ∠Q’P3P
  10. From Q’, draw Q’R’ ∥ QR by making ∠PQR = ∠ PQ’R’
  11. ∆PQ’R’ is the required triangle, each of whose sides is 3/5th of the corresponding sides of ∆PQR

Question 15

Draw a ∆ ABC in which base BC = 6cm, AB = 5 cm and ∠ABC = 60o. Then construct another triangle whose sides are  of the corresponding sides of ∆ABC.Solution 15

1. Draw ∆ABC with base BC = 6cm, AB = 5 cm and∠ABC = 60˚.

2. Draw any ray BX making acute angle ∠ABX with BC.

3. Mark four points B1, B2,B3,B4 on BY such that BB1=B1B2=B2B3=B3B4.

4. Join CB4 and draw a line parallel to CB4, through B3, to intersect AC at C’.

5. Join AC, and draw a line parallel to AC, through C’, to intersect AB at A’.

6. ∆A’BC’ is the required triangle.

Question 16

Draw a right triangle in which the sides (other than the hypotenuse) are of lengths 4 cm and 3 cm. Now, construct another triangle whose sides are times the corresponding sides of the given triangle.Solution 16

1. Draw AB = 4cm.

2. Draw RA perpendicular to AB, and mark C on it such that AC = 3 cm.

3. Join BC. DABC is the required triangle.

4. Draw any ray AX making acute angle ∠BAX with AB.

5. Mark five points A1, A2,…..,A5 on AX.

6. Join BA5, and draw a line parallel to it passing from A3, intersecting AB at B’.

7. Draw line parallel to CB through B’ to intersect AC at C’.

8. ∆AB’C’ is the required triangle.

Question 17

Construct an equilateral triangle with each side 5 cm. Then construct another triangle whose sides are 2/3 times the corresponding sides of ∆ABC.Solution 17

Steps of construction

(1) Draw a line segment BC with 5 cm.

(2) Taking centres B and C with equal radii 5 cm, draw two arcs (one from each centre) which intersect each other at A.

(3) Join AB and AC.

(4) At B, draw an angle CBX of any acute measure.

(5) Starting from B, cut 3 equal parts on BX such that BX1 = X1X2 = X2X3.

(6) Join X3C.

(7) Through X2, draw X2Q ‖ X3C.

(8) Through Q, draw QP ‖ CA.

∴ ∆PBQ ∼ ∆ABC.

Chapter 11 – Constructions Exercise Ex. 11.3

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Draw two tangents to a circle of radius 3.5 cm from a point P at a distance of 6.2cm from its centre.Solution 4

Steps of construction:

  1. Construct a line segment OP of length = 6.2 cm
  2. Taking O as the centre, construct a circle of radius3.5 cm.
  3. Taking O and P as the centres, draw arcs of circles above and below OP intersecting each other at points R and S respectively.
  4. Draw the perpendicular bisector of OP by joining A and  B. Mark the midpoint of OP as Q.
  5. Taking Q as the centre draw a circle of radius OQ or PQ and mark the points of intersection of the two circles as A and B.
  6. Join PA and extend it on both the sides.

Join PB and extend it on both the sides

PA and PB are the required tangents.

Question 5

Draw a pair of tangents to a circle of radius 4.5 cm, which are inclined to each other at an angle of 45°.Solution 5

  1. Draw a circle having a centre O and a radius of 4.5 cm.
  2. Take point P on the circle and join OP.
  3. Angle between the tangents = 45°Hence, the angle at the centre= 180° – 45° = 135° (supplement of the angle between the tangents)∴Construct m∠POQ = 135°
  4. Keeping a radius of 4.5 cm, draw arcs of circle taking the points P, and Q as the centres.
  5. Name the points of intersection of arcs and circle as A and C respectively.
  6. Taking A as the centre, and with the same radius mark B such that OA = AB.
  7. Similarly, taking C as the centre and with the same radius mark D such that OC = CD.
  8. Taking A and B as the centres and the same radius draw two arcs intersecting each other at U.
  9. Join P, S and U and extend it on both the sides to draw a tangent at point P.
  10. Taking C and D as the centres and the same radius draw two arcs intersecting each other at V.
  11. Join Q, T and V and extend it on both the sides to draw a tangent at point Q.
  12. Extended tangents at P and Q intersect at R.
  13. Hence, the required tangents are UR and VR such that the angle between them is 45°.

Question 6

Draw a right ∆ABC in which AB = 6 cm, BC = 8 cm and m∠B = 90°. Draw BD perpendicular from B on AC and draw a circle passing through the points B, C and D. Construct tangents from A to this circle.Solution 6

Steps of construction:

  1. Draw a line segment BC = 8 cm.
  2. Measure m∠B = 90˚ at point B.
  3. Taking B as the centre and a radius of 6 cm, draw an arc and hence, construct AB = 6 cm
  4. Join AC. Hence, ∆ABC right angled at B is constructed.
  5. Taking B as the centre and a radius more than BD, draw two arcs cutting AC at points E and F.
  6. Taking E and F as centres draw arcs to intersect each-other at P and Q respectively. Join and extend PQ on both the sides. This is the perpendicular BD from B on AC.
  7. BD⊥CD, hence, ∆BCD is a right angled triangle. Therefore the circle passing through points B, C and D has the hypotenuse BC as the diameter.
  8. Construct a circle by taking O, the midpoint of BC as the centre (BC is the diameter of the circle)
  9. OB ⊥ AB, extend AB on both the sides. OB is one of the tangents passing through point A and tangent at point B.
  10. Join OA. Take the centre of OA by drawing intersecting arcs from point O and A and which intersect at points R and S respectively.
  11. Join RS. The point at which RS intersects OA is G.
  12. Taking G as the centre and radius OG, construct a circle.
  13. The point of intersection of the two circles is H.
  14. Join H and A. Now extend AH on both the sides. AH is the second tangent drawn from point A.

Question 7

Draw two concentric circles of radii 3 cm and 5 cm. Construct a tangent to the smaller circle from a point on the larger circle. Also, measure its length.Solution 7

Read More

RD SHARMA SOLUTION CHAPTER- 10 Circles| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 10 – Circles Exercise Ex. 10.1

Question 1

Fill in the blanks:

(i) The common point of a tangent and the circle is called ……. .

(ii) A circle may have ……. parallel tangents.

(iii) A tangent to a circle intersects it in ……. point(s).

(iv) A line intesecting a circle in two points is called a ……. .

(v) The angle between tangent at a point on a circle and the radius through the point is ……. .Solution 1

Fill in the blanks:

(i) The common point of a tangent and the circle is called point of contact .

(ii) A circle may have two parallel tangents.

(iii) A tangent to a circle intersects it in one point(s).

(iv) A line intesecting a circle in two points is called a secant .

(v) The angle between tangent at a point on a circle and the radius through the point is 90o .Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Chapter 10 – Circles Exercise Ex. 10.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

If from any point on the common chord of two intersecting circles, tangents be drawn to the circles, prove that they are equal.Solution 4

Question 5

Solution 5

Question 6

Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle.Solution 6

Question 7

A chord PQ of a circle is parallel to the tangent drawn at a point R of the circle. Prove that R bisects the arc PRQ.Solution 7

Question 8

Prove that a diameter AB of a circle bisects all those chords which are parallel to the tangent at the point A.Solution 8

Question 9

If AB, AC, PQ are tangents in Fig. 8.56 and AB = 5 cm, find the perimeter of ΔAPQ.

Solution 9

Question 10

Solution 10

Question 11

In Fig., PQ is tangent at a point R of the circle with centre O. If ∠TRQ = 30°, find m∠PRS.

Solution 11

Question 12

Solution 12

Question 13

In a right triangle ABC in which ∠B =90°, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P. Prove that the tangent to the circle at P bisects BC. Solution 13

Question 14

From an external point P, tangents PA and PB are drawn to a circle with centre O. At one point E on the circle tangent is drawn, which intersects PA and PB at C and D respectively. If PA = 14 cm, find the perimeter of Δ PCD.Solution 14

Question 15

In fig., ABC is a right triangle right-angled at B such that BC = 6 cm and AB = 8 cm. Find the radius of its incirde.

Solution 15

Question 16

Prove that the tangent drawn at the mid-point an arc of a circle is parallel to the chord joining the end points of the arc.Solution 16

Question 17

Solution 17

Question 18

Two tangent segments PA and PB are drawn to a circle with centre O such that APB = 120o. Prove that OP = 2 AP.Solution 18

Question 19

Solution 19

Question 20

AB is a diameter and AC is a chord of a circle with centre O such that ∠BAC = 30°. The tangent at C intersects AB at a point D. Prove that BC =BDSolution 20

Question 21

In fig., a circle touches all the four sides of a quadrilateral ABCD with AB = 6 cm, BC = 7 cm and CD = 4 cm. Find AD.

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

A is a point at a distance 13 cm from the centre O of a circle of radius 5 cm. AP and AQ are the tangents to the circle at P and Q. If a tangent BC is drawn at a point R lying on the minor arc PQ to intersect AP at B and AQ at C, find the perimeter of the ∆ABC.Solution 24

AP = AQ , BP = PR and CR = CQ (tangents from an external point)

Perimeter of ∆ABC = AB + BR + RC + CA

= AB + BP + CQ + CA

= AP + AQ

= 2AP

∆APO is a right-angled triangle. AO2 = AP2 + PO2

132 = AP2 + 52

AP2 = 144

AP = 12

∴ Perimeter of ∆ABC = 24 cmQuestion 25

In Fig., a circle is inscribed in a quadrilateral ABCD in which ∠B= 90°. If AD=23 cm, AB =29 cm and DS =5 cm, find the radius r of the circle.

Solution 25

Question 26

In Fig., there are two concentric circles with centre O of radii 5 cm and 3 cm. From an external point P, tangents PA and PB are drawn to these circles. If AP = 12 cm, find the length of BP.

Solution 26

Question 27

In Fig., AB is a chord of length 16 cm of a circle of radius 10 cm. The tangents at A and B intersect at a point P. Find the length of PA.

Solution 27

Question 28

In Fig., PA and PB are tangents from an external point P to a circle with centre O. LN touches the circle at M. Prove that PL + LM = PN + MN.

Solution 28

Question 29

In Fig., BDC is a tangent to the given circle at point D such that BD = 30 cm and CD = 7 cm. The other tangents BE and CF are drawn respectively from B and C to the Calculate (i) AF (ii) radius of the circle.

Solution 29

Question 30

Solution 30

Question 31

In the given figure, tangents PQ and PR are drawn from an external point P to a circle with centre O, such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ. Find ∠RQS.

Solution 31

Since RS is drawn parallel to the tangent PQ,

∠SRQ = ∠PQR

Also, PQ = PR

⇒ ∠PQR = ∠PRQ

In ∆PQR,

∠PQR + ∠PRQ + ∠QPR = 180°

⇒∠PQR + ∠PQR + 30° = 180°

⇒2∠PQR = 150°

⇒∠PQR = 75°

⇒∠SRQ =∠PQR = 75° (alternate angles)

Also, ∠RSQ =∠RQP = 75° (the angle between a tangent and a chord through the point of contact is equal to an angle in the alternate segment.)

In ∆RSQ,

∠RSQ + ∠SRQ + ∠RQS = 180°

⇒75° + 75° + ∠RQS = 180°

⇒ ∠RQS =30° Question 32

From an external point P, tangents PA = PB are drawn to a circle with centre O. If ∠PAB = 50°, then find ∠AOB.Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

The common tangents AB and CD to two circles with centres O and O’ intersect at E between their centres. Prove that the points O, E and O’ are collinear.Solution 35

Question 36

In Fig, common tangents PQ and RS to two circles intersects at A. Prove that PQ = RS.

Solution 36

Question 37

Two concentric circles are of diameters 30 cm and 18 cm. Find the length of the chord of the larger circle which touches the smaller circle.Solution 37

Since AC is the tangent to the circle with radius 9 cm, we have OB ⊥ AC.

Hence, by applying the Pythagoras Theorem, we have,

OA2 = OB2 + AB2

⇒ 152 = 92 + AB2

⇒ AB2 = 152 – 92

⇒ AB2 = 225 – 81 = 144

∴ AB = 12 cm

We know that the perpendicular drawn from the centre of a circle to any chord of the circle bisects the chord.

Here, OB is the perpendicular and AC is the length of the chord of the circle with radius 15 cm.

So,

AC = 2 × AB = 2 × 12 = 24 cm

Length of the chord of the larger circle which touches the smaller circle = 24 cm.Question 38

AB and CD are common tangents to two circles of equal radii. Prove that AB =CD.Solution 38

Question 39

A triangle PQR is drawn to circumscribe a circle of radius 8 cm such that the segments QT and TR, into which QR is divided by the point of contact T, are of lengths 14 cm and 16 cm respectively. If area of ∆ PQR is 336 cm2, find the sides PQ and PR.Solution 39

Let PA = PB = x

Tangents drawn from an external point are equal in length. QB = QT = 14 cm , RA = RT = 16 cm

PR = (x + 16) cm, PQ = (x + 14)cm,

QR = 30 cm

= x + 30

Area of ∆PQR

Area of ∆PQR = 336 cm2

Side PR = (12 + 16) = 28 cm

Side PQ = (12 + 14) = 26 cmQuestion 40

In Fig., the tangent at a point C of a circle and a diameter AB when extended intersect at P. If ∠PCA =110°, find ∠CBA.

Solution 40

Question 41

AB is a chord of a circle with centre O, AOC is a diameter and AT is the tangent at A as shown in figure. Prove that ∠BAT = ∠ACB.

Solution 41

Question 42

In the given figure, a ∆ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC are of lengths 8 cm and 6 cm respectively. Find the lengths of sides AB and AC, when area of ∆ ABC is 84 cm2.

Solution 42

Let M and N be the points where AB and AC touch the circle respectively.

Tangents drawn from an external point to a circle are equal

⇒ AM=AN

BD=BM=8 cm and DC=NC=6 cm

Question 43

In the given figure, AB is a diameter of a circle with centre O and AT is a tangent. If ∠AOQ = 58°, find ∠ATQ.

Solution 43

∠AOQ=58° (given)

In right ∆BAT,

∠ABT + ∠BAT + ∠ATB=180°

29° + 90° + ∠ATB=180° 

∠ATB = 61° 

that is, ∠ATQ = 61° Question 44

In Fig., OQ : PQ = 3 : 4 and perimeter of ΔPOQ = 60 cm. Determine PQ, QR and OP.

Solution 44

Question 45

Solution 45

Question 46

In Fig., BC is a tangent to the circle with centre O. OE bisects AP. Prove that ∆AEO ~ ∆ABC Solution 46

In ∆AOP,

OA = OP (radii) ∆AOP is an isosceles triangle. OE is a median.

In an isosceles triangle,the median drawn∴∠OEA = 90o

In ∆AOE and ∆ABC,

∠ABC = ∠OEA = 90o

∠A is common.

∆AEO ~ ∆ABC…(AA test)Question 47

In fig., PO ⊥ QO . The tangents to the circle at P and Q intersect at a point T. Prove that PQ and OT are right bisectors of each other.

Solution 47

Question 48

In fig., O is the centre of the circle and BCD is tangent to it at C. Prove that BAC + ACD = 90o.

Solution 48

Question 49

Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.Solution 49

Question 50

In Fig., there are two concentric circles with centre O. PRT and PQS are tangents to the inner circle from a point P lying on the outer circle. If PR = 5 cm, find the length of PS.

Solution 50

PR = PQ…(tangents fromexternal points)

PQ = 5 cm

Also,

OQ is perpendicular to PS …(tangent is perpendicular to the radius)

Now, in a circle,a perpendicular drawn from the centre of a circle bisects the chord.

So, OQ bisects PS.

PQ = QS

QS = 5 cm

PS = 10 cmQuestion 51

In Fig., PQ is a tangent from an external point P to a circle with centre O and OP cuts the circle at T and QOR is a diameter. If ∠POR = 130˚ and S is a point on the circle, find ∠1 + ∠2.

Solution 51

In DPQR,

∠POR is an external angle.

So,

∠POR = ∠PQO + ∠OPQ

Now, PQ is tangent to the circle with radius OQ.

∠PQO = 90o

130˚ = 90˚ + ∠OPQ

∠OPQ = 40o

∠1 = 40o

Now,

Minor arc RT subtends a 130˚ angle at the centre.

So, it will subtend a 65˚angle at any other point on the circle.∠RST = 65˚

∠2 = 65˚

∠1 + ∠2 =105˚Question 52

In Fig., PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If PA = 12 cm, QC = QD = 3 cm, then find PC + PD.

Solution 52

AP = PB = 12 cm, AC = CQ = 3 cm and QD = DB = 3 cm …(tangent from external point)

PA = 12 cm, PC + CA = 12

PC + 3 = 12

PC= 9 …(i)

Now,

PB = 12

PD + DB = 12

PD + 3 = 12

PD = 9 …(ii)

PC + PD = 18 cm…from (i) and (ii)

Chapter 10 – Circles Exercise 10.48

Question 1

A tangent PQ at a point P of a circle of radius 5 cm meets line through the centre O at a point Q such that OQ = 12 cm. Length PQ is

(a) 12 cm

(b) 13 cm

(c) 8.5 cm

(d) begin mathsize 12px style square root of 119 cm end styleSolution 1

radius = 5 cm

So, OP = 5 cm

OQ = 12 cm

begin mathsize 12px style so space in space triangle space OPQ
OP squared space plus space PQ squared space equals space OQ squared
PQ squared space equals space OQ squared space minus space OP squared
space space space space space space space space space space equals space 12 squared space minus space 5 squared
space space space space space space space space space space equals space 119
PQ space equals space square root of 119 end style

So, the correct option is (d).Question 2

From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is

(a) 7 cm

(b) 12 cm

(c) 15 cm

(d) 24.5 cmSolution 2

PQ is a tangent to the circle

So, OP+ PQ2 = OQ2

OP= OQ– PQ2

      = (25)– (24)2

      = 49

OP = 7

So, the correct option is (a).Question 3

The length of tangent from point A at a circle, of radius 3 cm, is 4 cm. The distance of A from the centre of the circle is

(a) begin mathsize 12px style square root of 7 space cm end style

(b) 7 cm

(c) 5 cm

(d) 25 cmSolution 3

Given OP = 3 cm

         PA = 4 cm

Hence, OA= OP2 + PA2

OA2 = 3+ 42

      = 25

OA = 5 cm

So, the correct option is (c).Question 4

begin mathsize 12px style If space tangents space PA space and space PB space from space straight a space point space straight P space to space straight a space circle space with space centre space straight O space are space inclined space to space each space other space at space an space angle space of space 80 degree space then space angle POA space is space equal space to
left parenthesis straight a right parenthesis space 50 degree
open parentheses straight b close parentheses space 60 degree
open parentheses straight c close parentheses space 70 degree
open parentheses straight d close parentheses space 80 degree end style

Solution 4

begin mathsize 12px style We space know space tangents space from space same space point space to space circle space are space inclined space at space same space angle.
Hnece space angle APO space equals space angle BPO
space space space space space space space space space space space space space angle APO space equals space 1 half angle straight P
space space space space space space space space space space space space space space angle APO space equals space 40 degree
In space triangle OAP
angle straight A space plus space angle POA space plus space angle APO space equals space 180 degree
space space space space space space space space space space space space space angle POA space equals space 180 degree space minus space 90 degree space minus space 40 degree
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 50 degree
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Chapter 10 – Circles Exercise 10.49

Question 5

begin mathsize 12px style If space TP space and space TQ space are space two space tangents space to space straight a space circle space with space centre space straight O space so space that space angle POQ space equals space 110 degree comma space then comma space angle PTQ space is space equal space to
open parentheses straight a close parentheses space 60 degree
open parentheses straight b close parentheses space 70 degree
open parentheses straight c close parentheses space 80 degree
open parentheses straight d close parentheses space 90 degree end style

Solution 5

begin mathsize 12px style PTQO space is space straight a space quadrilateral space sum space of space all space angles space equals space 360 degree
angle straight P space plus space angle straight Q space plus space angle POQ space plus space angle PTQ space equals space 360 degree
90 degree space plus space 90 degree space plus space 110 degree space plus space angle PTQ space equals space 360 degree
angle PTQ space plus space 290 degree space equals space 360 degree
angle PTQ space equals space 70 degree
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 6

begin mathsize 12px style PQ space is space straight a space tangent space to space straight a space circle space with space centre space straight O space at space the space point space straight P. space If space triangle OPQ space is space an space isosceles space triangle comma space then space angle OQP space is space equal space to
open parentheses straight a close parentheses space 30 degree
open parentheses straight b close parentheses space 45 degree
open parentheses straight c close parentheses space 60 degree
open parentheses straight d close parentheses space 90 degree end style

Solution 6

begin mathsize 12px style triangle OPQ space is space an space isoceles space triangle
so comma space OP space equals space PQ
and space angle straight P space equals space 90 degree
and space angle straight O space equals space angle straight Q
also space angle straight P space plus space angle straight O space plus space angle straight Q space equals space 180 degree
2 angle straight Q space equals space 180 degree space minus space 90 degree
angle straight Q space equals space 45 degree
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 7

begin mathsize 12px style Two space equal space circles space touch space each space other space externally space at space straight C space and space AB space is space straight a space common space tangent space to space the space circles. space Then comma space angle ACB space equals
left parenthesis straight a right parenthesis space 60 degree
left parenthesis straight b right parenthesis space 45 degree
left parenthesis straight c right parenthesis space 30 degree
left parenthesis straight d right parenthesis space 90 degree end style

Solution 7

begin mathsize 12px style AO subscript 1 space equals space straight O subscript 1 straight C space and space straight O subscript 2 straight B space equals space CO subscript 2
so space angle CBO subscript 2 space equals space angle BCO subscript 2 space equals space 45 degree space space space space.... open parentheses 1 close parentheses
and space angle CAO subscript 1 space equals space angle straight O subscript 1 CA space equals space 45 degree space space space.... open parentheses 2 close parentheses
also space angle straight O subscript 1 CO subscript 2 space equals space 180 degree space space space space space space space space space space space..... open parentheses 3 close parentheses
so space from space open parentheses 1 close parentheses comma space open parentheses 2 close parentheses comma space open parentheses 3 close parentheses
angle straight O subscript 1 CA space plus space angle straight O subscript 2 CB space plus space angle ACB space equals space 180 degree
45 degree space plus space 45 degree space plus space angle ACB space equals space 180 degree
angle ACB space equals space 90 degree
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 8

begin mathsize 12px style ABC space is space straight a space right space angled space triangled comma space right space angled space at space straight B space such space that space BC space equals space 6 space cm space and space AB space equals space 8 space cm. space straight A space circle space with space centre space straight O space is space inscribed space in space triangle ABC. space The space radius space of space the space circle space is
open parentheses straight a close parentheses space 1 space cm
open parentheses straight b close parentheses space 2 space cm
open parentheses straight c close parentheses space 3 space cm
open parentheses straight d close parentheses space 4 space cm end style

Solution 8

Tangents from same point to circle have equal length.

Hence Bb = Ba

          bC = Cc

          Ac = Aa

Let Ba = x    then Bb = x

bc = 6 – x     and Aa = 8 – x

and Cc = 6 – x and Ac = 8 – x

So AC = AC + cC

         = 6 – x + 8 – x

AC = 14 – 2x       ……(1)

Also AC= AB+ BC2

             = 82 + 6

             = 100

AC = 10    …..(2)

from (1) & (2)

14 – 2x = 10

4 = 2x

x = 2           also aB = Ob = radius = 2 cm

So, the correct option is (b).Question 9

begin mathsize 12px style PQ space is space straight a space tangent space drawn space from space point space straight P space to space straight a space circle space with space centre space straight O space and space QOR space is space straight a space diameter space of space the space circle space such space that space angle POR space equals space 120 degree comma space then space angle OPQ space is
open parentheses straight a close parentheses space 60 degree
open parentheses straight b close parentheses space 45 degree
left parenthesis straight c right parenthesis space 30 degree
open parentheses straight d close parentheses space 90 degree space end style

Solution 9

begin mathsize 12px style angle POR space equals space 120 degree
so space angle POQ space equals space 180 degree space minus space angle POR
space space space space space space space space space space space space space space space space space space space space equals space 60 degree
angle OPQ space plus space angle straight Q space plus space angle POQ space equals space 180 degree
angle OPQ space plus space 90 degree space plus space 60 degree space equals space 180 degree
angle OPQ space equals space 30 degree
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 10

If four sides of a quadrilateral ABCD are tangential to a circle, then

(a) AC + AD = BD + CD

(b) AB + CD = BC + AD

(c) AB + CD = AC + BC

(d) AC + AD = BC + DBSolution 10

Tangents from same point are of equal length.

AP = AS, PB = BQ

QC = CR, RD = DS

AB = AP + PB      …..(1)

BC = BQ + QC   ……(2)

CD = CR + RD   …..(3)

AD = AS + DS …..(4)

Adding (1) & (3)

AB + CD = AP + BP + CR + RD

            = AS + BQ + CQ + DS

            = (AS + DS) + (BQ + CQ)

from (2) & (4)

AB + CD = AD + BC

So, the correct option is (b).Question 11

The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm is

(a) begin mathsize 12px style square root of 7 cm end style

(b) begin mathsize 12px style 2 square root of 7 cm end style

(c) 10 cm

(d) 5 cmSolution 11

Given OQ = 8 cm

         OP = 6 cm

OP+ PQ2 = OQ2

6+ PQ2 = 82

       PQ= 64 – 36

             = 28

PQ = begin mathsize 12px style 2 square root of 7 end style

So, the correct option is (b).Question 12

AB and CD are two common tangents to circles which touch each other at C. If D lies on AB such that CD = 4 cm, then AB is equal to

(a) 4 cm

(b) 6 cm

(c) 8 cm

(d) 12 cmSolution 12

DA and DC are tangents to circle from same point

so, DA = DC ……(1)

similarly DB = DC   ……(2)

(1) + (2)

2DC = DA + DB

2DC = AB

AB = 2 × 4

     = 8 cm

So, the correct option is (c).Question 13

In Figure, if AD, AE and BC are tangents to the circle at D, E and F respectively. Then,

(a) AD = AB + BC + CA

(b) 2AD = AB + BC + CA

(c) 3AD = AB + BC + CA

(d) 4AD = AB + BC + CASolution 13

AD = AE        …….(1)

CD = CF    ……(2)

BF = BE   …..(3)

from (1)

2AD = 2AE

       = AE + AD

       = (AB + BE) + (AC + CD)

       = AB + BF + AC + CF

       = AB + AC + BC

So, the correct option is (b).Question 14

In figure, RQ is a tangent to the circle with centre O. If SQ = 6 cm and QR = 4 cm, then OR = 

(a) 8 cm

(b) 3 cm

(c) 2.5 cm

(d) 5 cmSolution 14

begin mathsize 12px style SQ space is space diameter
and space SQ space equals space 6 space cm
so space OQ space equals space SQ over 2 space equals space 3 space cm
and space QR equals space 4 space cm
OR squared space equals space OQ squared space plus space QR squared
space space space space space space space space space space equals space 4 squared space plus space 3 squared
space space space space space space space space space space equals space 25
OR space equals space 5 space cm
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Chapter 10 – Circles Exercise 10.50

Question 15

begin mathsize 12px style In space figure comma space the space perimeter space of space triangle ABC space is
open parentheses straight a close parentheses space 30 space cm
left parenthesis straight b right parenthesis space 60 space cm
left parenthesis straight c right parenthesis space 45 space cm
left parenthesis straight d right parenthesis space 15 space cm end style

Solution 15

begin mathsize 12px style AQ space equals space 4 space cm space space
PC space equals space 5 space cm space space
BR space equals space 6 space cm space space
AQ space and space AR space are space tangent space to space circle space from space same space point. space space
Hence space AQ space equals space AR space equals space 4 space cm space space space..... left parenthesis 1 right parenthesis space space
similarly space space BR space equals space BP space equals space 6 space cm space space space space space..... left parenthesis 2 right parenthesis space space
and space PC space equals space CQ space equals space 5 space cm space space space space...... left parenthesis 3 right parenthesis space space
perimeter space of space triangle ABC space equals space AB space plus space BC space plus space CA
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space left parenthesis AR space plus space RB right parenthesis space plus space left parenthesis BP space plus space PC right parenthesis space plus space open parentheses CQ space plus space QA close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses AQ space plus space AR close parentheses space plus space open parentheses RB space plus space BP close parentheses space plus space open parentheses CP space plus space CQ close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses 4 space plus space 4 close parentheses space plus space open parentheses 6 space plus space 6 close parentheses space plus space open parentheses 5 space plus space 5 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 8 space plus space 12 space plus space 10
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 30 space cm
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 16

begin mathsize 12px style In space figure comma space AP space is space straight a space tangent space to space the space circle space with space centre space straight O space such space that space OP space equals space 4 space cm space and space angle OPA space equals space 30 degree. space Then comma space AP space equals
open parentheses straight a close parentheses space 2 square root of 2 space cm
open parentheses straight b close parentheses space 2 space cm
open parentheses straight c close parentheses space 2 square root of 3 space cm
open parentheses straight d close parentheses space 3 square root of 2 space cm end style

Solution 16

begin mathsize 12px style OP space equals space 4 space cm
AP space is space tangent space to space circle
So space OA space perpendicular space AP
In space triangle OAB
cos space 30 degree space equals space AP over OP
AP space equals space OP space cos space 30 degree
space space space space space space space equals space 4 space cross times space fraction numerator square root of 3 over denominator 2 end fraction
space space space space space space space equals space 2 square root of 3 space cm
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 17

AP and PQ are tangents drawn from a point A to a circle with centre O and radius 9 cm. If OA = 15 cm, then AP + AQ =

(a) 12 cm

(b) 18 cm

(c) 24 cm

(d) 36 cmSolution 17

AP = PQ    ….(1)

and OA= OP + PA2

      (15)= (9)+ AP2

       AP= 225 – 81

             = 144

       AP = 12

AP + AQ = 2AP

             = 24 cm

So, the correct option is (c).Question 18

At one end of a diameter PQ of a circle of radius 5 cm, tangent XPY is drawn to the circle. The length of chord AB parallel to XY and at a distance of 8 cm from P is

(a) 5 cm

(b) 6 cm

(c) 7 cm

(d) 8 cmSolution 18

begin mathsize 12px style radius space equals space 5 space cm
OP space perpendicular space XY space and space XY space parallel to space AB
so space OQ space perpendicular space AB
and space PE space equals space 8 space cm
also space AB space equals space AE space plus space EB
space space space space space space space space space space space space space space space space equals space 2 AE space space space space space space space space space space space space space space space space space space open curly brackets AE space equals space EB close curly brackets
PE space equals space 8 space cm
OP space equals space 5 space cm
OE space equals space 3 space cm space and space OA space equals space 5 space cm
OA squared space equals space OE squared space plus space AE squared
AE squared space equals space 5 squared space minus space 3 squared space space space space rightwards double arrow space AE space equals space 4 space cm
Hence space AB space equals space 8 space cm
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 19

begin mathsize 12px style If space PT space is space tangent space drawn space from space straight a space point space straight P space to space straight a space circle space touching space it space at space straight T space and space straight O space is space the space centre space of space the space circle comma space then space angle OPT space plus space angle POT space equals
open parentheses straight a close parentheses space 30 degree
open parentheses straight b close parentheses space 60 degree
open parentheses straight c close parentheses space 90 degree
open parentheses straight d close parentheses space 180 degree end style

Solution 19

begin mathsize 12px style In space triangle OPT
angle POT space plus space angle OPT space plus space angle straight T space equals space 180 degree
angle POT space plus space angle OPT space equals space 180 degree space minus space angle straight T
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 180 degree space minus space 90 degree
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 90 degree
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Chapter 10 – Circles Exercise 10.51

Question 20

In the adjacent figure, if AB = 12 cm, BC = 8 cm and AC = 10 cm, then AD =

(a) 5 cm

(b) 4 cm

(c) 6 cm

(d) 7 cmSolution 20

AB = 12 cm

BC = 8 cm

AC = 10 cm

Let AD = x  

      AF = x

     BD = 12 – x

and BE = BD = 12 – x

CE = BC – BE

     = 8 – (12 – x)

     = x – 4

and CE = CF = x – 4

AC = AF + FC

     = x + x – 4

AC = 2x – 4

Given, AC = 10 cm

so 2x – 4 = 10

2x = 14

x = 7 cm

AD = 7 cm

So, the correct option is (d).Question 21

In figure, if AP = PB, then

(a) AC = AB

(b) AC = BC

(c) AQ = QC

(d) AB = BCSolution 21

AP = BP     given

and AP = AQ

also BP = BR

from this, we conclude that

AQ = BR     …..(1)

We know CR = CQ    …..(2)

from (1) & (2)

AQ + CR = BR + CR

AQ + CQ = BR + CR

AC = BC

So, the correct option is (b).Question 22

In figure, if AP = 10 cm, then BP = 

begin mathsize 12px style open parentheses straight a close parentheses space square root of 91 space cm
open parentheses straight b close parentheses space square root of 127 space cm
open parentheses straight c close parentheses space square root of 119 space cm
open parentheses straight d close parentheses space square root of 109 space cm end style

Solution 22

AP = 10 cm

AO = 6 cm

OB = 3 cm

AP2 + OA= OP2

OP= 102 + 62

OP= 136

Also OB+ BP2 = OP

        32 + BP= 136

        BP2 = 136 – 9

begin mathsize 12px style BP space equals space square root of 127 end style

So, the correct option is (b).Question 23

begin mathsize 12px style In space Figure comma space if space PR space is space tangent space to space the space circle space at space straight P space and space straight Q space is space the space centre space of space the space circle comma space then space angle POQ space equals
open parentheses straight a close parentheses space 110 degree
open parentheses straight b close parentheses space 100 degree
open parentheses straight c close parentheses space 120 degree
open parentheses straight d close parentheses space 90 degree end style

Solution 23

begin mathsize 12px style angle RPO space equals space 90 degree
given space angle RPQ space equals space 60 degree
so space angle QPO space equals space angle RPO space minus space angle RPQ
space space space space space space space space space space space space space space space space space space space space space equals space 90 degree space minus space 60 degree
space space space space space space space space space space space space space space space space space space space space space equals space 30 degree
In space triangle OPQ comma space OP comma space is space equal space to space OQ
Hence space angle OPQ space equals space angle OQP... left parenthesis since space OP space equals space OQ space which space are space radii space of space the space same space circle right parenthesis
space space space space space space space space space space space space space angle OPQ space equals space angle OQP space equals space 30 degree
In space triangle OPQ
angle straight O space plus space angle OPQ space plus space angle OQP space equals space 180 degree
angle POQ space equals space 180 degree space minus space 30 degree space minus space 30 degree
space space space space space space space space space space space space space space space equals space 120 degree
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Chapter 10 – Circles Exercise 10.52

Question 24

In Figure, if quadrilateral PQRS circumscribes a circle, then PD + QB =

(a) PQ

(b) QR

(c) PR

(d) PSSolution 24

PA = PD

AQ = QB

and PQ = PA + AQ

PQ = PD + QB

Hence PD + QB = PQ

So, the correct option is (a).Question 25

In figure, two equal circles touch each other at T, if QP = 4.5 cm, then QR = 

(a) 9 cm

(b) 18 cm

(c) 15 cm

(d) 13.5 cmSolution 25

PQ = PT     …..(1)

and PT = PR     …..(2)

so from (1) & (2)

PQ = PR

PQ = PR = 4.5 cm

QR = PQ + PR

     = 4.5 + 4.5 = 9 cm

So, the correct option is (a).Question 26

begin mathsize 12px style In space Figure comma space APB space is space straight a space tangent space to space straight a space circle space with space centre space straight O space at space point space straight P. space If space angle QPB space equals space 50 degree comma space then space the space measure space of space angle POQ space is
left parenthesis straight a right parenthesis space 100 degree
left parenthesis straight b right parenthesis space 120 degree
left parenthesis straight c right parenthesis space 140 degree
open parentheses straight d close parentheses space 150 degree end style

Solution 26

begin mathsize 12px style APB space is space tangent
so space OP space perpendicular space APB
Hence space angle OPB space equals space 90 degree
angle OPQ space equals space 90 degree space minus space 50 degree
space space space space space space space space space space space space space space space equals space 40 degree
In space triangle OPQ
OP space equals space OQ
Hence space angle OPQ space equals space angle OQP space equals space 40 degree
so space angle POQ space equals space 180 degree space minus space angle OPQ space minus space angle OQP
space space space space space space space space space space space space space space space space space space space space space equals space 180 degree space minus space 40 degree space minus space 40 degree
space space space space space space space space space space space space space space space space space space space space space equals space 100 degree
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 27

begin mathsize 12px style In space figure comma space if space tangents space PA space and space PB space are space drawn space to space straight a space circle space such space that space angle APB space equals space 30 degree space and space chord space AC space is space drawn space parallel space to space the space tangent space PB comma space then space angle ABC space equals
open parentheses straight a close parentheses space 60 degree
open parentheses straight b close parentheses space 90 degree
open parentheses straight c close parentheses space 30 degree
open parentheses straight d close parentheses space None space of space these end style

Solution 27

begin mathsize 12px style AC space parallel to space PB
and space PA space equals space PB
In space triangle PAB comma
angle PAB space equals space angle PBA
angle PAB space plus space angle PBA space plus space angle APB space equals space 180 degree
angle PAB space equals space 75 degree
AC space parallel to space BP
By space alternative space interior space angle space property
angle CAB space equals space angle ABP space equals space 75 degree
OB space perpendicular space BP comma
Hence space angle OBA space equals space angle OBP space minus space angle ABP
space space space space space space space space space space space space space space space angle OBA space equals space angle OAB space equals space 15 degree
so space angle AOB space equals space 180 degree space minus space angle OAB space minus space angle OBA space equals space 150 degree
We space also space know space that space the space angle space made space by space any space chord space at space the space centre space is space twice space the space angle space made space by space same space chord space on space the space space circle.
Hence space angle AOB space equals space 2 angle ACB
space space space space space space space space space space space space space space space angle ACB space equals space 1 half cross times 150 degree
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 75 degree
In space triangle ABC comma space angle ACB space equals space 75 degree space and space angle CAB space equals space 75 degree
angle ABC space equals space 180 degree space minus space angle ACB space minus space angle CAB
space space space space space space space space space space space space space equals space 30 degree
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Chapter 10 – Circles Exercise 10.53

Question 28

In figure, PR =

(a) 20 cm

(b) 26 cm

(c) 24 cm

(d) 28 cmSolution 28

radius of circle 1 = 3 cm

radius of circle 2 = 5  cm

OP= OQ+ QP        and    O’S+ SR2 = O’R

OP= 4+ 32                         O’R= 5+ 122     

      = 16 + 9                          O’R2 = 169                       

      = 25                                O’R’ = 13 cm

OP = 5 cm

OO’ = OK + KO’

       = 3 + 5

       = 8 cm

PR = PO + OK + KO’ + O’R

     = 5 + 3 + 5 + 13

     = 26 cm

So, the correct option is (b).Question 29

begin mathsize 12px style Two space circles space of space same space radii space straight r space and space centres space straight O space and space straight O apostrophe space touch space each space other space at space straight P space as space shown space in space figure. space If space OO apostrophe space is space produced space to space meet space the space circle space straight C open parentheses straight O apostrophe comma space straight r close parentheses space at space straight A space and space AT space is space straight a space tangent space to space the space circle space straight C left parenthesis straight O comma space straight r right parenthesis space such space that space straight O apostrophe straight Q space perpendicular space AT. space Then space AO space colon space AO apostrophe space equals
open parentheses straight a close parentheses space 3 divided by 2
open parentheses straight b close parentheses space 2
open parentheses straight c close parentheses space 3
open parentheses straight d close parentheses space 1 divided by 4 end style

Solution 29

begin mathsize 12px style AO space equals space AO apostrophe space plus space straight O apostrophe straight P space plus space PO
space space space space space space space space equals space straight r space plus space straight r space plus space straight r
space space space space space space space space equals space 3 straight r
AO apostrophe space equals space straight r
AO space colon space AO apostrophe space equals space fraction numerator 3 straight r over denominator straight r end fraction space equals space 3 space
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 30

Two concentric circles of radii 3 cm and 5 cm are given. Then length of chord BC which touches the inner circle at P is equal to

(a) 4 cm

(b) 6 cm

(c) 8 cm

(d) 10 cmSolution 30

OB = OC = OA = 5 cm

OQ = OP = 3 cm

OB= OQ+ BQ2

BQ2 = OB– OQ2

      = 5– 32

      = 16

BQ = 4 cm

also BQ = BP

BP = 4 cm

In ΔOPC,

OP2 + PC2 = OC2

PC = OC2 – OP2

       = 5– 32

       = 16

PC = 4 cm

BC = BP + PC = 4 + 4 = 8 cm

So, the correct option is (c).Question 31

In figure, there are two concentric circles with centre O. PR and PQS are tangents to the inner circle from point plying on the outer circle. If PR = 7.5 cm, then PS is equal to

(a) 10 cm

(b) 12 cm

(c) 15 cm

(d) 18 cmSolution 31

Given PR = 7.5 cm

so PR = PQ

PQ = 7.5 cm

PS is the chord to the larger circle. We know that, perpendicular drawn from centre bisect the chords.

Hence PQ = QS

PS = PQ + QS

     = 2PQ

     = 2 × 7.5

     = 15 cm

So, the correct option is (c).

Chapter 10 – Circles Exercise 10.54

Question 32

In figure, if AB = 8 cm and PE = 3 cm, then AE = 

(a) 11 cm

(b) 7 cm

(c) 5 cm

(d) 3 cmSolution 32

AC = AB      …..(1)

BD = DP     ……(2)

PE = EC    ……(3)

AB = 8 so AC = 8 cm

PE = 3 so EC = 3 cm

AE = AC – EC = 8 – 3 = 5 cm

So, the correct option is (c).Question 33

begin mathsize 12px style In space figure comma space PQ space and space PR space are space tangents space drawn space from space straight P space to space straight a space circle space with space centre space straight O. space If space angle OPQ space equals space 35 degree comma space then
open parentheses straight a close parentheses space straight a space equals space 30 degree comma space straight b space equals space 60 degree
left parenthesis straight b right parenthesis space straight a space equals space 35 degree comma space straight b space equals space 55 degree
open parentheses straight c close parentheses space straight a space equals space 40 degree comma space straight b space equals space 50 degree
open parentheses straight d close parentheses space straight a space equals space 45 degree comma space straight b space equals space 45 degree end style

Solution 33

begin mathsize 12px style In space triangle space OPQ
angle OQP space equals space 90 degree
angle OPQ space equals space 35 degree
also comma space angle OQP space plus space angle OPQ space plus space straight b space equals space 180 degree
straight b space equals space 180 degree space minus space 90 degree space minus space 35 degree
space space space space equals space 55 degree
We space also space know comma space that space if space two space tangent space are space drawn space from space same space point space to space circle comma space touches space at space straight Q comma space straight R space then space angle QPR space is space bisected space by space OP.
Hence space angle OPQ space equals space angle OPR
space space space space space space space space space space space space space space space space space space space space 35 degree space equals space straight a
straight a space equals space 35 degree space and space straight b space equals space 55 degree
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 34

begin mathsize 12px style In space figure comma space if space TP space and space TQ space are space tangents space drawn space from space an space external space point space straight T space to space straight a space circle space with space centre space straight O space such space that space angle TQ straight P space equals space 60 degree comma space then space angle OPQ space equals
open parentheses straight a close parentheses space 25 degree
open parentheses straight b close parentheses space 30 degree
open parentheses straight c close parentheses space 40 degree
open parentheses straight d close parentheses space 60 degree end style

Solution 34

begin mathsize 12px style angle OQT space equals space 90 degree space as space OQ space perpendicular space to space TQ
given space angle PQT space equals space 60 degree
Hence space angle OQP space equals space angle OQT space minus space angle PQT
space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 30 degree
increment OQP space is space isoceles space with space OP space equals space OQ
Hence comma space angle OQP space equals space angle OPQ space equals space 30 degree
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Chapter 10 – Circles Exercise 10.55

Question 35

In figure, the sides AB, BC and CA of a triangle ABC, touch a circle at P,Q and R respectively. If PA = 4 cm, BP = 3 cm and AC = 11 cm, then length of BC is

(a) 11 cm

(b) 10 cm

(c) 14 cm

(d) 15 cmSolution 35

PA = AR

AR = 4 cm

BP = BQ and QC = RC

BQ = 3 cm

Given AC = 11

AR + RC = 11

4 + RC = 11

RC = 7

so QC = 7 cm

BC = BQ + QC

     = 3 + 7

     = 10 cm

So, the correct option is (b).Question 36

begin mathsize 12px style In space figure comma space straight a space circle space touches space the space side space DF space of space triangle DEF space at space straight H space and space touches space ED space and space EF space produced space at space straight K space and space straight M space respectively. space If space EK space equals space 9 space cm comma space then space the space perimeter space of space triangle EDF space is
open parentheses straight a close parentheses space 18 space cm
open parentheses straight b close parentheses space 13.5 space cm
open parentheses straight c close parentheses space 12 space cm
open parentheses straight d close parentheses space 9 space cm end style

Solution 36

EK = 9 cm

and EK = EM

Hence EM = 9 cm         …..(1)

Also EK = ED + DK

and DK = DH

EK = ED + HD     …….(2)

EM = EF + FM

and FM = FH

EM = EF + FH       ……(3)

(2) + (3)

EK + EM = ED + EF + DH + HF

18 = ED + DF + EF

perimeter = 18 cm

So, the correct option is (a).Question 37

begin mathsize 12px style In space figure comma space DE space and space DF space are space tangents space from space an space external space point space straight D space to space straight a space circle space with space centre space straight A. space If space DE space equals space 5 space cm space and space DE space perpendicular space DF comma space then space the space radius space of space the space circle space is
open parentheses straight a close parentheses space 3 space cm
open parentheses straight b close parentheses space 5 space cm
open parentheses straight c close parentheses space 4 space cm
open parentheses straight d close parentheses space 6 space cm end style

Solution 37

begin mathsize 12px style DE space equals space DF space equals space 5 space cm
We space know space AD space bisects space the space angle space EDF space
since space straight D space is space the space intersection space of space the space two space tangents space and space AD space is space the space line space segment space joining space the
centre space to space the space point space of space intersection space of space the space two space tangents.
rightwards double arrow angle EDA space equals space 45 degree
Hence space in space triangle AED comma
AE space is space radius space of space circle
Also space tan 45 degree space equals space AE over ED
AE space equals space ED space tan 45 degree
space space space space space space equals space ED
space space space space space space equals space 5 space cm space
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Chapter 10 – Circles Exercise 10.56

Question 38

begin mathsize 12px style In space figure comma space straight a space circle space with space centre space straight O space is space inscribed space in space straight a space quadrilateral space ABCD space such space that comma space it space touches space sides space BC comma space AB comma space AD space and space CD space at space points space straight P comma space straight Q comma space straight R space and space straight S space respectively. space If space AB space equals space 29 space cm comma space AD space equals space 23 space cm comma space angle straight B space equals space 90 degree space and space DS space equals space 5 space cm comma space then space the space radius space of space the space circle space left parenthesis in space cm right parenthesis space is
open parentheses straight a close parentheses space 11
open parentheses straight b close parentheses space 18
open parentheses straight c close parentheses space 6
open parentheses straight d close parentheses space 15 end style

Solution 38

AB = 29 cm

AD = 23

DS = 5 cm

DS = DR

so DR = 5 cm

AR = AD – DR

     = 23 – 5

     = 18 cm

AR = AQ 

AQ = 18 cm

BQ = AB – AQ

     = 29 – 18

BQ = 11 cm

As OP || BQ and OQ || PB 

Hence, OP = BQ

OP = 11 cm

So, the correct option is (a).Question 39

In a right triangle ABC, right angled at B, BC = 12 cm and AB = 5 cm. The radius of the circle inscribed in the triangle (in cm) is

(a) 4

(b) 3

(c) 2

(d) 1Solution 39

AB = 5 cm

BC = 12 cm

AB + BC2 = AC2

AC= 52 + 122

      = 169

AC = 13 cm

Let BQ = x

AQ = AR = 5 – x

CR = AC – AR

      = 13 – (5 – x)

      = x + 8

And CP = CR = x + 8

so BP = BC – PC

         = 12 – (x + 8)

         = 4 – x

But BP = BQ = x

4 – x = x

x = 2

and BQ || OP and OQ || PB

so BQ = PO

PO = 2 cm

So, the correct option is (c).Question 40

begin mathsize 12px style Two space circles space touch space each space other space externally space at space straight P. space AB space is space straight a space common space tangent space to space the space circle space touching space them space at space straight A space and space straight B. space The space value space of space angle APB space is
left parenthesis straight a right parenthesis space 30 degree
left parenthesis straight b right parenthesis space 45 degree
left parenthesis straight c right parenthesis space 60 degree
open parentheses straight d close parentheses space 90 degree end style

Solution 40

begin mathsize 12px style Let space angle OPA space equals space straight theta
We space know space angle OPA space equals space angle OAP
So comma
angle AOP space equals space 180 degree space minus space open parentheses angle OPA space plus space angle OAP close parentheses
angle AOP space equals space 180 degree space minus space 2 straight theta space space space space space.... open parentheses 1 close parentheses
Let space angle straight O apostrophe PB space equals space straight alpha
Hence space angle straight O apostrophe BP space equals space straight alpha
So comma space angle BO apostrophe straight P space equals space 180 degree space minus space open parentheses angle straight O apostrophe PB space plus space angle straight O apostrophe BP close parentheses
angle BO apostrophe straight P space equals space 180 degree space minus space 2 straight alpha space space space space space space space space.... open parentheses 2 close parentheses
In space quadrilateral space ABO apostrophe straight O comma
sum space of space all space angles space equals space 360 degree
angle BAO space plus space angle ABO apostrophe space plus space angle AOO apostrophe space plus space angle BO apostrophe straight O space equals space 360 degree
90 degree space plus space 90 degree space plus space 180 space minus space 2 straight theta space plus space 180 space minus space 2 straight alpha space equals space 360 degree
540 degree space minus space 2 open parentheses straight alpha space plus space straight theta close parentheses
straight alpha space plus space straight theta space equals space 90 degree space space space space... open parentheses 3 close parentheses
Also space angle OPO apostrophe space equals space 180 degree
angle APO space plus space angle APB space plus space angle BPO apostrophe space equals space 180 degree
space straight theta plus space angle APB space plus straight alpha space space equals space 180 degree
from space left parenthesis 3 right parenthesis space
angle APB space equals space 180 degree space minus space 90 degree
space space space space space space space space space space space space space space equals space 90 degree
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 41

begin mathsize 12px style In space figure comma space PQ space and space PR space are space two space tangents space to space straight a space circle space with space centre space straight O. space If space angle QPR space equals space 46 degree comma space then space angle QOR space equals
open parentheses straight a close parentheses space 67 degree
open parentheses straight b close parentheses space 134 degree
open parentheses straight c close parentheses space 44 degree
open parentheses straight d close parentheses space 46 space degree end style

Solution 41

begin mathsize 12px style angle ORP space equals space angle OQP space equals space 90 degree
Also space sum space of space all space angles space of space quadrilateral space PQOR space is space 360 degree
angle ORP space plus space angle OQP space plus space angle QOR space plus space angle QPR space equals space 360 degree
90 degree space plus space 90 degree space plus space angle QOR space plus space 46 degree space equals space 360 degree
angle QOR space equals space 360 degree space minus space open parentheses 180 degree space plus space 46 degree close parentheses
angle QOR space equals space 134 degree
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 42

In figure, QR is a common tangent to the given circles touching externally at the point T. The tangent at T meets QR at P. If PT = 3.8 cm, then the length of QR (in cm) is

(a) 3.8

(b) 7.6

(c) 5.7

(d) 1.9Solution 42

PT = 3.8 cm

We know

PQ = PT and PT = PR

Hence PQ = 3.8 cm and PR = 3.8 cm

Now, QR = QP + PR

             = 3.8 + 3.8

QR = 7.6 cm

So, the correct option is (b).

Chapter 10 – Circles Exercise 10.57

Question 43

In figure, a quadrilateral ABCD is drawn to circumscribe a circle such that its sides AB, BC, CD and AD touch the circle at P, Q, R and S respectively. If AB = x cm, BC = 7 cm, CR = 3 cm and AS = 5 cm, then x =

(a) 10

(b) 9

(c) 8

(d) 7Solution 43

AB = x cm

BC = 7 cm

CR = 3 cm

AS = 5 cm

CR = CQ

CQ = 3 cm

given BC = 7 cm

BQ = BC – QC

       = 7 – 3

       = 4 cm

And BQ = BP

so BP = 4 cm

Also AS = AP

Hence AP = 5 cm

AB = AP + BP

     = 5 + 4

     = 9 cm

x = 9 cm

So, the correct option is (b).Question 44

If angle between two radii of a circle is 130°, the angle between the tangents at the ends of radii is

a. 90°

b. 50°

c. 70°

d. 40°Solution 44

Question 45

If two tangents inclined at an angle of 60° are drawn to a circle of radius 3 cm, then length of each tangent is equal to

Solution 45

Question 46

If radii of two concentric circles are 4 cm and 5 cm, then the length of each chord of one circle which is tangent to the other circle is

a. 3 cm

b. 6 cm

c. 9 cm

d. 1 cmSolution 46

Question 47

At one end A of a diameter AB of a circle of radius 5 cm, Tangent XAY is drawn to the circle. The length of the chord CD parallel to XY and at a distance 8 cm from A is

a. 4 cm

b. 5 cm

c. 6 cm

d. 8 cmSolution 47

Question 48

From a point P which is at a distance 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is

a. 60 cm2

b. 65 cm2

c. 30 cm2

d. 32.5 cm2Solution 48

Question 49

If PA, PB are tangents to the circle with centre O such that ∠APB  = 50°, then ∠OAB is equal to

a. 25°

b. 30°

c. 40°

d. 50°Solution 49

Question 50

The pair of tangents AP and AQ drawn from an external point to a circle with centre O are perpendicular to each other and length of each tangent is 5 cm. The radius of the circle is

a. 10 cm

b. 7.5 cm

c. 5 cm

d. 2.5 cmSolution 50

Chapter 10 – Circles Exercise 10.58

Question 51

In figure, if ∠AOB = 125° , then ∠COD is equal to

a. 45°

b. 35°

c. 55°

d. 62°

Solution 51

Question 52

In figure, if PQR is tangent to a circle at Q whole centre is O , AB is a chord parallel to PR and ∠BQR = 70°, then ∠AQB is equal to

a. 20°

b. 40°

c. 35°

d. 45°

Solution 52

Read More

RD SHARMA SOLUTION CHAPTER- 9 Arithmetic Progressions | CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 9 – Arithmetic Progressions Exercise Ex. 9.1

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 1 (v)

Solution 1 (v)

Question 1 (vi)

Solution 1 (vi)

Question 1 (vii)

Write the first five terms for the sequence whose nth terms is:

an = n2 – n + 1Solution 1 (vii)

Question 1 (viii)

Solution 1 (viii)

Question 1 (ix)

Solution 1 (ix)

Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Solution 2 (iii)

Question 2 (iv)

Find the indicated terms in the sequence whose nth terms are :

an = (n – 1) (2 – n) (3 + n); a1, a2, a3Solution 2 (iv)

Question 2 (v)

Find the indicated terms in the sequence whose nth terms are:

an = (-1)n n; a3, a5, a8Solution 2 (v)

Question 3 (i)

Solution 3 (i)

Question 3 (ii)

Solution 3 (ii)

Question 3 (iii)

Solution 3 (iii)

Question 3 (iv)

Solution 3 (iv)

Chapter 9 – Arithmetic Progressions Exercise Ex. 9.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4 (i)

Solution 4 (i)

Question 4 (ii)

Solution 4 (ii)

Question 4 (iii)

Solution 4 (iii)

Question 4 (iv)

Solution 4 (iv)

Question 5

Solution 5

Question 6(i)

Justify whether it is true to say that the sequence having following nth term is an A.P.

an = 2n – 1Solution 6(i)

Question 6(ii)

Justify whether it is true to say that the sequence having following nth term is an A.P.

an = 3n2 + 5Solution 6(ii)

Question 6(iii)

Justify whether it is true to say that the sequence having following nth term is an A.P.

an = 1 + n + n2Solution 6(iii)

Chapter 9 – Arithmetic Progressions Exercise Ex. 9.3

Question 1

Solution 1

Question 2

Write the arithmetic progression when first term a and common difference d are as follows:

(i) a = 4, d = -3

(ii) a = -1, d = 1/2

(iii) a = -1.5, d = -0.5Solution 2

Question 3 (i)

In which of the following situations, the sequence of numbers formed will form an A.P.?

The cost of digging a well for the first metre is Rs 150 and rises by Rs 20 for each succeeding metre.


Solution 3 (i)

Question 3 (ii)

In which of the following situations, the sequence of numbers formed will form an A.P.?

The amount of air present in the cylinder when a vacuum pump removes each time 1/4 of their remaining in the cylinder.Solution 3 (ii)

Question 3(iii)

In which of the following situations, the sequence of numbers formed will form an A.P.?

Divya deposited Rs.1000 at compound interest at the rate of 10% per annum. The amount at the end of first year, second year, third year, …., and so on.Solution 3(iii)

Question 4 (i)

Solution 4 (i)

Question 4 (ii)

Solution 4 (ii)

Question 4 (iii)

Solution 4 (iii)

Question 4 (iv)

Solution 4 (iv)

Question 5 (i)

Solution 5 (i)

Question 5 (ii)

Solution 5 (ii)

Question 5 (iii)

Solution 5 (iii)

Question 5 (iv)

Solution 5 (iv)

Question 5 (v)

Solution 5 (v)

Question 5 (vi)

Find out whether of the given sequence is an arithemtic progressions. If it is an arithmetic progressions, find out the common difference.

p, p + 90, p + 180, p + 270, … where p = (999)999Solution 5 (vi)

Question 5 (vii)

Solution 5 (vii)

Question 5 (viii)

Solution 5 (viii)

Question 5 (ix)

Solution 5 (ix)

Question 5 (x)

Solution 5 (x)

Question 5 (xi)

Solution 5 (xi)

Question 5 (xii)

Solution 5 (xii)

Question 6

Solution 6

Question 7

Solution 7

Chapter 9 – Arithmetic Progressions Exercise Ex. 9.4

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 1 (v)

Solution 1 (v)

Question 1 (vi)

Solution 1 (vi)

Question 1 (vii)

Solution 1 (vii)

Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Which term of the A.P. 4, 9, 14, … is 254?Solution 2 (iii)

Question 2 (iv)

Solution 2 (iv)

Question 2 (v)

Solution 2 (v)

Question 2 (vi)

Which term of the A.P. -7, -12, -17, -22,… will be -82? Is -100 any term of the A.P.?Solution 2 (vi)

The given A.P. is -7, -12, -17, -22,…

First term (a) = -7

Common difference = -12 – (-7) = -5

Suppose nth term of the A.P. is -82.

So, -82 is the 16th term of the A.P.

To check whether -100 is any term of the A.P., take an as -100.

So, n is not a natural number.

Hence, -100 is not the term of this A.P.Question 3 (i)

Solution 3 (i)

Question 3 (ii)

Solution 3 (ii)

Question 3 (iii)

Solution 3 (iii)

Question 4 (i)

Solution 4 (i)

Question 4 (ii)

Solution 4 (ii)

Question 4 (iii)

Solution 4 (iii)

Question 4 (iv)

Solution 4 (iv)

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9 (i)

Solution 9 (i)

Question 9 (ii)

Find the 12th term from the end of the following arithmetic progressions:

3, 8, 13, …, 253Solution 9 (ii)

A.P. is 3, 8, 13, …, 253

We have:

Last term (l) = 253

Common difference (d) = 8 – 3 = 5

Therefore,

12th term from end

       = l – (n – 1)d

       = 253 – (12 – 1) (5)

       = 253 – 55

       = 198Question 9 (iii)

Solution 9 (iii)

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

The 26th, 11th and last term of an A.P. are 0, 3 and  , respectively. Find the common difference and the number of terms.Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.Solution 18

Question 19

Solution 19

Question 20 (i)

Solution 20 (i)

Question 20 (ii)

Solution 20 (ii)

Question 21

Solution 21

Question 22 (i)

Solution 22 (i)

Question 22 (ii)

Solution 22 (ii)

Question 22 (iii)

Solution 22 (iii)

Question 22 (iv)

Solution 22 (iv)

Question 23

The eighth term of an A.P. is half of its second term and the eleventh term exceeds one third of its fourth term by 1. Find the 15th term.Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

Solution 36

Question 37

The 17th term of an A.P. is 5 more than twice its 8th term. If the 11th term of the A.P. is 43, find the nth term.Solution 37

Thus, nth term is given by

an = a + (n – 1)d
an = 3 + (n – 1)4
an = 3 + 4n – 4
an = 4n – 1Question 38

Find the number of all three digit natural numbers which are divisible by 9.Solution 38

The smallest three digit number divisible by 9 = 108

The largest three digit number divisible by 9 = 999

Here let us write the series in this form,

108, 117, 126, …………….., 999

a = 108, d = 9

tn = a + (n – 1)d

999= 108 + (n – 1)9

⇒ 999 – 108 = (n – 1)9

⇒ 891 = (n – 1)9

⇒ (n – 1) = 99

⇒ n = 99 + 1

∴ n = 100

Number of terms divisible by 9

Number of all three digit natural numbers divisible by 9 is 100.Question 39

The 19th term of an A.P. is equal to three times its sixth term. If its 9th term is 19, find the A.P.Solution 39

Question 40

The 9th term of an A.P. is equal to 6 times its second term. If its 5th term is 22, find the A.P.Solution 40

Question 41

The 24th term of an A.P. is twice its 10th term. Show that its 72nd term is 4 times its 15th term.Solution 41

Let the first term be ‘a’ and the common difference be ‘d’

t24 = a + (24 – 1)d = a + 23d

t10­ = a + (10 – 1)d = a + 9d

t72 = a + (72 – 1)d = a + 71d

t15 = a + (15 – 1)d = a + 14d

t24 = 2t10

⇒ a + 23d = 2(a + 9d)

⇒ a + 23d = 2a + 18d

⇒ 23d – 18d = 2a – a

∴ 5d = a

t72 = a + 71d

= 5d + 71d

= 76d

= 20d + 56d

= 4 × 5d + 4 × 14d

= 4(5d + 14d)

= 4(a + 14d)

= 4t15

∴t72 = 4t15Question 42

Find the number of natural numbers between 101 and 999 which are divisible by both 2 and 5.Solution 42

L.C.M. of 2 and 5 = 10

3- digit number after 100 divisible by 10 = 110

3- digit number before 999 divisible by 10 = 990

Let the number of natural numbers be ‘n’

990 = 110 + (n – 1)d

⇒ 990 – 110 = (n – 1) × 10

⇒ 880 = 10 × (n – 1)

⇒ n – 1 = 88

∴ n = 89

The number of natural numbers between 110 and 999 which are divisible by 2 and 5 is 89.Question 43

If the seventh term of an A.P. is 1/9 and its ninth term is 1/7, find its (63)rd term.Solution 43

Let the first term be ‘a’ and the common difference be ‘d’.

Question 44

The sum of 5th and 9th terms of an A.P. is 30. If its 25th term is three times its 8th term, find the A.P.Solution 44

Question 45

Find where 0(zero) is a term of the A.P. 40, 37, 34, 31, …Solution 45

Let the first term be ‘a’ and the common difference be ‘d’.

a = 40

d = 37 – 40 = – 3

Let the nth term of the series be 0.

tn = a + (n – 1)d

⇒ 0 = 40 + (n – 1)( – 3)

⇒ 0 = 40 – 3(n – 1)

⇒ 3(n – 1) = 40

∴ No term of the series is 0.Question 46

Find the middle term of the A.P. 213, 205, 197, …, 37.Solution 46

Given A.P. is 213, 205, 197, …, 37.

Here, first term = a = 213

And, common difference = d = 205 – 213 = -8

an = 37

nth term of an A.P. is given by

a­n = a + (n – 1)d

⇒ 37 = 213 + (n – 1)(-8)

⇒ 37 = 213 – 8n + 8

⇒ 37 = 221 – 8n

⇒ 8n = 221 – 37

⇒ 8n = 184

⇒ n = 23

So, there are 23 terms in the given A.P.

⇒ The middle term is 12th term.

⇒ a12 = 213 + (12 – 1)(-8)

= 213 + (11)(-8)

= 213 – 88

= 125

Hence, the middle term is 125.Question 47

If the 5th term of an A.P. is 31 and 25th term is 140 more than the 5th term, find the A.P.Solution 47

Let a be the first term and d be the common difference of the A.P.

Then, we have

a5 = 31 and a25 = a5 + 140

⇒ a + 4d = 31 and a + 24d = a + 4d + 140

⇒ a + 4d = 31 and 20d = 140

⇒ a + 4d = 31 and d = 7

⇒ a + 4(7) = 31 and d = 7

⇒ a + 28 = 31 and d = 7

⇒ a = 3 and d = 7

Hence, the A.P. is a, a + d, a + 2d, a + 3d, ……

i.e. 3, 3 + 7, 3 + 2(7), 3 + 3(7), ……

i.e. 3, 10, 17, 24, …..Question 48

Find the sum of two middle terms of the A.P.

Solution 48

Question 49

Solution 49

Question 50

Solution 50

Question 51

How many numbers lie between 10 and 300, which when divided by 4 leave a remainder 3?Solution 51

Question 52

Find the 12th term from the end of the A.P. -2, -4, -6, …, -100.Solution 52

Question 53

For the A.P.: -3, -7, -11, …, can we find a30 – a20 without actually finding a30 and a20? Give reason for your answer.Solution 53

Question 54

Two A.P.s have the same common difference. The first term of one A.P. is 2 and that of the other is 7. The difference between their 10th terms is the same as the difference between their 21st terms, which is the same as the difference between any two corresponding terms. Why?Solution 54

Chapter 9 – Arithmetic Progressions Exercise Ex. 9.5

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Divide 56 in four parts in A.P. such that the ratio of the product of their extremes to the product of their means is 5 : 6.Solution 8

Question 9

The sum of the first three numbers in an arithmetic progression is 18. If the product of the first and third term is 5 times the common difference, find the three numbers.Solution 9

Let the first three terms of an A.P. be a – d, a, a + d

As per the question,

(a – d) + a + (a + d) = 18

∴ 3a = 18

∴ a = 6

Also, (a – d)(a + d) = 5d

∴ (6 – d)(6 + d) = 5d

∴ 36 – d2 = 5d

∴ d2 + 5d – 36 = 0

∴ d2 + 9d – 4d – 36 = 0

∴ (d + 9)(d – 4) = 0

∴ d = -9 or d = 4

Thus, the terms will be 15, 6, -3 or 2, 6, 10.Question 10

Spilt 207 into three parts such that these are in A.P. and the product of the two smaller parts is 4623.Solution 10

Question 11

The angles of a triangle are in A.P. the greatest angle is twice the least. Find all the angles.Solution 11

Question 12

The sum of four consecutive numbers in A.P. is 32 and the ratio of the product of the first and last terms to the product of two middle terms is 7 : 15. Find the number.Solution 12

Chapter 9 – Arithmetic Progressions Exercise Ex. 9.6

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 1 (v)

Solution 1 (v)

Question 1 (vi)

Solution 1 (vi)

Question 1 (vii)

Solution 1 (vii)

Question 1 (viii)

Solution 1 (viii)

Question 2

Solution 2

Question 3

Solution 3

Question 4

Find the sum of last ten terms of the A.P: 8, 10, 12, 14,.., 126.Solution 4

Question 5 (i)

Solution 5 (i)

Question 5 (ii)

Solution 5 (ii)

Question 5 (iii)

Solution 5 (iii)

Question 5 (iv)

Find the sum of the first 15 terms of each of the following sequences having nth term as

yn = 9 – 5nSolution 5 (iv)

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10 (i)

Solution 10 (i)

Question 10 (ii)

How many terms are there in the A.P. whose first and fifth terms are -14 and 2 respectively and the sum of the terms is 40?Solution 10 (ii)

Question 10 (iii)

How many terms of the A.P. 9, 17, 25, … must be taken so that their sum is 636?

Remark* – Question modified.Solution 10 (iii)

Question 10 (iv)

Solution 10 (iv)

Question 10(v)

How many terms of the A.P. 27, 24, 21… should be taken so that their sum is zero?Solution 10(v)

Question 10 (vi)

How many terms of the A.P. 45, 39, 33 … must be taken so that their sum is 180? Explain the double answer.Solution 10 (vi)

Let the required number of terms be n.

As the given A.P. is 45, 39, 33 …

Here, a = 45 and d = 39 – 45 = -6 

The sum is given as 180

∴ Sn = 180

When n = 10,

When n = 6,

Hence, number of terms can be 6 or 10.Question 11 (i)

Solution 11 (i)

Question 11 (ii)

Solution 11 (ii)

Question 11 (iii)

Solution 11 (iii)

Question 12(i)

Find the sum of

The first 15 multiples of 8.Solution 12(i)

Multiples of 8 are8,16,24,…

Now,

n=15, a=8, d=8

Question 12(ii)

Find the sum of

The first 40 positive integers divisible by (a) 3 (b) 5 (c) 6.Solution 12(ii)

a) divisible by 3 3,6,9,… Now, n=40, a=3, d=3

b) divisible by 5 5,10,15,… Now, n=40, a=5, d=5

c)divisible by 6 6,12,18,… Now, n=40, a=3, d=6 Question 12(iii)

Find the sum of

All 3 – digit natural numbers which are divisible by 13.Solution 12(iii)

Three-digit numbers divisible by 13 are 104,117, 130,…988. Now, a=104, l=988 Question 12(iv)

Find the sum of

All 3 – digit natural numbers, which are multiples of 11. Solution 12(iv)

Three-digit numbers which are multiples of 11 are 110,121, 132,…990. Now, a=110, l=990 Question 12(v)

Find the sum of

All 2 – digit natural numbers divisible by 4. Solution 12(v)

Two-digit numbers divisible by 4 are 12,16,…96. Now, a=12, l=96 Question 12 (vi)

Find the sum of first 8 multiples of 3.Solution 12 (vi)

The multiples of 3 are 3, 6, 9, 12, 15, 18, 21, …

These are in A.P. with,

first term (a) = 3 and common difference (d) = 3

To find S8 when a = 3, d = 3

Hence, the sum of first 8 multiples of 3 is 108.Question 13 (i)

Solution 13 (i)

Question 13 (ii)

Solution 13 (ii)

Question 13 (iii)

Solution 13 (iii)

Question 13 (iv)

Solution 13 (iv)

Question 13 (v)

Solution 13 (v)

Question 13 (vi)

Solution 13 (vi)

Question 13 (vii)

Solution 13 (vii)

Question 13 (viii)

Find the sum:

Solution 13 (viii)

Let ‘a’ be the first term and ‘d’ be the common difference.

tn = a + (n – 1)d

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22 (i)

Solution 22 (i)

Question 22 (ii)

If the sum of first four terms of an A.P. is 40 and that of first 14 terms is 280. Find the sum of its first n terms.Solution 22 (ii)

Sum of first n terms of an AP is given by

As per the question, S4 = 40 and S14 = 280

Also,   

Subtracting (i) from (ii), we get, 10d = 20

Therefore, d = 2

Substituting d in (i), we get, a = 7

Sum of first n terms becomes

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26

The first and the last terms of an A.P. are 7 and 49 respectively. If sum of all its terms is 420, find its common difference.Solution 26

Let the number of terms be ‘n’, ‘a’ be the first term and ‘d’ be the common difference.

tn = a + (n – 1)d

⇒ 49 = 7 + (n – 1)d

⇒ 42 = (n – 1)d…..(i)

∴ 840 = n[14 + (n – 1)d]……(ii)

Substituting (ii) in (i),

840 = n[14 + 42]

⇒ 840 = 56n

∴ n = 15

Substituting n in (i)

42 = (15 – 1)d

Common difference, d =3Question 27

The first and the last terms of an A.P. are 5 and 45 respectively. If the sum of all its terms is 400, find its common difference.Solution 27

Let the number of terms be ‘n’, ‘a’ be the first term and ‘d’ be the common difference.

tn = a + (n – 1)d

⇒ 45 = 5 + (n – 1)d

⇒ 40 = (n – 1)d…..(i)

∴ 800 = n[10 + (n – 1)d]……(ii)

Substituting (ii) in (i),

800 = n[10 + 40]

⇒ 800 = 50n

∴ n = 16

Substituting n in (i)

40 = (16 – 1)d

Question 28

The sum of first q terms of an A.P. is 162. The ratio of its 6th term to its 13th term is 1 : 2. Find the first and 15th term of the A.P.Solution 28

Question 29

If the 10th term of an A.P. is 21 and the sum of its first ten terms is 120, find its nth term.Solution 29

Let ‘a’ be the first term and ‘d’ be the common difference.

tn = a + (n – 1)d

t10 = a + (10 – 1)d

⇒ 21 = a + 9d……(i)

120 = 5[2a + 9d]

24 = 2a + 9d………(ii)

(ii) – (i) ⇒ 

a = 3

Substituting a in (i), we get

a + 9d = 21

⇒ 3 + 9d = 21

⇒ 9d = 18

∴d = 2

tn = a + (n – 1)d

= 3 + (n – 1)2

= 3 + 2n – 2

∴ tn= 2n + 1Question 30

The sum of the first 7 terms of an A.P. is 63 and the sum of its next 7 terms is 161. Find the 28th term of this A.P.Solution 30

Let the first term be ‘a’ and the common difference be ‘d’   

63 = 7[a + 3d]

9 = a + 3d……….(i)

Sum of the next 7 terms = 161

Sum of the first 14 terms = 63 + 161 = 224

224 = 7[2a + 13d]

32 = 2a + 13d………..(ii)

Solving (i) and (ii), we get

d = 2, a = 3

28th term of the A.P., t28 = a + (28 – 1)d

= 3 + 27 × 2

= 3 + 54

= 57

∴ The 28th of the A.P. is 57.Question 31

The sum of first seven terms of an A.P. is 182. If its 4th and the 17th terms are in the ratio 1: 5, find the A.P.Solution 31

Let the first term be ‘a’ and the common difference be ‘d’.

26 × 2 = [2a + (7 – 1)d]

52 = 2a + 6d

26 = a + 3d……..(i)

From (i) and (ii),

⇒ 13d = 104

∴d = 8

From (i), a = 2

The A.P. is 2, 10, 18, 26,…….Question 32

The nth term of an A.P. is given by (- 4n + 15). Find the sum of the first 20 terms of this A.P.Solution 32

Let the first term of the A.P. be ‘a’ and the common difference be ‘d’.

tn = – 4n + 15

t1 = – 4 × 1 + 15 = 11

t2 = – 4 × 2 + 15 = 7

t3 = – 4 × 3 + 15 = 3

Common Difference, d = 7 – 11 = -4

= 10 × (-54)

= – 540

*Note: Answer given in the book is incorrect.Question 33

Solution 33

Question 34

Sum of the first 14 terms of an A.P. is 1505 and its first term is 10. Find its 25th term.Solution 34

Question 35

Solution 35

Question 36

Solution 36

Question 37

Find the number of terms of the A.P. – 12, – 9, – 6, …, 21. If 1 is added to each term of this A.P., then find the sum of all terms of the A.P. thus obtained.Solution 37

Let the number of the terms be ‘n’.

Common Difference, d = – 9 + 12 = 3

tn = a + (n – 1)d

⇒ 21 = – 12 + 3(n – 1)

⇒ 21 + 12 = 3(n – 1)

⇒ 3(n – 1) = 33

⇒ n – 1 = 11

∴n = 12

Number of terms of the series = 12

If 1 is added to each term of the above A.P.,

– 11, – 8, – 5,…….,22

Number of terms in the series, n1 = 12

Sum of all the terms,

The sum of the terms = 66Question 38

The sum of the first n terms of an A.P. is 3n2 + 6n. Find the nth term of this A.P.Solution 38

Sum of n terms of the A.P., Sn = 3n2 + 6n

S1 = 3 × 12 + 6 × 1 = 9 = t1 ……(i)

S2 = 3 × 22 + 6 × 2 = 24 = t1 + t2 …….(ii)

S3 = 3 × 32 + 6 × 3 = 45 = t1 + t2 + t3 ……..(iii)

From (i), (ii) and (iii),

t= 9, t2 = 15, t3 = 21

Common difference, d = 15 – 9 = 6

nth of the AP, tn = a + (n – 1)d

= 9 + (n – 1) 6

= 9 + 6n – 6

= 6n + 3

Thus, the nth term of the given A.P. = 6n + 3Question 39

The sum of the first n terms of an A.P. is 5n – n2. Find the nth term of this A.P.Solution 39

Sn = 5n – n2

S1 = 5 × 1 – 12 = 4 = t1………..(i)

S2 = 5 × 2 – 22 = 6 = t1 +t2………..(ii)

S3 = 5 × 3 – 32 = 6 = t+ t+ t……….(iii)

From (i), (ii) and (iii),

t1 = 4, t2 = 2, t3 = 0

Here a = 4, d = 2 – 4 = – 2

tn = a + (n – 1)d

= 4 + (n – 1)( -2)

= 4 – 2n + 2

= 6 – 2nQuestion 40

The sum of the first n terms of an A.P. is 4n2 + 2n. find the nth term of this A.P.Solution 40

Sn = 4n2 + 2n

S1 = 4 × 12 + 2 × 1 = 6 = t1………….(i)

S2 = 4 × 22 + 2 × 2 = 20 = t1 + t2……….(ii)

S3 = 4 × 32 + 2 × 3 = 42 = t1 + t2 + t3………..(iii)

From (i), (ii) and (iii),

t1 = 6, t2 = 14, t3 = 22

Here a = 6, d = 14 – 6 = 8

tn = a + (n – 1)d

tn = 6 + (n – 1)8

= 6 + 8n – 8

= 8n – 2

*Note: Answer given in the book is incorrect.Question 41

The sum of first n terms of an A.P. is 3n2 + 4n. find the 25th term of this A.P.Solution 41

Sum of n terms of the A.P., Sn = 3n2 + 4n

S1 = 3 × 12 + 4 × 1 = 7 = t1………(i)

S2 = 3 × 22 + 4 × 2 = 20 = t1 + t…….(ii)

S3 = 3 × 32 + 4 × 3 = 39 = t1 + t2 + t3 …….(iii)

From (i), (ii), (iii)

t1 = 7, t2 = 13, t­3 = 19

Common difference, d = 13 – 7 = 6

25th of the term of this A.P., t25 = 7 + (25 – 1)6

= 7 + 144 = 151

∴The 25th term of the A.P. is 151.Question 42

The sum of first n terms of an A.P. is 5n2 + 3n. If its mth term is 168, find the value of m. Also, find the 20th term of this A.P.Solution 42

Sum of the terms, Sn = 5n2 + 3n

S1 = 5 × 12 + 3 × 1 = 8 = t1………..(i)

S2 = 5 × 22 + 3 × 2 = 26 = t1 + t2…………..(ii)

S3 = 5 × 32 + 3 × 3 = 54 = t1 + t2 + t3…………(iii)

From(i), (ii) and (iii),

t1 = 8, t2 = 18, t3 = 28

Common difference, d = 18 – 8 = 10

tm = 168

⇒ a + (m – 1)d = 168

⇒ 8 + (m – 1)×10 = 168

⇒ (m – 1) × 10 = 160

⇒ m – 1 = 16

∴m = 17

t20 = a + (20 – 1)d

= 8 + 19 × 10

= 8 + 190

= 198Question 43

The sum of first q terms of an A.P. is 63q – 3q2. If its pth term -60, find the value of p. Also, find the 11th term of this A.P.

Remark* – Question modified.Solution 43

Let the first term be ‘a’ and the common difference be ‘d’.

Sum of the first ‘q’ terms, Sq = 63q – 3q2

S1 = 63 × 1 – 3 × 12 = 60 = t1……..(i)

S2 = 63 × 2 – 3 × 22 = 114 = t1 + t2…..(ii)

S3 = 63 × 3 – 3 × 32 = 162 = t1 + t+ t3 …..(iii)

From (i), (ii) and (iii),

t1 = 60

t2 = 54

t3 = 48

Common difference, d = 54 – 60 = – 6

tp = a + (p – 1)d

⇒ -60 = 60 + (p – 1)( – 6)

⇒ – 120 = – 6(p – 1)

⇒ p – 1 = 20

∴p = 21

t11 = 60 + (11 – 1)( – 6)

=60 + 10( – 6)

= 60 – 60

= 0

The 11th term of the A.P. is 0.Question 44

The sum of first m terms of an A.P. is 4m2 – m. If its nth term is 107, find the value of n. Also, find the 21st term of this A.P.Solution 44

Let the first term of the A.P. be ‘a’ and the common difference be ‘d’

Sum of m terms of the A.P., Sm = 4m2 – m

S1 = 4 × 12 – 1 = 3 = t1 …….(i)

S2 = 4 × 22 – 2 = 14 = t1 + t2……..(ii)

S3 = 4 × 32 – 3 = 33 = t+ t2 + t …….(iii)

From (i), (ii) and (iii)

t1 = 3, t2 = 11, t3 = 19

Common difference, d = 11 – 3 = 8

tn = 107

⇒ a + (n – 1)d = 107

⇒ 3 + (n – 1)8 = 107

⇒ 8(n – 1) = 104

⇒ n – 1 = 13

∴n = 14

t21 = 3 + (21 – 1)8 = 3 + 160 = 163Question 45

Solution 45

Question 46

If the sum of first n terms of an A.P. is  then find its nth term. Hence write its 20th term.Solution 46

Question 47 (i)

Solution 47 (i)

Question 47 (ii)

If the sum of first n terms of an A.P. is n2, then find its 10th term.Solution 47 (ii)

Sum of first n terms of an AP is given by

As per the question, Sn = n2

Hence, the 10th term of this A.P. is 19.Question 48

Solution 48

Question 49

Solution 49

Question 50 (i)

Solution 50 (i)

Question 50 (ii)

Solution 50 (ii)

Question 51

Solution 51

Question 52

Solution 52

Question 53

Solution 53

Question 54

Solution 54

Question 55 (i)

Solution 55 (i)

Question 55(ii)

Find the sum of all integers between 100 and 550 which are not divisible by 9.Solution 55(ii)

Question 55(iii)

Find the sum of all integers between 1 and 500 which are multiplies 2 as well as of 5.Solution 55(iii)

Question 55(iv)

Find the sum of all integers from 1 to 500 which are multiplies 2 as well as of 5.Solution 55(iv)

Question 55(v)

Find the sum of all integers from 1 to 500 which are multiples of 2 or 5.Solution 55(v)

Question 56 (i)

Solution 56 (i)

Question 56 (ii)

Solution 56 (ii)

Question 56 (iii)

Solution 56 (iii)

Question 56 (iv)

Solution 56 (iv)

Question 56 (v)

Solution 56 (v)

Question 56 (vi)

Let there be an A.P. with first term ‘a’, common difference ‘d’. If an denotes its nth term and Sn the sum of first n terms, find

n and an, if a = 2, d = 8 and Sn = 90.Solution 56 (vi)

Question 56(vii)

Let there be an A.P. with first term ‘a’, common difference ‘d’. If an denotes its nth term and Sn the sum of first n terms, find k, if Sn = 3n2 + 5n and ak = 164.Solution 56(vii)

Question 56 (viii)

Let there be an A.P. with first term ‘a’, common difference ‘d’. If an denotes its nth term and Sn the sum of first n terms, find S22, if d = 22 and a22 = 149.Solution 56 (viii)

The nth term of an A.P. is given by an = a + (n – 1)d

Sum of first n terms of an AP is given by

Question 57

If Sn denotes the sum of first n terms of an A.P., prove that S12 = 3(S8 – S4).Solution 57

Question 58

A thief, after committing a theft runs at a uniform speed of 50 m/minute. After 2 minutes, a policeman runs to catch him. He goes 60 m in first minute and increases his speed by 5 m/minute every succeeding minute. After how many minutes, the policeman will catch the thief?Solution 58

Question 59

The sums of first n terms of three A.P.s are S1, S2 and S3. The first term of each is 5 and their common differences are 2, 4 and 6 respectively. Prove that S1 + S3 = 2S2.Solution 59

Question 60

Resham wanted to save at least Rs. 6500 for sending her daughter to school next year (after 12 months). She saved Rs. 450 in the first month and raised her saying by Rs.20 every next month. How much will she be able to save in next 12 months? Will she be able to send her daughter to the school next year?Solution 60

Question 61

In a school, students decided to plant trees in and around the school to reduce air pollution. It was decided that the number of trees, that each section of each class will plant, will be double of the class in which they are studying. If there are 1 to 12 classes in the school and each class has two sections, find how many trees were planted by the students.Solution 61

Trees planted by the student in class 1 = 2 + 2 = 4

Trees planted by the student in class 2 = 4 + 4 = 8

Trees planted by the students in class 3 = 6 + 6 = 12

…….

Trees planted by the students in class 12 = 24 + 24 = 48

∴ the series will be 4, 8, 12,………., 48

a = 4, Common Difference, d = 8 – 4 = 4

Let ‘n’ be the number of terms in the series.

48 = 4 + (n – 1)4

⇒ 44 = 4(n – 1)

⇒ n – 1 = 11

∴n = 12

Sum of the A.P. series,

Number of trees planted by the students = 312Question 62

Ramkali would need Rs. 1800 for admission fee and books etc., for her daughter to start going to school from the next year. She saved Rs. 50 in the first month of this year and increased her monthly saving by Rs. 20. After a year, how much money will she save? Will she be able to fulfill her dream of sending her daughter to school?Solution 62

Since, the difference between the savings of two consecutive months is Rs. 20, therefore the series is an A.P.

Here, the savings of the first month is Rs. 50

First term, a = 50, Common difference, d = 20

No. of terms = no. of months

No. of terms, n = 12

= 6[100 + 220]

= 6×320

= 1920

After a year, Ramakali will save Rs. 1920.

Yes, Ramakali will be able to fulfill her dream of sending her daughter to school.Question 63

Solution 63

Question 64

Solution 64

Question 65

Solution 65

Question 66

Solution 66

Question 67

Solution 67

Question 68

Solution 68

Question 69

Solution 69

Question 70

If Sn denotes the sum of the first n terms of an A.P., prove that S30 = 3(S20 – S10).Solution 70

Let the first term of the A.P. be ‘a’ and the common difference be ‘d’.

R.H.S.

= 3(S20 – S10)

= 3(10[2a + 19d] – 5[2a + 9d])

= 3(20a + 190d – 10a – 45d)

= 3(10a + 145d)

= 3 × 5(2a + 29d)

= 15[2a + (30 – 1)d]

= S30

= L.H.S.Question 71

Solve the equation

(-4) + (-1) + 2 + 5 + …. + x = 437.Solution 71

Question 72

Which term of the A.P. -2, -7, -12,…, will be -77? Find the sum of this A.P. upto the term -77.Solution 72

Question 73

The sum of the first n terms of an A.P. whose first term is 8 and the common difference is 20 is equal to the sum of first 2n terms of another A.P. whose first term is -30 and common difference is 8. Find n.Solution 73

Question 74

The students of a school decided to beautify the school on the annual day by fixing colourful flags on the straight passage of the school. They have 27 flags to be fixed at intervals of every 2 metre. The flags are stored at the position of the middle most flag. Ruchi was given the responsibility of placing the flags. Ruchi kept her books where the flags were stored. She could carry only one flag at a time. How much distance did she cover in completing this job and returning back to collect her books? What is the maximum distance she travelled carrying a flag?Solution 74

Read More

RD SHARMA SOLUTION CHAPTER- 8 Quadratic Equations| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 8 Quadratic Equations Exercise Ex. 8.1

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 1 (v)

Solution 1 (v)

Question 1(vi)

Solution 1(vi)

Question 1 (vii)

Solution 1 (vii)

Question 1 (viii)

Solution 1 (viii)

Question 1 (ix)

Solution 1 (ix)

Question 1 (x)

Solution 1 (x)

Question 1 (xi)

Solution 1 (xi)

Question 1 (xii)

Solution 1 (xii)

Question 1 (xiii)

Solution 1 (xiii)

Question 1 (xiv)

Solution 1 (xiv)

Question 1 (xv)

Is X(x+1)+8=(x+2)(x-2) a quadratic equation?Solution 1 (xv)

Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Solution 2 (iii)

Question 2 (iv)

Solution 2 (iv)

Question 2 (v)

Are x = 2 and x = 3, solutions of the equation 2x2 – x + 9 = x2 + 4x + 3 , Solution 2 (v)

= 2x– x + 9 – x+ 4x + 3

= x2 – 5x + 6 = 0

Here, LHS = x2 – 5x + 6 and RHS = 0

Substituting x = 2 and x = 3

= x2 – 5x + 6

= (2)2 – 5(2) + 6

=10-10

=0

= RHS

= x2 – 5x + 6

= (3)2 – 5(3) + 6

= 9 – 15 + 6

=15 – 15

=0

= RHS

x = 2 and x = 3 both are the solutions of the given quadratic equation.Question 2 (vi)

Solution 2 (vi)

Question 2 (vii)

Solution 2 (vii)

Question 3 (i)

Solution 3 (i)

Question 3 (ii)

Solution 3 (ii)

Question 3 (iii)

Solution 3 (iii)

Question 3 (iv)

Solution 3 (iv)

Question 4

Solution 4

Question 5

Solution 5

Chapter 8 Quadratic Equations Exercise Ex. 8.2

Question 1

The product of two consecutive positive integers is 306. Form the quadratic equation to find the integers, if x denotes the smaller integer.Solution 1

Question 2

John and Jivanti together have 45 marbles. Both of them lost 5 marbles each, and the product of the number of marbles they now have is 128. Form the quadratic equation to find how many marbles they had to start with, if John had x marbles.Solution 2

Question 3

A cottage industry produces a certain number of toys in a day. The cost of production of each toy (in rupees) was found to be 55 minus the number of articles produced in a day. On a particular day, the total cost of production was Rs. 750. If x denotes the number of toys produced that day, form the quadratic equation to find x.Solution 3

Question 4

The height of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, form the quadratic equation to find the base of the triangle.Solution 4

Question 5

An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore. If the average speed of the express train is 11 km/hr more than that of the passenger train, form the quadratic equation to find the average speed of express train.Solution 5

Question 6

A train travels 360 km at a uniform speed. If the speed had been 5 km/hr more, it would have taken 1 hour less for the same journey. Form the quadratic equation to find the speed of the train.Solution 6

Chapter 8 Quadratic Equations Exercise Ex. 8.3

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solve the following quadratic equation by factorisation:

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solve the following quadratic equation by factorisation:

Solution 15

Question 16

Solution 16

Question 17

9x– 6b2x – (a4 – b4) = 0Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solve the following quadratic equation by factorisation:

2x+ ax – a2 = 0Solution 20

Question 21

Solve the following quadratic equation by factorisation:

Solution 21

Question 22

Solve the following quadratic equations by factorization:

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solve the following quadratic equation by factorisation:

Solution 29

Question 30

Solve the following quadratic equation by factorisation:

Solution 30

Question 31

Solve the following quadratic equation by factorisation:

Solution 31

Question 32

Solve the following quadratic equation by factorisation:

Solution 32

Question 33

Solve the following quadratic equation by factorisation:

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

Solution 36

Question 37

Solution 37

Question 38

Solve the following quadratic equation by factorisation:

Solution 38

Question 39

Solution 39

Question 40

Solution 40

Question 41

Solution 41

Question 42

Solution 42

Question 43

Solve the following quadratic equations by factorization:

Solution 43

Question 44

Solution 44

Question 45

Solution 45

Question 46

Solution 46

Question 47

Solve the following quadratic equations by factorization:

Solution 47

Question 48

Solve the following quadratic equations by factorization:

Solution 48

Question 49

Solution 49

Question 50

Solution 50

Question 51

Solution 51

Question 52

Solution 52

Question 53

Solution 53

Question 54

Solution 54

Question 55

Solution 55

Question 56

Solution 56

Question 57

Solution 57

Question 58

Solve the following quadratic equation by factorisation:

Solution 58

Question 59

Solve the following quadratic equation by factorisation:

Solution 59

Question 60

Solve the following quadratic equation by factorisation:

Solution 60

Question 61

Solution 61

Question 62

Solution 62

Chapter 8 Quadratic Equations Exercise Ex. 8.4

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Find the roots of the following quadratic equations (if they exist) by the method of completing the square

x2 – 8x + 18 = 0Solution 6

Given equation is x2 – 8x + 18 = 0

x2 – 2 × x × 4 + + 42 – 42 + 18 = 0

(x – 4)2 – 16 + 18 = 0

(x – 4)2 = 16 – 18

(x – 4)2 = -2

Taking square root on both the sides, we get 

Therefore, real roots does not exist.Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Chapter 8 Quadratic Equations Exercise Ex. 8.5

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1(iii)

Solution 1(iii)

Question 1 (iv)

Solution 1 (iv)

Question 1(v)

Solution 1(v)

Question 1(vi)

Solution 1(vi)

Question 1 (vii)

Write the discriminant of the following quadratic equations:

(x + 5)2 = 2(5x – 3)Solution 1 (vii)

x2 + 2 × x × 5 + 52 = 10x – 6

x2 + 10x + 25 = 10x – 6

x2 + 31 = 0

Here, a = 1, b = 0 and c = 31

Therefore, the discriminant is

D = b2 – 4ac

 = 0 – 4 × 1 × 31

 = -124Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Solution 2 (iii)

Question 2 (iv)

Solution 2 (iv)

Question 2 (v)

Solution 2 (v)

Question 2 (vi)

Solution 2 (vi)

Question 2 (vii)

Solution 2 (vii)

Question 2 (viii)

Solution 2 (viii)

Question 2 (ix)

Solution 2 (ix)

Question 2(x)

Solution 2(x)

Question 2(xi)

Solution 2(xi)

Question 2(xii)

3x2 – 5x + 2 = 0Solution 2(xii)

Question 3(i)

Solution 3(i)

Question 3(ii)

Solve for x:

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solve for x:

Solution 3(iv)

Question 3(v)

Solve for x:

Solution 3(v)

Chapter 8 Quadratic Equations Exercise Ex. 8.6

Question 1(i)

Determine the nature of the roots of the following quadratic equations:

2x2 – 3x + 5 = 0Solution 1(i)

Question 1(ii)

Determine the nature of the roots of the following quadratic equations:

2x2 – 6x + 3 = 0Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 1 (vi)

Determine the nature of the roots of the following quadratic equations:

Solution 1 (vi)

Given quadratic equation is 

Here, 

Therefore, we have

As D = 0, roots of the given equation are real and equal.Question 2(i)

Solution 2(i)

Question 2(ii)

Solution 2(ii)

Question 2(iii)

Solution 2(iii)

Question 2(iv)

Solution 2(iv)

Question 2(v)

Solution 2(v)

Question 2(vi)

Solution 2(vi)

Question 2(vii)

Solution 2(vii)

Question 2(viii)

Solution 2(viii)

Question 2(ix)

Solution 2(ix)

Question 2(x)

Solution 2(x)

Question 2(xi)

Solution 2(xi)

Question 2(xii)

Solution 2(xii)

Question 2(xiii)

Solution 2(xiii)

Question 2(xiv)

Solution 2(xiv)

Question 2(xv)

Solution 2(xv)

Question 2(xvi)

Solution 2(xvi)

Question 2(xvii)

Solution 2(xvii)

Question 2(xviii)

Find the values of k for which the roots are real and equal in each of the following equations:

4x2 – 2 (k + 1)x + (k + 1) = 0 Solution 2(xviii)

4x2 – 2 (k + 1)x + (k + 1) = 0 Comparing with ax2 + bx + c = 0, we get a = 4, b = -2(k + 1), c = k + 1 According to the question, roots are real and equal. Hence, b2 – 4ac = 0 Question 3(i)

Solution 3(i)

Question 3(ii)

In the following, determine the set of values of k for which the given quadratic equation has real roots:

2x2 + x + k = 0Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 3(v)

Solution 3(v)

Question 4(i)

Solution 4(i)

Question 4(ii)

Solution 4(ii)

Question 4(iii)

Solution 4(iii)

Question 4(iv)

Find the values of k for which the following equations have real and equal roots:

x2 + k(2x + k – 1) + 2 = 0 Solution 4(iv)

x2 + k(2x + k – 1) + 2 = 0 x2 + 2kx + k(k – 1) + 2 = 0 Comparing with ax2 + bx + c = 0, we get a = 1, b = 2k, c = k(k – 1) + 2 According to the question, roots are real and equal. Hence, b2 – 4ac = 0 Question 5(i)

Find the values of k for which the roots are real and equal in each of the following equations:

2x2 + kx + 3 = 0Solution 5(i)

Question 5(ii)

Find the values of k for which the roots are real and equal in each of the following equations:

kx (x – 2) + 6 = 0Solution 5(ii)

Question 5(iii)

Find the values of k for which the roots are real and equal in each of the following equations:

x2 – 4kx + k = 0Solution 5(iii)

Question 5(iv)

Find the value of k for which the roots are real and equal in the following equation:

Solution 5(iv)

Question 5(v)

Find the value of p for which the roots are real and equal in the following equation:

px(x – 3) + 9 = 0Solution 5(v)

Question 5(vi)

Find the values of k for which the following equations have real roots.

4x2 + kx + 3 = 0 Solution 5(vi)

4x2 + kx + 3 = 0 Comparing with ax2 + bx + c = 0, we get a = 4, b = k, c = 3 According to the question, roots are real and equal. Hence, b2 – 4ac = 0 Question 6 (i)

Solution 6 (i)

Question 6 (ii)

Solution 6 (ii)

Question 7

Solution 7

Question 8

Solution 8

Question 9(i)

Find the values of k for which the quadratic equation (3k + 1)x2 + 2(k + 1)x + 1 = 0 has equal roots. Also, find the roots.Solution 9(i)

Question 9 (ii)

Write all the values of k for which the quadratic equation x2 + kx + 16 = 0 has equal roots. Find the roots of the equation so obtained.Solution 9 (ii)

Given quadratic equation is x2 + kx + 16 = 0

As it has equal roots, the discriminant will be 0.

Here, a = 1, b = k, c = 16

Therefore, D = k2 – 4(1)(16) = 0

i.e. k2 – 64 = 0

i.e. k = ± 8

When k = 8, the equation becomes x2 + 8x + 16 = 0

 or x2 – 8x + 16 = 0

As D = 0, roots of the given equation are real and equal.Question 10

Find the values of p for which the quadratic equation (2p + 1)x2 – (7p + 2)x + (7p – 3) = 0 has equal roots. Also, find these roots.Solution 10

Question 11

 If -5 is a root of the quadratic equation, 2x2 + px – 15 = 0, and the quadratic equation p(x2 + x) + k = 0 has equal roots, find the value of k.Solution 11

Question 12

 If 2 is a root of the quadratic equation 3x2 + px – 8 = 0 and the quadratic equation 4x2 – 2px + k = 0 has equal roots, find the value of k.Solution 12

Question 13

If 1 is root of the quadratic equation 3x2 + ax – 2 = 0 and the quadratic equation a(x2 + 6x) – b = 0 has equal roots, find the value of b.Solution 13

Question 14

Find the value of p for which the quadratic equation (p + 1)x2 – 6(p + 1)x + 3(p + 9) = 0, p ≠ -1 has equal roots. Hence, find the roots of equation.Solution 14

Question 15(i)

Solution 15(i)

Question 15(ii)

Solution 15(ii)

Question 15(iii)

Solution 15(iii)

Question 15(iv)

Solution 15(iv)

Question 16(i)

Solution 16(i)

Question 16(ii)

Solution 16(ii)

Question 16(iii)

Solution 16(iii)

Question 16(iv)

Solution 16(iv)

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Chapter 8 Quadratic Equations Exercise Ex. 8.7

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

The sum of a number and its square is 63/4. Find the numbers.Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

A natural number when increased by 12 equals 160 times its reciprocal. Find the number.Solution 24

Let x be the natural number.

As per the question, we have

Therefore, x = 8 as x is a natural number.

Hence, the required natural number is 8.Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

The difference of the squares of two positive integers is 180. The square of the smaller number is 8 times the larger, find the numbers.Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

The sum of two numbers is 9. The sum of their reciprocals is 1/2. Find the numbers.Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Find two consecutives odd positive integers, sum of whose squares is 970.Solution 34

Question 35

The difference of two natural numbers is 3 and the difference of their reciprocal is  . Find the numbers.Solution 35

Question 36

The sum of the squares of two consecutive odd numbers is 394. Find the numbers.Solution 36

Question 37

The sum of the squares of two consecutive multiples of 7 is 637. Find the multiples.Solution 37

Question 38

The sum of the squares of two consecutive even numbers is 340. Find the numbers.Solution 38

Question 39

The numerator of a fraction is 3 less than the denominator. If 2 is added to both the numerator and the denominator, then the sum of the new fraction and the original fraction is . Find the original fraction.Solution 39

Question 40

Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number.Solution 40

Chapter 8 Quadratic Equations Exercise Ex. 8.8

Question 1

Solution 1

Question 2

A train, travelling at a uniform speed for 360 km, would have taken 48 minutes less to travel the same distance if its speed were 5 km/hr more. Find the original speed of the train.Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

A train travels at a certain average speed for a distance 63 km and then travels a distance of 72 km at an average speed of 6 km/hr more than the original speed, If it takes 3 hours to complete total journey, what is its original average speed?Solution 8

Question 9

Solution 9

Question 10

Solution 10

Concept Insight: Use the relation s =d/t to crack this question and remember here distance is constant so speed and time will vary inversely.Question 11

Solution 11

Question 12

An aeroplane left 50 minutes later than its scheduled time, and in order to reach the destination, 1250 km away, in time, it had to increase its speed by 250 km/hr from its usual speed. Find its usual speed.Solution 12

Question 13

While boarding an aeroplane, a passenger got hurt. The pilot showing promptness and concern, made arrangements to hospitalize the injured and so the plane started late by 30 minutes to reach the destination, 1500 km away in time, the pilot increased the speed by 100 km/hr. Find the original speed/hour of the plane.Solution 13

Question 14

A motor boat whose speed in still water is 18 km/hr takes 1 hour more to go 24 km up stream than to return downstream to the same spot. Find the speed of the stream.Solution 14

Question 15

A car moves a distance of 2592 km with uniform speed. The number of hours taken for the journey is one-half the number representing the speed, in km/hour. Find the time taken to cover the distance.Solution 15

Let the speed of a car be x km/hr. According to the question, time is  hr. Distance = Speed × Time 2592 =     x = 72 km/hr Hence, the time taken by a car to cover a distance of 2592 km is 36 hrs.Question 16

A motor boat whose speed instill water is 9 km/hr, goes 15 km downstream and comes back to the same spot, in a total time of 3 hours 45 minutes. Find the speed of the stream.Solution 16

Let x km/hr be the speed of the stream.

Therefore, we have

Downstream speed = (9 + x) km/hr

Upstream speed = (9 – x) km/hr

Distance covered downstream = distance covered upstream

Total time taken = 3 hours 45 minutes =  hours

Therefore, x = 3 as the speed can’t be negative.

Hence, the speed of the motor boat is 3 km/hr.

Chapter 8 Quadratic Equations Exercise Ex. 8.9

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

If Zeba were younger by 5 years than what she really is, then the square of her age (in years) would have been 11 more than 5 times her actual age. What is her age now?Solution 8

Question 9

At present Asha’s age (in years) is 2 more than the square of her daughter Nisha’s age. When Nisha grows to her mother’s present age, Asha’s age would be one year less than 10 times the present age of Nisha. Find the present ages of both Asha and Nisha.Solution 9

Chapter 8 Quadratic Equations Exercise Ex. 8.10

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the difference of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible to do so? If yes, at what distances from the two gates should the pole be erected?Solution 4

Chapter 8 Quadratic Equations Exercise Ex. 8.11

Question 1

Solution 1

Question 2

Solution 2

Question 3

Two squares have sides x cm and (x + 4) cm. The sum of their areas is 656 cm2. Find the sides of the squares.Solution 3

Question 4

Solution 4

Question 5

Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is 800 m2? If so, find its length and breadth.Solution 5

Question 6

Solution 6

Question 7

Sum of the areas of two squares is 640 m2. If the difference of their perimeter is 64 m, find the sides of the two squares.Solution 7

Question 8

Sum of the areas of two squares is 400 cm2. If the difference of their perimeters is 16 cm, find the sides of two squares.Solution 8

Question 9

The area of a rectangular plot is 528 m2. The length of the plot (in meters) is one meter more than twice its breadth. Find the length and the breadth of the plot.Solution 9

Question 10

In the centre of a rectangular lawn of dimension 50 m × 40 m, a rectangular pond has to be constructed so that the area of the grass surrounding the pond would be 1184 m2. Find the length and breadth of the pond.Solution 10

Chapter 8 Quadratic Equations Exercise Ex. 8.12

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

To fill a swimming pool two pipes are used. If the pipe of larger diameter used for 4 hours and the pipe of smaller diameter for 9 hours, only half of the pool can be filled. Find, how long it would take for each pipe to fill the pool separately, if the pipe of smaller diameter takes 10 hours more than the pipe of larger diameter to fill the pool?Solution 5

Let us assume that the larger pipe takes ‘x’ hours to fill the pool.

So, as per the question, the smaller pipe takes ‘x + 10’ hours to fill the same pool.

Question 6

Two water taps together can fill a tank in   hours. The tap with longer diameter takes 2 hours less than the tap with the smaller one to fill the tank separately. Find the time in which each tap can fill the tank separately. Solution 6

Let the tap with smaller diameter takes x hours to completely fill the tank.

So, the other tap takes (x – 2) hours to fill the tank completely.

Total time taken to fill the tank   hours

As per the question, we have

When x = 5, then (x – 2) = 3

When   which can’t be possible as the time becomes negative.

Hence, the smaller diameter tap fills in 5 hours and the larger diameter tap fills in 3 hours.

Chapter 8 Quadratic Equations Exercise Ex. 8.13

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

In a class test, the sum of the marks obtained by P in Mathematics and Science is 28. Had he got 3 marks more in Mathematics and 4 marks less in Science. The product of his marks, would have been 180. Find his marks in the two subjects.Solution 9

Question 10

Solution 10

Question 11

A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs 90, find the number of articles produced and the cost of each article.Solution 11

Question 12

At t minutes past 2 pm the time needed by the minutes hand and a clock to show 3 pm was found to be 3 minutes less than   minutes. Find t.Solution 12

Chapter 8 Quadratic Equations Exercise 8.82

Question 1

If the equation x2 + 4x + k = 0 has real and distinct root, then

(a) k < 4

(b) k > 4

(c) k ≥ 4

(d) k ≤ 4Solution 1

We know for the quadratic equation

ax2 + bx + c = 0

condition for roots to be real and distinct is

D = b2 – 4ac > 0       ……….(1)

for the given question

x+ 4x + k = 0

a = 1, b = 4, c = k

from (1)

16 – 4k > 0

k < 4

So, the correct option is (a).

Chapter 8 Quadratic Equations Exercise 8.83

Question 2

If the equation x2 – ax + 1 = 0 has two distinct roots, then

(a) |a| = 2

(b) |a| < 2

(c) |a| > 2

(d) None of theseSolution 2

For the equation x2 – ax + 1 = 0 has two distinct roots, condition is

(-a)– 4 (1) (1) > 0

a– 4 > 0

a> 4

|a| > 2

So, the correct option is (c).Question 3

begin mathsize 12px style If space the space equation space 9 x squared space plus space 6 kx space plus space 4 space equals space 0 space has space equal space roots comma space then space the space roots space are space both space equal space to
left parenthesis straight a right parenthesis space plus-or-minus space 2 over 3
left parenthesis straight b right parenthesis space plus-or-minus space 3 over 2
open parentheses straight c close parentheses space 0
open parentheses straight d close parentheses space plus-or-minus space 3 end style

Solution 3

begin mathsize 12px style For space quadratic space equation
ax squared space plus space bx space plus space straight c space equals space 0
condition space for space equal space roots space is
straight D space equals space straight b squared space minus space 4 ac space equals space 0 space space space space space space space space space space space.......... open parentheses 1 close parentheses
For space the space given space question
9 straight x squared space plus space 6 kx space plus space 4 space equals space 0
straight a space equals space 9 comma space space space straight b space equals space 6 straight k comma space space space space straight c space equals space 4
from space open parentheses 1 close parentheses
open parentheses 6 straight k close parentheses squared space minus space 4 space open parentheses 9 close parentheses space open parentheses 4 close parentheses space equals space 0
36 straight k squared space minus space 36 space cross times space 4 space equals space 0
36 space open parentheses straight k to the power of 2 space end exponent minus space 4 close parentheses space equals space 0
straight k squared space equals space 4
straight k space equals space plus-or-minus 2
Now comma space equation space is space 9 straight x squared space plus space 6 kx space plus space 4 space equals space 0
rightwards double arrow space 9 straight x squared space plus-or-minus space 12 straight x space plus space 4 space equals 0
rightwards double arrow open parentheses 3 straight x space plus-or-minus space 2 close parentheses squared space equals space 0
rightwards double arrow straight x space equals space plus-or-minus 2 over 3
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 4

begin mathsize 12px style If space ax squared space plus space bx space plus space straight c space equals 0 space has space equal space roots comma space then space straight c space equals
left parenthesis straight a right parenthesis space fraction numerator negative straight b over denominator 2 straight a end fraction
left parenthesis straight b right parenthesis space fraction numerator straight b over denominator 2 straight a end fraction
open parentheses straight c close parentheses space fraction numerator negative straight b squared over denominator 4 straight a end fraction
open parentheses straight d close parentheses space fraction numerator straight b squared over denominator 4 straight a end fraction end style

Solution 4

begin mathsize 12px style If space ax squared space plus space bx space plus space straight c space equals space 0 space has space equal space roots
then
straight b squared space minus space 4 ac space equals space 0
straight b squared space equals space 4 ac
straight c space equals space fraction numerator straight b squared over denominator 4 straight a end fraction
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 5

If the equation ax2 + 2x + a = 0 has two distinct roots, if

(a) a = ± 1

(b) a = 0

(c) a = 0, 1

(d) a = -1, 0Solution 5

For any quadratic equation

ax + bx + c = 0

having two distinct roots, condition is

b2 – 4ac > 0

For the equation ax2 + 2x + a = 0 to have two distinct roots,

(2)2 – 4 (a) (a) > 0

4 – 4a2 > 0

4(1 – a2) > 0

1 – a2 > 0 since 4 > 0

that is, a2 – 1 < 0

Hence -1 < a < 1, only integral solution possible is a = 0

So, the correct option is (b).Question 6

The positive value of k for which the equation x2 + kx + 64 = 0 and x2 – 8x + k = 0 will both have real roots, is

(a) 4

(b) 8

(c) 12

(d) 16Solution 6

For any quadratic equation

ax2 + bx + c = 0

having real roots, condition is

b2 – 4ac ≥ 0     …….(1)

According to question 

x+ kx + 64 = 0 have real root if

k– 4 × 64 ≥ 0

k2 ≥ 256

|k|≥ 16             ……..(2)

Also, x2 – 8x + k = 0 has real roots if

64 – 4k ≥ 0

k ≤ 16    ………(3)

from (2), (3) the only positive solution for k is

k = 16

So, the correct option is (d).Question 7

begin mathsize 12px style The space value space of space square root of 6 space plus square root of 6 space plus square root of 6 space plus space...... end root end root end root is
left parenthesis straight a right parenthesis space 4
left parenthesis straight b right parenthesis space 3
left parenthesis straight c right parenthesis space minus 2
left parenthesis straight d right parenthesis space 3.5 end style

Solution 7

begin mathsize 12px style Let space straight x space equals space square root of 6 space plus square root of 6 space plus square root of 6 space plus space...... end root end root end root space space space space space space space space space space space space space space space space....... left parenthesis 1 right parenthesis
On space squaring space both space sides
straight x squared space equals space 6 space plus space square root of 6 space plus square root of 6 space plus space..... end root end root space space space space space space space space space space space space space space space space space space space space space space space space space space....... left parenthesis 2 right parenthesis
From space left parenthesis 1 right parenthesis space & space left parenthesis 2 right parenthesis
straight x squared space equals space 6 space plus space straight x
straight x squared space minus space straight x space minus space 6 space equals space 0
straight x squared space minus space 3 straight x space plus space 2 straight x space minus space 6 space equals space 0
straight x space open parentheses straight x space minus space 3 close parentheses space plus space 2 left parenthesis straight x space minus space 3 right parenthesis space equals space 0
left parenthesis straight x space plus space 2 right parenthesis space left parenthesis straight x space minus space 3 right parenthesis space equals space 0
straight x space equals space minus 2 space or space straight x space equals space 3
but space straight x space can apostrophe straight t space be space negative comma space hence
box enclose straight x space equals space 3 end enclose
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 8

If 2 is a root of the equation x+ bx + 12 = 0 and the equation x2 + bx + q = 0 has equal roots, then q =

(a) 8

(b) -8

(c) 16

(d) -16Solution 8

It is given that 2 is a root of equation x + bx + 12 = 0

Hence

(2)+ b(2) + 12 = 0

4 + 2b + 12 = 0

2b + 16 = 0

b = -8        ………(1)

It is also given that x2 + bx + q = 0 has equal root 

so, b2 – 4(q) = 0         ……..(2)

from (1) & (2)

(-8)– 4q =0

q = 16

So, the correct option is (c).Question 9

begin mathsize 12px style If space the space equation space open parentheses straight a squared space plus space straight b squared close parentheses space straight x squared space minus space 2 open parentheses ac space plus space bd close parentheses space straight x space plus space straight c squared space plus space straight d squared space equals space 0 space has space equal space roots comma space then space
open parentheses straight a close parentheses space ab space equals space cd
open parentheses straight b close parentheses space ad space equals space bc
open parentheses straight c close parentheses space ad space equals space square root of bc
open parentheses straight d close parentheses space ab space equals space square root of cd end style

Solution 9

For any quadratic equation

ax2 + bx + c = 0

Having equal roots, the condition is

b – 4ac = 0

For the equation

(a2 + b2) x2 – 2 (ac + bd)x + c2 + d= 0

to have equal roots, we have

(-2(ac + bd))– 4 (c+ d2) (a+ b2) = 0

4 (ac + bd)– 4 (a2c+ b2c2 + d2a+ b2d2) = 0

(a2c+ b2d2 + 2abcd) – (a2c+ b2c2 + a2d2+ b2d2) = 0

2abcd – b2c2 – a2d2 = 0

b2c2 – a2d– 2abcd = 0

(bc – ad)= 0

bc = ad

So, the correct option is (b).Question 10

begin mathsize 12px style If space the space roots space of space the space equation space left parenthesis straight a squared plus space straight b squared right parenthesis straight x squared space minus space 2 straight b left parenthesis straight a space plus space straight c right parenthesis straight x space plus space left parenthesis straight b squared plus space straight c squared right parenthesis space equals space 0 space are space equal comma space then
left parenthesis straight a right parenthesis space 2 straight b space equals space straight a space plus space straight c
open parentheses straight b close parentheses space straight b squared space equals space ac
open parentheses straight c close parentheses space straight b space equals fraction numerator 2 ac over denominator straight a space plus space straight c end fraction
open parentheses straight d close parentheses space straight b space equals space ac end style

Solution 10

For any quadratic equation

ax+ bx + c = 0

having equal roots, condition is

b2 – 4ac = 0

According to question, quadratic equation is

(a2 + b2)x2 – 2b(a + c)x + b2 + c= 0

having equal roots, so

(2b(a + c))2 – 4(a2 + b2) (b2 + c2) = 0

4b2 (a + c)2 – 4(a2b2 + a2c+ b4 + b2c2) = 0

b2(a2 + c2 + 2ac) – (a2b2 + a2c+ b2c2 + b4) = 0

a2b2 + b2c2 + 2acb2 – a2b2 – a2c– b2c2 – b4 = 0

2acb2 – a2c2 – b4 = 0

a2c2 + b4 – 2acb2 = 0

(ac – b2)2 = 0

ac = b2

So, the correct option is (b).Question 11

If the equation x2 – bx + 1 = 0 does not possess real roots, then

(a) -3 < b < 3

(b) -2 < b < 2

(c) b < 2

(d) b < -2Solution 11

For any quadratic equation ax2 + bx + c = 0 having no real roots, condition is

b2 – 4ac < 0

For the equation, x2 – bx + 1 = 0 having no real roots

b2 – 4 < 0

b2 < 4

-2 < b < 2

So, the correct option is (b).Question 12

If x = 1 is a common root of the equations ax2 + ax + 3 = 0 and x2 + x + b = 0, then ab =

(a) 3

(b) 3.5

(c) 6

(d) -3Solution 12

begin mathsize 12px style If space straight x space equals space 1 space is space root space of space ax squared space plus space ax space plus space 3 space equals space 0
then
straight a open parentheses 1 close parentheses squared space plus space straight a open parentheses 1 close parentheses space plus space 3 space equals space 0
2 straight a space plus space 3 space equals space 0
straight a space equals space fraction numerator negative 3 over denominator 2 end fraction space space space space space space space space space space space space...... left parenthesis 1 right parenthesis
and space straight x space equals space 1 space is space also space root space of space straight x squared space plus space straight x space plus space straight b space equals 0
then
open parentheses 1 close parentheses squared space plus space open parentheses 1 close parentheses space plus space straight b space equals space 0
straight b space equals space minus 2 space space space space space space space space space.... left parenthesis 2 right parenthesis
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
ab space equals space open parentheses fraction numerator negative 3 over denominator 2 end fraction close parentheses open parentheses negative 2 close parentheses
ab space equals 3
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 13

If p and q are the roots of the equation x-px + q = 0, then

(a) p = 1, q = -2

(b) b = 0, q = 1

(c) p = -2, q = 0

(d) p = -2, q = 1Solution 13

If p, q are the roots of equation x– px + q = 0, then p and q satisfies the equation

Hence

(p)– p(p) + q = 0

p– p+ q = 0

q = 0

and (q)– p(q) + q = 0

q– p(q) + q = 0

0 = 0

p can take any value

p = -2 and q = 0

So, the correct option is (c).Question 14

If a and b can take values 1, 2, 3, 4. Then the number of the equations of the form ax2 + bx + 1 = 0 having real roots is

(a) 10

(b) 7

(c) 6

(d) 12Solution 14

For the ax+ bx + 1 = 0 having real roots condition is

b– 4(a) (1) ≥ 0

b2 ≥ 4a

For a = 1

b2 ≥ 4

b ≥ 2

b can take value 2, 3, 4

Here, 3 possible solutions are possible            …….(1)

For a = 2

b2 ≥ 8

Here, b can take value 3, 4            ……(2)

Here, 2 solutions are possible

For a = 3

b≥ 12

possible value of b is 4

Hence, only 1 possible solution      ……(3)

For a = 4

b2 ≥ 16

possible value of b is 4

Hence, only 1 possible solution    …….(4)

from (1), (2), (3), (4)

Total possible solutions are 7

So, the correct option is (b).Question 15

The number of quadratic equations having real roots and which do not change by squaring their roots is

(a) 4

(b) 3

(c) 2

(d) 1Solution 15

Any quadratic equation having roots 0 or 1 are only possible quadratic equation because on squaring 0 or 1, it remains same.

Hence, 2 solutions are possible, one having roots 1 and 1, while the other having roots 0 and 1.

So, the correct option is (c).

Chapter 8 Quadratic Equations Exercise 8.84

Question 16

If (a+ b2) x+ 2(ab + bd) x + c2 + d= 0 has no real roots, then

(a) ad = bc

(b) ab = cd

(c) ac = bd

(d) ad ≠ bcSolution 16

If any quadratic equation ax+ bx + c has no real roots then b– 4ac < 0    ……(1)

According to the question, the equation is

(a+ b2) x+ 2(ac + bd) x + c2 + d= 0

from (1)

4(ac + bd)– 4(a2 + b2) (c2 + d2) < 0

a2c2 + b2d2 + 2abcd – (a2c2 + a2d2 + b2c2 + b2d2) < 0

a2c2 + b2d2 + 2abcd – a2c2 – a2d2 – b2c2 – b2d2 < 0

2abcd – a2d2 – b2c2 < 0

-(ad – bc)< 0

(ad – bc)> 0

For this condition to be true ad ≠ bc

So, the correct option is (d).Question 17

begin mathsize 12px style If space the space sum space of space the space roots space of space the space equation space straight x squared space minus space straight x space equals space straight lambda space open parentheses 2 straight x space minus space 1 close parentheses space is space zero comma space then space straight lambda space equals
open parentheses straight a close parentheses space minus 2
open parentheses straight b close parentheses space 2
open parentheses straight c close parentheses space fraction numerator negative 1 over denominator 2 end fraction
open parentheses straight d close parentheses space 1 half end style

Solution 17

begin mathsize 12px style We space know space for space any space quadratic space equation
ax squared space plus space bx space plus space straight c space equals space 0
sum space of space roots space equals fraction numerator negative straight b over denominator straight a end fraction
Now comma space according space to space the space question
straight x squared space minus space straight x space equals space straight lambda space open parentheses 2 straight x space minus space 1 close parentheses
straight x squared space minus space straight x space minus space 2 λx space plus space straight lambda space equals space 0
straight x squared space minus space straight x space open parentheses 1 space plus space 2 straight lambda close parentheses space plus space straight lambda space equals space 0
given space sum space of space roots space of space this space equation space is space zero
Hence comma space fraction numerator negative open parentheses negative open parentheses 1 space plus space 2 straight lambda close parentheses close parentheses over denominator 1 end fraction space equals space 0
space space space space space space space space space space space space space space space space space space 1 space plus space straight lambda 2 space equals space 0
space space space space space space space space space space space space space space space space space space space straight lambda space equals space fraction numerator negative 1 over denominator 2 end fraction
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 18

If x = 1 is a common root of ax+ ax + 2 = 0 and x+ x + b = 0 then, ab =

(a) 1

(b) 2

(c) 4

(d) 3Solution 18

It is given that x = 1 is root of equation ax2 + ax + 2 = 0

Hence, a(1)2 + a(1) + 2 = 0

           2a + 2 = 0

           a = -1         ……(1)

It is given that x = 1 is also root of x2 + x + b = 0

Hence, (1)+ (1) + b = 0

           b = -2     ……(2)

from (1) & (2)

ab = (-1) (-2)

ab = 2

So, the correct option is (b).Question 19

begin mathsize 12px style The space value space of space straight c space for space which space the space equation space ax squared plus space 2 bx space plus space straight c space equals space 0 space has space equal space roots space is
left parenthesis straight a right parenthesis space straight b squared over straight a
left parenthesis straight b right parenthesis space fraction numerator straight b squared over denominator 4 straight a end fraction
open parentheses straight c close parentheses space straight a squared over straight b
open parentheses straight d close parentheses space fraction numerator straight a squared over denominator 4 straight b end fraction end style

Solution 19

begin mathsize 12px style For space any space quadratic space equation space ax squared space plus space bx space plus space straight c space equals space 0 space having space equal space roots space condition space is
straight b squared space minus space 4 ac space equals space 0 space space space space space space space space space..... open parentheses 1 close parentheses
According space to space the space question comma space the space quadratic space equation space is
ax squared space plus space 2 bx space plus space straight c space equals space 0
from space left parenthesis 1 right parenthesis
open parentheses 2 straight b close parentheses squared space minus space 4 ac space equals space 0
4 straight b squared space minus space 4 ac space equals space 0
straight b squared space equals space ac
straight c space equals space straight b squared over straight a
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 20

begin mathsize 12px style If space straight x squared space plus space straight k left parenthesis 4 straight x space plus space straight k space minus space 1 right parenthesis space plus space 2 space equals space 0 space has space equal space roots comma space then space straight k space equals
left parenthesis straight a right parenthesis space fraction numerator negative 2 over denominator 3 end fraction comma space 1
open parentheses straight b close parentheses space 2 over 3 comma space minus 1
open parentheses straight c close parentheses space 3 over 2 comma space 1 third
open parentheses straight d close parentheses space fraction numerator negative 3 over denominator 2 end fraction comma space fraction numerator negative 1 over denominator 3 end fraction end style

Solution 20

begin mathsize 12px style For space equation comma space straight x squared space plus space straight k open parentheses 4 straight x space plus space straight k space minus space 1 close parentheses space plus space 2 space equals space 0
space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight x squared space plus space 4 kx space plus space straight k open parentheses straight k space minus space 1 close parentheses space plus space 2 space equals space 0
Condition space for space equal space roots space is comma
open parentheses 4 straight k close parentheses squared space minus space 4 space open parentheses straight k open parentheses straight k space minus space 1 close parentheses space plus space 2 close parentheses space equals space 0
16 straight k squared space minus space 4 open parentheses straight k squared space minus space straight k space plus space 2 close parentheses space equals space 0
4 straight k squared space minus space open parentheses straight k squared space minus space straight k space plus space 2 close parentheses space equals space 0
4 straight k squared space minus space straight k squared space plus space straight k space minus space 2 space equals space 0
3 straight k squared space plus space straight k space minus 2 space equals space 0
3 straight k squared space plus space 3 straight k space minus space 2 straight k space minus space 2 space equals space 0
3 straight k space open parentheses straight k space plus space 1 close parentheses space minus space 2 open parentheses straight k space plus space 1 close parentheses space equals space 0
open parentheses 3 straight k space minus space 2 close parentheses space open parentheses straight k space plus space 1 close parentheses space equals space 0
straight k space equals space minus 1 space or space straight k space equals space 2 over 3
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 21

begin mathsize 12px style If space the space sum space and space product space of space the space roots space of space the space equation space kx squared space plus space 6 straight x space plus 4 straight k space equals space 0 space are space equal comma space then space straight k space equals
open parentheses straight a close parentheses space fraction numerator negative 3 over denominator 2 end fraction
open parentheses straight b close parentheses space 3 over 2
open parentheses straight c close parentheses space 2 over 3
open parentheses straight d close parentheses space fraction numerator negative 2 over denominator 3 end fraction end style

Solution 21

begin mathsize 12px style For space any space quadratic space equation space ax squared space plus space bx space plus space straight c space equals space 0
sum space of space roots space equals space fraction numerator negative straight b over denominator straight a end fraction space and space product space of space roots space equals space straight c over straight a
For space equation comma space kx squared space plus space 6 straight x space plus space 4 straight k space equals space 0 comma space given space sum space and space product space of space roots space of space this space equation space are space equal comma
Hence comma
fraction numerator negative open parentheses 6 close parentheses over denominator straight k end fraction space equals space fraction numerator 4 straight k over denominator straight k end fraction
4 straight k space equals space minus 6
straight k space equals space fraction numerator negative 3 over denominator 2 end fraction
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 22

If sin α and cos α are the roots of the equation ax+ bx + c = 0, then b2 = 

(a) a– 2ac

(b) a+ 2ac

(c) a– ac

(d) a+ acSolution 22

begin mathsize 12px style ax squared space plus space bx space plus space straight c space equals space 0
sin space straight alpha space plus space cos space straight alpha space equals space fraction numerator negative straight b over denominator straight a end fraction space space..... open parentheses 1 close parentheses space space space space and
sin space straight alpha space cosα space equals space straight c over straight a space space space space space space space...... open parentheses 2 close parentheses
On space squaring space we space get comma
open parentheses sin space straight alpha space plus space cos space straight alpha close parentheses squared space equals space straight b squared over straight a squared
sin squared straight alpha space plus space cos squared straight alpha space plus space 2 space sinα space cosα space equals space straight b squared over straight a squared space space space space space space space space space space space space.... open parentheses 3 close parentheses
We space know space sin squared space straight alpha space plus space cos squared space straight alpha space equals space 1 space space space space space space space..... open parentheses 4 close parentheses
from space open parentheses 2 close parentheses comma space open parentheses 3 close parentheses comma space open parentheses 4 close parentheses
1 space plus space 2 open parentheses straight c over straight a close parentheses space equals space straight b squared over straight a squared
straight b squared over straight a squared space equals space fraction numerator straight a space plus space 2 straight c over denominator straight a end fraction
straight b squared space equals straight a to the power of 2 space end exponent plus space 2 ac
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 23

If 2 is a root of the equation x+ ax + 12 = 0 and the quadratic equation x + ax + q = 0 has equal roots, then q =

(a) 12

(b) 8

(c) 20

(d) 16Solution 23

Given, 2 is a root of equation x+ ax + 12 = 0

so (2)+ a(2) + 12 = 0

4 + 2a + 12 = 0

a = -8     …..(1)

Given x+ ax + q = 0 has equal roots so

a– 4q = 0   ……(2)

from (1) & (2)

(-8)– 4q = 0

4q = 64

q = 16

So, the correct option is (d).Question 24

If the sum of the roots of the equation x2 – (k + 6)x + 2(2k – 1) = 0 is equal to half of their product, then k =

(a) 6

(b) 7

(c) 1

(d) 5Solution 24

begin mathsize 12px style For space any space quadratic space equation space straight x squared space minus space left parenthesis straight k space plus space 6 right parenthesis straight x space plus space 2 left parenthesis 2 straight k space minus space 1 right parenthesis space equals space 0
open parentheses sum space of space roots close parentheses space equals space fraction numerator negative open curly brackets negative open parentheses straight k space plus space 6 close parentheses close curly brackets over denominator 1 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals straight k space plus space 6 space space space space space space space......... open parentheses 1 close parentheses
open parentheses product space of space roots close parentheses space equals space fraction numerator 2 open parentheses 2 straight k space minus space 1 close parentheses over denominator 1 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 2 open parentheses 2 straight k space minus space 1 close parentheses space space space space space space space space space space space space space space...... open parentheses 2 close parentheses
Given space that space the space sum space of space roots space of space equation space equals space 1 half open parentheses product space of space roots close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
straight k space plus space 6 space equals space 1 half open parentheses 2 open parentheses 2 straight k space minus space 1 close parentheses close parentheses
straight k space plus space 6 space equals space 2 straight k space minus space 1
box enclose 7 space equals space straight k end enclose
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 25

If a and b are roots of the equation x2 + ax + b = 0, then a + b =

(a) 1

(b) 2

(c) -2

(d) -1Solution 25

If a and b are roots of the equation x+ ax + b = 0

Then, sum of roots = -a

a + b = -a

2a + b = 0          …….(1)

product of roots = b

ab = b

ab – b = 0

b(a – 1) = 0         ……..(2)

from (1) and (2)

-2a(a – 1) = 0…(From (1), we have b = -2a)

a(a – 1) = 0

a = 0 or a = 1

if a = 0 rightwards double arrow b = 0

if a = 1 rightwards double arrow b = -2

Now a and b can’t be zero at same time, so correct solution is

a = 1 and b = -2

a + b = -1

So, the correct option is (d).Question 26

A quadratic equation whose one root is 2 and the sum of whose roots is zero, is

(a) x+ 4 = 0

(b) x– 4 = 0

(c) 4x– 1 = 0

(d) x– 2 = 0Solution 26

Given sum of roots is zero and one root is 2.

So the other root must be -2

so any quadratic equation having root 2 and -2 is

(x – 2) (x – (-2)) = 0

(x – 2) (x + 2) = 0

x– 4 = 0

So, the correct option is (b).Question 27

If one root of the equation ax+ bx + c = 0 is three times the other, then b2 : ac =

(a) 3 : 1

(b) 3 : 16

(c) 16 : 3

(d) 16 : 1Solution 27

begin mathsize 12px style If space straight alpha comma space straight beta space are space roots space of space equation space ax squared space plus space bx space plus space straight c space equals space 0
Then comma space straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space space...... open parentheses 1 close parentheses
and space αβ space equals space straight c over straight a space space space space space space...... open parentheses 2 close parentheses
It space is space given space that space one space root space is space three space times space the space other space one
Let space straight alpha space equals space 3 straight beta space space space space space space space space space....... open parentheses 3 close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 3 close parentheses
4 straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction
straight beta space equals space fraction numerator negative straight b over denominator 4 straight a end fraction space space space space space space space space space space space...... open parentheses 4 close parentheses
from space open parentheses 2 close parentheses space & space open parentheses 3 close parentheses
3 straight beta squared space equals space straight c over straight a space space space space space space space space space.......... open parentheses 5 close parentheses
from space open parentheses 4 close parentheses space & space open parentheses 5 close parentheses
3 open parentheses fraction numerator negative straight b over denominator 4 straight a end fraction close parentheses squared space equals space straight c over straight a
fraction numerator 3 straight b squared over denominator 16 straight a squared end fraction equals straight c over straight a
straight b squared over ac equals space 16 over 3
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 28

If one root of the equation 2x+ kx + 4 = 0 is 2, then the other root is

(a) 6

(b) -6

(c) -1

(d) 1Solution 28

begin mathsize 12px style We space know space that comma space for space straight a space quadratic space equation space ax squared space plus space bx space plus space straight c space equals space 0
product space of space roots space equals space straight c over straight a space space space space space space space space space space space space space........ open parentheses 1 close parentheses
According space to space the space question comma space equation space is space 2 straight x squared space plus space kx space plus space 4 space equals space 0
from space open parentheses 1 close parentheses comma
product space of space roots space equals 4 over 2
αβ space equals space 2 space space space space space space space space space space....... open parentheses 2 close parentheses
given space one space root space is space 2. space Hence space from space open parentheses 2 close parentheses space other space root space is space 1.
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 29

If one root of the equation x2 + ax + 3 = 0 is 1, then its other root is

(a) 3

(b) -3

(c) 2

(d) -2Solution 29

x+ ax + 3 = 0

product of roots = 3

One root is 1. Hence other root is 3.

So, the correct option is (a).

Chapter 8 Quadratic Equations Exercise 8.85

Question 30

If one root of the equation 4x– 2x + (λ – 4) = 0 is a reciprocal of the other, then λ =

(a) 8

(b) -8

(c) 4

(d) -4Solution 30

begin mathsize 12px style Let space apostrophe straight a apostrophe space be space straight a space space root space of space given space equation.
Then space according space to space the space question comma space other space root space is space 1 over straight a.
4 straight x squared space minus space 2 straight x space plus space open parentheses straight lambda space minus space 4 close parentheses space equals space 0
product space of space roots space equals space fraction numerator straight lambda space minus space 4 over denominator 4 end fraction
straight a space cross times space 1 over straight a space equals space fraction numerator straight lambda space minus space 4 over denominator 4 end fraction
1 space equals fraction numerator space straight lambda space minus space 4 over denominator 4 end fraction
straight lambda space minus space 4 space equals space 4
straight lambda space equals space 8
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 31

begin mathsize 12px style If space straight y space equals space 1 space is space straight a space common space root space of space the space equations space ay squared plus space ay space plus space 3 space equals space 0 space and space straight y squared space plus space straight y space plus straight b space equals space 0 comma space then space ab space equals
open parentheses straight a close parentheses space 3
open parentheses straight b close parentheses space fraction numerator negative 7 over denominator 2 end fraction
open parentheses straight c close parentheses space 6
open parentheses straight d close parentheses space minus 3 end style

Solution 31

begin mathsize 12px style If space straight y space equals space 1 space is space straight a space root space of space equation space ay squared space plus space ay space plus space 3 space equals space 0
Then comma
straight a open parentheses 1 close parentheses squared space plus space straight a open parentheses 1 close parentheses space plus space 3 space equals space 0
2 straight a space plus space 3 space equals space 0
straight a space equals space fraction numerator negative 3 over denominator 2 end fraction space space space space space space space space space space space space space........ open parentheses 1 close parentheses
Also space straight y space equals space 1 space is space straight a space root space of space equation space straight y squared space plus space straight y space plus space straight b space equals space 0
Then comma
open parentheses 1 close parentheses squared space plus space 1 space plus space straight b space equals space 0
box enclose straight b space equals space minus 2 end enclose space space space space space space space space space space space space space space space space...... open parentheses 2 close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
ab space equals space open parentheses fraction numerator negative 3 over denominator 2 end fraction close parentheses open parentheses negative 2 close parentheses
space space space space space space equals space 3
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 32

begin mathsize 12px style The space values space of space straight k space for space which space the space quadratic space equation space 16 straight x squared space plus space 4 kx space plus space 9 space equals space 0 space has space real space and space equal space root space are
open parentheses straight a close parentheses space 6 comma space fraction numerator negative 1 over denominator 6 end fraction
open parentheses straight b close parentheses space 36 comma space minus 36
left parenthesis straight c right parenthesis space 6 comma space minus 6
open parentheses straight d close parentheses space 3 over 4 comma space fraction numerator negative 3 over denominator 4 end fraction end style

Solution 32

Any quadratic equation, ax+ bx + c = 0 has real and equal roots if b– 4ac = 0

For the question, equation is 16x+ 4kx + 9 = 0,

(4k)– 4 × 16 × 9 = 0

16k– 36 × 16 = 0

k2 – 36 = 0

k= 36

k = ± 6

So, the correct option is (c).

Read More

RD SHARMA SOLUTION CHAPTER- 7 Statistics| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 7 Statistics Exercise Ex. 7.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Chapter 7 Statistics Exercise Ex. 7.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Chapter 7 Statistics Exercise Ex. 7.3

Question 1

Solution 1

Question 2

A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.

Number of plants0 – 22 – 44 – 66 – 88 – 1010 – 1212 – 14
Number of houses1215623



Which method did you use for finding the mean, and why?Solution 2

Let us find class marks (xi) for each interval by using the relation.

Now we may compute xi and fixias following

Number of plantsNumber of houses (fi)xifixi
0 – 2111 x 1 = 1
2 – 4232 x 3 = 6
4 – 6151 x 5 = 5
6 – 8575 x 7 = 35
8 – 10696 x 9 = 54
10 – 122112 x 11 = 22
12 – 143133 x 13 = 39
Total20 162



From the table we may observe that
 

So, mean number of plants per house is 8.1.
We have used here direct method as values of class marks (xi) and fi are small.

Question 3

Solution 3

Question 4

Thirty women were examined in a hospital by a doctor and the number of heart beats per minute were recorded and summarized as follows. Fine the mean heart beats per minute for these women, choosing a suitable method.

Number of heart beats per minute65 – 6868 – 71
71-74
74 – 7777 – 8080 – 8383 – 86
Number of women2438742

Solution 4

We may find class mark of each interval (xi) by using the relation.

Class size h of this data = 3
Now taking 75.5 as assumed mean (a) we may calculate di, ui, fiui as following.

Number of heart beats per minuteNumber of women fixidi = xi -75.5fiui
65 – 68266.5– 9– 3– 6
68 – 71469.5– 6– 2– 8
71 – 74372.5– 3– 1– 3
74 – 77875.5000
77 – 80778.5317
80 – 83481.5628
83 – 86284.5936
Total30   4


Now we may observe from table that

So mean hear beats per minute for these women are 75.9 beats per minute.Question 6

Find the mean of the following frequency distribution:

Solution 6

Question 7

Find the mean of the following frequency distribution:

Solution 7

Question 8

Find the mean of the following frequency distribution:

Solution 8

Question 9

Find the mean of the following frequency distribution:

Solution 9

Question 10

Find the mean of the following frequency distribution:

Solution 10

Question 11

Find the mean of the following frequency distribution:

Solution 11

Question 12

Find the mean of the following frequency distribution:

Solution 12

Question 13

Find the mean of the following frequency distribution:

Solution 13

Question 14

Find the mean of the following frequency distribution:

Solution 14

Question 15

For the following distribution, calculate mean using all suitable methods :

Size of item1-44-99-1616-27
Frequency6122620

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

The following distribution shows the daily pocket allowance given to the children of a multistorey building. The average pocket allowance is Rs 18.00. Find out the missing frequency.

Solution 19

Question 20

Solution 20

Question 21

In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number of mangoes. The following was the distribution of mangoes according to the number of boxes.

Number of mangoes50 – 5253 – 5556 – 5859 – 6162 – 64
Number of boxes1511013511525



Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?Solution 21

Number of mangoesNumber of boxes
fi
50 – 5215
53 – 55110
56 – 58135
59 – 61115
62 – 6425


We may observe that class intervals are not continuous. There is a gap of 1 between two class intervals. So we have to add  to upper class limit and subtract  from lower class limit of each interval.
And class mark (xi) may be obtained by using the relation

Class size (h) of this data = 3

Now taking 57 as assumed mean (a) we may calculate di, ui, fiui as follows:

Class intervalfixidi = xi – 57fiui
49.5 – 52.51551-6-2-30
52.5 – 55.511054-3-1-110
55.5 – 58.513557000
58.5 – 61.51156031115
61.5 – 64.525636250
Total400   25


Now, we have:
 
Clearly mean number of mangoes kept in a packing box is 57.19.

Note: We have chosen step deviation method here as values of fi, di are big and also there is a common multiple between all di.

Question 22

The table below shows the daily expenditure on food of 25 households in a locality.

Daily expenditure (in Rs)100 – 150150 – 200200 – 250250 – 300300 – 350
Number of households451222


Find the mean daily expenditure on food by a suitable method.Solution 22

We may calculate class mark (xi) for each interval by using the relation


Class size = 50

Now taking 225 as assumed mean (a) we may calculate di, ui, fiui as follows:

Daily expenditure (in Rs)fixidi = xi – 225fiui
100 – 1504125-100-2-8
150 – 2005175-50-1-5
200 – 25012225000
250 – 30022755012
300 – 350232510024
Total    -7


Now we may observe that –

Question 23

To find out the concentration of SO2 in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:

concentration of SO2 (in ppm)Frequency
0.00 – 0.044
0.04 – 0.089
0.08 – 0.129
0.12 – 0.162
0.16 – 0.204
0.20 – 0.242


Find the mean concentration of SO2 in the air.Solution 23

Concentration of SO2 (in ppm)FrequencyClass mark xidi = xi – 0.14fiui
0.00 – 0.0440.02-0.12-3-12
0.04 – 0.0890.06-0.08-2-18
0.08 – 0.1290.10-0.04-1-9
0.12 – 0.1620.14000
0.16 – 0.2040.180.0414
0.20 – 0.2420.220.0824
Total30   -31

Question 25

The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.


Literacy rate
(in %)

45 – 55

55 – 65

65 – 75

75 – 85

85 – 95

Number of cities

3

10

11

8

3

Solution 25

We may find class marks by using the relation



Class size (h) for this data = 10

Now taking 70 as assumed mean (a) we may calculate di, ui, and fiui as follows:  


Literacy rate
(in %)

Number of cities
fi

xi

dixi – 70

ui =di/10

fiui

45 – 55
3
50

-20

-2

-6

55 – 65

10

60

-10

-1

-10

65 – 75

11

70

0

0

0

75 – 85

8

80

10

1
8

85 – 95

3

90

20

2

6

Total

35




-2



Now we may observe that

So, mean literacy rate is 69.43%.Question 26

The following is the cumulative frequency distribution (of less than type) of 1000 persons each of age 20 years and above. Determine the mean age.

Age below (in years)304050607080
Number of persons1002203507509501000

Solution 26

Here, we have cumulative frequency distribution less than type. First we convert it into an ordinary frequency distribution.

Question 27

If the means of the following frequency distribution is 18, find the missing frequency.

Class interval:11-1313-1515-1717-1919-2121-2323-25
Frequency:36913f54

Solution 27

Question 28

Find the missing frequencies in the following distribution, if the sum of the frequencies is 120 and the mean is 50.

Class:0-2020-4040-6060-8080-100
Frequency:17f132f219

Solution 28

Question 29

The daily income of a sample of 50 employees are tabulated as follows:

Income (in Rs.):1-200201-400401-600601-800
No. of employees:1415147

Find the mean daily income of employees.Solution 29

Question 5

Find the mean of the following frequency distribution:

Class interval3 – 55 – 77 – 99 – 1111 – 13
Frequency5101078

Solution 5

Let the assumed mean be A = 8

Here, h = 2

Class intervalMid valuexidi = xi – 8 fifiui 
3 – 55 – 77 – 99 – 1111 – 134681012-4-2024-2-10125101078-10-100716
    N = 40

Question 24 (i)

A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.

Number of days:0 – 66 – 1212 – 1818 – 2424 – 3030 – 3636 – 42
Number of students101174431

Solution 24 (i)

We may find class mark of each interval by using the relation

Number of daysNumber of students fixidi = xi – 21fidi 
0 – 66 – 1212 – 1818 – 2424 – 3030 – 3636 – 42101174431391521273339-18-12-6061218-180-132-420243618
 40  

Assumed mean A = 21

Hence, the number of days a student was absent is 14.1.Question 30

The marks obtained by 110 students in an examination are given below:

Marks:30 – 3535 – 4040 – 4545 – 5050 – 5555 – 6060 – 65
Frequency141628231883

Find the mean marks of the students.Solution 30

We may find class mark of each interval by using the relation

MarksNumber of students fixidi = xi – 47.5fidi 
30 – 3535 – 4040 – 4545 – 5050 – 5555 – 6060 – 6514162823188332.537.542.547.552.557.562.5-15-10-5051015-210-160-1400908045
 110  

Assumed mean A = 47.5

Hence, mean marks of the students is 44.81.

Chapter 7 Statistics Exercise Ex. 7.4

Question 1

Solution 1

Question 2

Solution 2

The median height of the students is Rs 167.13.Question 3

Solution 3

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Find the following tables gives the distribution of the life time of 400 neon lamps:


Life time (in hours)

Number of lamps

1500 – 2000

14

2000 – 2500

56

2500 – 3000

60

3000 – 3500

86

3500 – 4000

74

4000 – 4500

62

4500 – 5000

48



Find the median life time of a lamp.Solution 8

We can find cumulative frequencies with their respective class intervals as below –


Life time

Number of lamps (fi)

Cumulative frequency

1500 – 2000

14

14

2000 – 2500

56

14 + 56 = 70

2500 – 3000

60

70 + 60 = 130

3000 – 3500

86

130 + 86 = 216

3500 – 4000

74

216 + 74 = 290

4000 – 4500

62

290 + 62 = 352

4500 – 5000

48

352 + 48 = 400

Total (n)

400
 



Now we may observe that cumulative frequency just greater than  is 216 belonging to class interval 3000 – 3500.
Median class = 3000 – 3500
Lower limit (l) of median class = 3000
Frequency (f) of median class = 86
Cumulative frequency (cf) of class preceding median class = 130
Class size (h) = 500


So, median life time of lamps is 3406.98 hours.Question 9

The distribution below gives the weights of 30 students of a class. Find the median weight of the students.


Weight
(in kg)

40 – 45

45 – 50

50 – 55

55 – 60

60 – 65

65 – 70

70 – 75

Number of students
2
3

8

6

6

3

2

Solution 9

We may find cumulative frequencies with their respective class intervals as below

Weight (in kg)40 – 4545 – 5050 – 5555 – 6060 – 6565 – 7070 – 75
Number of students (f)2386632
c.f.251319252830


Cumulative frequency just greater than   is 19, belonging to class interval 55 – 60.
Median class = 55 – 60
Lower limit (l) of median class = 55
Frequency (f) of median class = 6
Cumulative frequency (cf) of median class = 13
Class size (h) = 5



So, median weight is 56.67 kg.Question 10

Solution 10

Question 11

You are given that the median value is 46 and the total number of items is 230.(i) Using the median formula fill up missing frequencies.(ii) Calculate the AM of the completed distribution.Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15(i)

Solution 15(i)

Question 15(ii)

Solution 15(ii)

Question 16

Solution 16

Question 17

A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 year.


Age (in years)

Number of policy holders

Below 20

2

Below 25

6

Below 30

24

Below 35

45

Below 40

78

Below 45

89

Below 50

92

Below 55

98

Below 60

100

Solution 17

Here class width is not same. There is no need to adjust the frequencies according to class intervals. Now given frequency table is of less than type represented with upper class limits. As policies were given only to persons having age 18 years onwards but less than 60 years, we can define class intervals with their respective cumulative frequency as below


Age (in years)

Number of policy holders (fi)

Cumulative frequency (cf)

18 – 20

2

2

20 – 25

6 – 2 = 4

6

25 – 30

24 – 6 = 18

24

30 – 35

45 – 24 = 21

45

35 – 40

78 – 45 = 33

78

40 – 45

89 – 78 = 11

89
45 – 50
92 – 89 = 3

92

50 – 55

98 – 92 = 6

98

55 – 60

100 – 98 = 2

100

Total (n)
 



Now from table we may observe that n = 100.

Cumulative frequency (cf) just greater than  is 78 belonging to interval 35 – 40
So, median class = 35 – 40
Lower limit (l) of median class = 35
Class size (h) = 5
Frequency (f) of median class = 33
Cumulative frequency (cf) of class preceding median class = 45


So, median age is 35.76 years.Question 18

The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:


Length (in mm)

Number or leaves fi

118 – 126

3

127 – 135

5

136 – 144

9

145 – 153

12

154 – 162

5

163 – 171

4

172 – 180

2



Find the median length of the leaves.Solution 18

The given data is not having continuous class intervals. We can observe that difference between two class intervals is 1. So, we have to add and subtract

  to upper class limits and lower class limits.
Now continuous class intervals with respective cumulative frequencies can be represented as below:


Length (in mm)

Number or leaves fi

Cumulative frequency

117.5 – 126.5

3

3

126.5 – 135.5

5

3 + 5 = 8

135.5 – 144.5


8 + 9 = 17

144.5 – 153.5

12

17 + 12 = 29

153.5 – 162.5


29 + 5 = 34

162.5 – 171.5

4

34 + 4 = 38

171.5 – 180.5

2

38 + 2 = 40



From the table we may observe that cumulative frequency just greater then
  is 29, belonging to class interval 144.5 – 153.5.
Median class = 144.5 – 153.5
Lower limit (l) of median class = 144.5
Class size (h) = 9
Frequency (f) of median class = 12
Cumulative frequency (cf) of class preceding median class = 17



So, median length of leaves is 146.75 mm.Question 19

Solution 19

Question 20

The median of the distribution given below is 14.4. Find the values of x and y, if the total frequency is 20.

Class interval:0-66-1212-1818-2424-30
Frequency:4x5y1

Solution 20

Question 21

The median of the following data is 50. Find the values of p and q, if the sum of all the frequencies is 90.

Marks:20-3030-4040-5050-6060-7070-8080-90
Frequency:p152520q810

Solution 21

Question 4

Calculate the median salary of the following data giving salaries of 280 persons:

Salary (in thousands):5 – 1010 – 1515 – 2020 – 2525 – 3030 – 3535 – 4040 – 4545 – 50
Frequency49133631567421

Solution 4

The cumulative frequency table is

SalaryFrequencyfiCumulative frequency(c.f.)
5 – 1010 – 1515 – 2020 – 2525 – 3030 – 3535 – 4040 – 4545 – 504913363156742149182245260266273277279280

The cumulative frequency greater than and nearest to 140 is 182.

So, median class is 10 – 15

Lower limit (l) = 10, class size (h) = 5, c.f. = 49

Frequency of median class = 133

Hence, mean median salary is Rs. 13421.

Chapter 7 Statistics Exercise Ex. 7.5

Question 1

Solution 1

Question 2

Solution 2

Question 3(i)

Solution 3(i)

Question 3(ii)

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

The following table shows the ages of the patients admitted in a hospital during a year:


Age (in years)

5 – 15

15 – 25

25 – 35

35 – 45

45 – 55

55 – 65

Number of patients

6

11

21

23

14

5



Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.Solution 7

We may compute class marks (xi) as per the relation

 
Now taking 30 as assumed mean (a) we may calculate di and fidi as follows.


Age (in years)

Number of patients
fi

class mark
xi

dixi – 30

fidi

5 – 15

6

10

-20

-120

15 – 25

11

20

-10

-110

25 – 35

21

30

0

0

35 – 45

23

40

10

230

45 – 55

14

50

20

280

55 – 65

5

60

30

150

Total

80



430



From the table we may observe that


Clearly, mean of this data is 35.38. It represents that on an average the age of a patient admitted to hospital was 35.38 years.
As we may observe that maximum class frequency is 23 belonging to class interval 35 – 45.
So, modal class = 35 – 45
Lower limit (l) of modal class = 35
Frequency (f1) of modal class = 23
Class size (h) = 10
Frequency (f0) of class preceding the modal class = 21
Frequency (f2) of class succeeding the modal class = 14


Clearly mode is 36.8.It represents that maximum number of patients admitted in hospital were of 36.8 years.Question 8

The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:


Lifetimes (in hours)

0 – 20

20 – 40

40 – 60

60 – 80

80 – 100

100 – 120

Frequency

10

35

52

61

38

29



Determine the modal lifetimes of the components.Solution 8

From the data given as above we may observe that maximum class frequency is 61 belonging to class interval 60 – 80.
So, modal class = 60 – 80
Lower class limit (l) of modal class = 60
Frequency (f1) of modal class = 61
Frequency (f0) of class preceding the modal class = 52
Frequency (f2) of class succeeding the modal class = 38
Class size (h) = 20


 
So, modal lifetime of electrical components is 65.625 hours.Question 9

Solution 9

Question 10

The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.


Number of students
per teacher

Number of
states/U.T

15 – 20

3

20 – 25

8

25 – 30

9

30 – 35

10

35 – 40

3

40 – 45

0

45 – 50

0

50 – 55

2

Solution 10

We may observe from the given data that maximum class frequency is 10 belonging to class interval 30 – 35.
So, modal class = 30 – 35
Class size (h) = 5
Lower limit (l) of modal class = 30
Frequency (f1) of modal class = 10
Frequency (f0) of class preceding modal class = 9
Frequency (f2) of class succeeding modal class = 3


It represents that most of states/U.T have a teacher – student ratio as 30.6

Now we may find class marks by using the relation


Now taking 32.5 as assumed mean (a) we may calculate di, ui and fiui as following.


Number of students
per teacher

Number of states/U.T
(fi)

xi

di = xi – 32.5

 ui

fiui

15 – 20

3

17.5

-15

-3

-9

20 – 25

8

22.5

-10

-2

-16

25 – 30

9

27.5

-5

-1

-9

30 – 35

10

32.5

0

0

0

35 – 40

3

37.5

5

1

3

40 – 45

0

42.5

10

2

0

45 – 50

0

47.5

15

3

0

50 – 55

2

52.5

20


8

Total

35 
   
-23





So mean of data is 29.2
It represents that on an average teacher – student ratio was 29.2.Question 11

Solution 11

Question 12

A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data:


Number
of cars

0 – 10

10 – 20

20 – 30

30 – 40

40 – 50

50 – 6

60 – 70

70 – 80

Frequency

7

14

13

12

20

11

15

8

Solution 12

From the given data we may observe that maximum class frequency is 20 belonging to 40 – 50 class intervals.
So, modal class = 40 – 50
Lower limit (l) of modal class = 40
Frequency (f1) of modal class = 20
Frequency (f0) of class preceding modal class = 12
Frequency (f2) of class succeeding modal class = 11
Class size = 10

So mode of this data is 44.7 cars.Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure.


Expenditure
(in Rs)

Number of families 

1000 – 1500

24

1500 – 2000

40

2000 – 2500

33

2500 – 3000

28

3000 – 3500

30

3500 – 4000

22

4000 – 4500

16

4500 – 5000

7

Solution 16

We may observe from the given data that maximum class frequency is 40 belonging to 1500 – 2000 intervals.
So, modal class = 1500 – 2000
Lower limit (l) of modal class = 1500
Frequency (f1) of modal class = 40
Frequency (f0) of class preceding modal class = 24
Frequency (f2) of class succeeding modal class = 33
Class size (h) = 500

 

So modal monthly expenditure was Rs. 1847.83
Now we may find class mark as


Class size (h) of give data = 500
Now taking 2750 as assumed mean (a) we may calculate di, ui and fiui as follows:


Expenditure
(in Rs)

Number of familiesfi

xi

di = xi – 2750

 ui

fiui 

1000 – 1500

24

1250

-1500

-3

-72

1500 – 2000

40

1750

-1000

-2

-80

2000 – 2500

33

2250

-500

-1 
 -33

2500 – 3000

28

2750

0

0

0

3000 – 3500

30

3250

500

1

30

3500 – 4000

22

3750

1000

2

44

4000 – 4500

16

4250

1500

3

48

4500 – 5000

7

4750

2000

4

28

Total

200

 

 

 

-35



Now from table may observe that


So, mean monthly expenditure was Rs. 2662.50.Question 17

The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.

Runs scored
No of batsman

3000 – 4000

4

4000 – 5000

18

5000 – 6000

9

6000 – 7000

7

7000 – 8000

6

8000 – 9000

3

9000 -10000

1

10000 – 11000

1



Find the mode of the data.Solution 17

From the given data we may observe that maximum class frequency is 18 belonging to class interval 4000 – 5000.
So, modal class = 4000 – 5000
Lower limit (l) of modal class = 4000
Frequency (f1) of modal class = 18
Frequency (f0) of class preceding modal class = 4
Frequency (f2) of class succeeding modal class = 9
Class size (h) = 1000

So mode of given data is 4608.7 runs.Question 18

The frequency distribution table of agriculture holdings in a village is given below:

Area of land (in hectares):1-33-55-77-99-1111-13
Number of families:204580554012

Find the modal agriculture holdings of the village.Solution 18

Question 19

The monthly income of 100 families are given as below:

Income in (in Rs.)Number of families
0-50008
5000-1000026
10000-1500041
15000-2000016
20000-250003
25000-300003
30000-350002
35000-400001

Calculate the modal income.Solution 19

Question 3 (iv)

Find the mode of the following distribution:

Class0 – 1010 – 2020 – 3030 – 4040 – 5050 – 6060 – 70
Frequency81010161267

Solution 3 (iv)

The cumulative frequency table is

SalaryFrequencyfi
0 – 1010 – 2020 – 3030 – 4040 – 5050 – 6060 – 7081010161267

Modal class is 30 – 40

Lower limit (l) = 30, class size (h) = 10, f = 16, f1 = 10 and f2 = 12

Hence, the mode is 36.

Chapter 7 Statistics Exercise Ex. 7.6

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

The annual rainfall record of a city for 66 days if given in the following table:

Rainfall (in cm):0-1010-2020-3030-4040-5050-60
Number of days:221081556

Calculate the median rainfall using ogives of more than type and less than type.Solution 8

Less Than Series:

Class intervalCumulative Frequency
Less than 1022
Less than 2032
Less than 3040
Less than 4055
Less than 5060
Less than 6066

We plot the points (10, 22), (20, 32), (30, 40), (40, 55), (50, 60) and (60, 66) to get ‘less than type’ ogive.

More Than Series:

Class intervalFrequency
More than 066
More than 1044
More than 2034
More than 3026
More than 4011
More than 506

We plot the points (0, 66), (10, 44), (20, 24), (30, 26), (40, 11), and (50, 6) to get more than ogive.

From the graph, median = 21.25 cmQuestion 9

Change the following distribution to a ‘More than type’ distribution. Hence, draw the ‘more than type’ ogive for this distribution.

Class-interval20 – 3030 – 4040 – 5050 – 6060 – 7070 – 8080 – 90
Frequency108122462515

Solution 9

More than type frequency distribution is given by

Class intervalFrequencyfiCumulative frequency
More than 20More than 30More than 40More than 50More than 60More than 70More than 80108122462515100908270464015

So, more than type frequency curve is

Question 10

The following distribution gives daily income of 50 workers of a factory:

Daily income (in Rs.)200 – 220220 – 240240 – 260260 – 280280 – 300
Number of workers12148610

Convert the distribution above to a ‘less than type’ cumulative frequency distribution and draw its ogive.Solution 10

Less than type frequency distribution is given by

Class intervalFrequencyfiCumulative frequency
Less than 220Less than 240Less than 260Less than 280Less than 300121486101226344050

So, less than type frequency curve is

Chapter 7 Statistics Exercise 7.66

Question 1

Which of the following is not a measure of central tendency?

(a) Mean

(b) Median

(c) Mode

(d) Standard deviationSolution 1

There are three main measure of central tendency the mode, the median and the mean.

Each of these measures describes a different indication of the typical or central value in the distribution.

The mode is the most commonly occuring value in a distribution.

Median is middle value of distribution.

While standard deviation is a measure of dispersion of a set of data from its mean.

So, the correct option is (d).Question 2

The algebraic sum of deviations of a frequency distribution from its mean is

(a) always positive

(b) always negative

(c) 0

(d) a non-zero numberSolution 2

begin mathsize 12px style Let space the space mean space be space space straight x with bar on top space for space any space distribution
If space straight n space terms space are space straight a subscript 1 comma space straight a subscript 2 space comma space.......... straight a subscript straight n
deviation space of space data space from space mean space colon space open parentheses straight a subscript 1 space minus space straight x with bar on top close parentheses comma space open parentheses straight a subscript 2 space minus space straight x with bar on top close parentheses comma space......... open parentheses straight a subscript straight n space minus space straight x with bar on top close parentheses
algebraic space sum space equals space open parentheses straight a subscript 1 space minus space straight x with bar on top close parentheses space plus space open parentheses straight a subscript 2 space minus space straight x with bar on top close parentheses space plus space space......... open parentheses straight a subscript straight n space minus space straight x with bar on top close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses straight a subscript 1 space plus space straight a subscript 2 space plus space........ straight a subscript straight n close parentheses space minus space straight n straight x with bar on top space space space space space space space space space space space space space....... open parentheses 1 close parentheses
We space also space know comma space space space straight x with bar on top space space equals space fraction numerator open parentheses straight a subscript 1 space plus space straight a subscript 2 space plus space....... straight a subscript straight n close parentheses over denominator straight n end fraction space space space space space space space space space space space space space space space....... open parentheses 2 close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
algebraic space sum space equals space 0
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 3

begin mathsize 12px style The space arithmetic space mean space of space 1 comma space 2 comma space 3 comma space..... space straight n space is space
open parentheses straight a close parentheses space fraction numerator straight n space plus space 1 over denominator 2 end fraction
left parenthesis straight b right parenthesis space fraction numerator straight n space minus space 1 over denominator 2 end fraction
left parenthesis straight c right parenthesis space straight n over 2
left parenthesis straight d right parenthesis space straight n over 2 space plus space 1 end style

Solution 3

begin mathsize 12px style arithmetic space mean space equals space fraction numerator sum space of space all space numbers over denominator total space numbers end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 1 space plus space 2 space plus space 3 space plus space...... space straight n over denominator straight n end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator begin display style fraction numerator straight n open parentheses straight n space plus space 1 close parentheses over denominator 2 end fraction end style over denominator straight n end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator straight n space plus space 1 over denominator 2 end fraction
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 4

For a frequency distribution, mean, median and mode are connected by the relation

(a) Mode = 3 mean – 2 median

(b) Mode = 2 median – 3 mean

(c) Mode = 3 median – 2 mean

(d) Mode = 3 median + 2 meanSolution 4

It is well known that relation between mean, median and mode 1 s

3 median = mode + 2 mean

Mode = 3 median – 2 mean

So, the correct option is (a).Question 5

Which of the following cannot be determined graphically?

(a) Mean

(b) Median

(c) Mode

(d) None of theseSolution 5

Mean is an average value of any given data which cannot be determined by a graph.

Value of median and mode can easily be calculated by graph.

Median is middle value of a distribution and mode is highest frequent value of a given distribution.

So, the correct option is (a).Question 6

The median of a given frequency distribution is found graphically with the help of

(a) Histogram

(b) Frequency curve

(c) Frequency polygon

(d) OgiveSolution 6

The median of a series may be determined through the graphical presentation of data in the forms of Ogives.

Ogive is a curve showing the cummulative frequency for a given set of data.

To get the median we present the data graphically in the form of ‘less than’ ogive  or ‘more than’ ogive

Then the point of intersection of the two graphs gives the value of the median.

So, the correct option is (d).Question 7

The mode of a frequency distribution can be detremined graphically from

(a) Histogram

(b) frequency polygon

(c) ogive

(d) frequency curveSolution 7

Histogram is used to plot the distribution of numerical data or frequency of occurrences of data.

Mode is the most commonly occurring value in the data.

So in distribution or Histogram, the value of the x-coordinate corresponding to the peak value on y – axis, is the mode.

So, the correct option is (a).Question 8

Mode is

(a) least frequent value

(b) middle most value

(c) most frequent value

(d) None of theseSolution 8

Mode is the most frequent value in the data.

Mode is the value which occurs the most number of times.

So, the correct option is (c).Question 9

begin mathsize 12px style The space mean space of space straight n space observation space is space straight x with bar on top. space If space the space first space item space is space increased space by space 1 comma space second space by space 2 space and space so space on comma space then space the space new space mean space is
left parenthesis straight a right parenthesis space straight x with bar on top space plus space straight n
left parenthesis straight b right parenthesis space straight x with bar on top space plus space straight n over 2
left parenthesis straight c right parenthesis space straight x with bar on top space plus space fraction numerator straight n plus 1 over denominator 2 end fraction
left parenthesis straight d right parenthesis space None space of space these end style

Solution 9

begin mathsize 12px style text Let sum of observation is s end text
table attributes columnalign left end attributes row cell rightwards double arrow straight space straight x with bar on top equals straight s over straight n end cell row cell rightwards double arrow space straight s equals space straight x with bar on top straight n space space space space space........ left parenthesis 1 right parenthesis end cell row cell If space the space first space item space is space increased space by space 1 comma space second space by space 2 space and space so space on comma space Then end cell row cell sum space of space new space straight n space obervations space equals space straight s space plus space 1 space plus space 2 space plus 3...... plus straight n end cell row cell                                                equals space straight s space plus space fraction numerator straight n left parenthesis straight n plus 1 right parenthesis over denominator 2 end fraction end cell row cell New space mean space space space space equals space fraction numerator straight s space plus begin display style fraction numerator straight n left parenthesis straight n space plus space 1 right parenthesis over denominator 2 end fraction end style straight space over denominator straight n end fraction    end cell row cell                           =   straight s over straight n  +  fraction numerator straight n plus 1 over denominator 2 end fraction end cell row cell                           =   straight x with bar on top   +   fraction numerator straight n plus 1 over denominator 2 end fraction end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 10

One of the methods of determining mode is

(a) Mode = 2 median – 3 Mean

(b) Mode = 2 Median + 3 Mean

(c) Mode = 3 Median – 2 Mean

(d) Mode = 3 Median + 2 MeanSolution 10

We know that the relation between mean, median & mode is

3 Median = Mode + 2 Mean

Hence, Mode = 3 Median – 2 Mean

So, the correct option is (c).

Chapter 7 Statistics Exercise 7.67

Question 11

If the mean of the following distribution is 2.6, then the value of y is

Variable (y) : 1   2   3   4   5

Frequency :   4   5    y   1   2

(a) 3    (b) 8     (c) 13    (d) 24Solution 11

begin mathsize 12px style mean space equals space fraction numerator begin display style sum from straight i space equals space 1 to 5 of straight x subscript 1 straight f subscript straight i end style over denominator begin display style sum from straight i space equals space 1 to 5 of straight f subscript straight i end style end fraction
space space space space space space space space space space space space space equals space fraction numerator open parentheses 1 space cross times space 4 close parentheses space plus space open parentheses 2 space cross times space 5 close parentheses space plus space open parentheses 3 space cross times space straight y close parentheses space plus space open parentheses 4 space cross times space 1 close parentheses space plus space open parentheses 5 space cross times space 2 close parentheses over denominator 4 space plus space 5 space plus space straight y space plus space 1 space plus space 2 end fraction
space space space space space space 2.6 equals space fraction numerator 3 straight y space plus space 28 over denominator straight y space plus space 12 end fraction
rightwards double arrow space 2.6 space straight y space plus space 31.2 space equals space 3 straight y space plus space 28
rightwards double arrow space 3.2 space equals 0.4 straight y
rightwards double arrow space straight y space equals space 8
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 12

The relationship between mean, median and mode for a moderately skewed distribution is

(a) Mode = 2 Median – 3 Mean

(b) Mode = Median – 2 Mean

(c) Mode = 2 Median – Mean

(d) Mode = 3 Median – 2 meanSolution 12

We know that the relation between mean, median & mode is

3 Median = mode + 2 Mean

Hence, mode = 3 Median – 2 Mean

So, the correct option is (d).Question 13

begin mathsize 12px style text The mean of a discrete frequency distribution  xi/ fi; i=1, 2, .........., n is given by end text
open parentheses straight a close parentheses space fraction numerator sum space straight f subscript straight i straight x subscript straight i over denominator sum space straight f subscript straight i end fraction
open parentheses straight b close parentheses space 1 over straight n sum from straight i equals 1 to straight n of straight x subscript straight i space straight f subscript straight i
left parenthesis straight c right parenthesis space fraction numerator begin display style sum from straight i equals 1 to straight n of end style space straight x subscript straight i space straight f subscript 1 over denominator begin display style sum from straight i equals 1 to straight n of end style space straight x subscript straight i end fraction
left parenthesis straight d right parenthesis space fraction numerator begin display style sum from straight i equals 1 to straight n of end style space straight x subscript straight i space straight f subscript straight i over denominator begin display style sum from straight i equals 1 to straight n of end style space straight i end fraction end style

Solution 13

begin mathsize 12px style We space know space for space straight a space discrete space frequency space distribution
Mean space equals space fraction numerator straight x subscript 1 straight f subscript 1 space plus space straight x subscript 2 straight f subscript 2 space plus space.......... space plus space straight x subscript straight n straight f subscript straight n over denominator straight f subscript 1 space plus space straight f subscript 2 space plus space........ space plus space straight f subscript straight n end fraction
space space space space space space space space space space space space space space space equals space fraction numerator begin display style sum from straight i equals 1 to straight n of straight x subscript straight i straight f subscript straight i end style over denominator begin display style sum from straight i equals 1 to straight n of straight f subscript straight i end style end fraction
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 14

If the arithmetic mean of x, x +3 , x + 6, x + 9, x + 12 is 10, then x =

(a) 1

(b) 2

(c) 6

(d) 4Solution 14

begin mathsize 12px style mean space equals space fraction numerator straight x space plus space open parentheses straight x space plus space 3 close parentheses space plus space open parentheses straight x space plus space 6 close parentheses space plus space open parentheses straight x space plus space 9 close parentheses space plus space open parentheses straight x space plus space 12 close parentheses over denominator 5 end fraction
space space space space space space space space space space space space space equals space fraction numerator 5 straight x space plus space 30 over denominator 5 end fraction
space space space space space space space space space space space space space equals space straight x space plus space 6
given space mean space equals space 10
rightwards double arrow space straight x space plus space 6 space equals space 10
rightwards double arrow space straight x space equals space 4
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 15

If the median of the data : 24, 25, 26, x + 2, x + 3, 30, 31, 34 is 27.5 then x =

(a) 27

(b) 25

(c) 28

(d) 30Solution 15

begin mathsize 12px style There space are space straight a space total space of space 8 space observations
median space is space average space of space 5 to the power of th space and space 4 to the power of th space term
4 to the power of th space term space equals space straight x space plus space 2
5 to the power of th space end exponent term space equals space straight x space plus space 3
rightwards double arrow median space equals space fraction numerator open parentheses straight x space plus space 2 close parentheses space plus space open parentheses straight x space plus space 3 close parentheses over denominator 2 end fraction equals space fraction numerator 2 straight x space plus space 5 over denominator 2 end fraction space equals space straight x space plus space 2.5
given space median space equals space 27.5
Hence space straight x space plus space 2.5 space equals space 27.5
straight x space equals space 25
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 16

If the median of the data: 6, 7, x – 2, x, 17, 20 written in ascending order, is 16. Then x =

(a) 15

(b) 16

(c) 17

(d) 18Solution 16

begin mathsize 12px style Given space data space has space 6 space numbers
so comma space median space is space average space of space 3 to the power of rd space and space 4 to the power of th space term
3 to the power of rd space term space equals space straight x space minus space 2
4 to the power of th space term space equals space straight x
median space equals space fraction numerator straight x space plus space straight x space minus space 2 over denominator 2 end fraction
space space space space space space space space space space space space space space space space space equals fraction numerator 2 straight x space minus space 2 over denominator 2 end fraction
space space space space space space space space space space space space space space space space space equals space straight x space minus space 1
given space median space equals space 16
straight x space minus space 1 space equals space 16
straight x space equals space 17
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 17

The median of first 10 prime numbers is

(a) 11

(b) 12

(c) 13

(d) 14Solution 17

begin mathsize 12px style First space 10 space prime space numbers space are space 2 comma space 3 comma space 5 comma space 7 comma space 11 comma space 13 comma space 17 comma space 19 comma space 23 comma space 29
Median space is space average space of space 5 to the power of th space and space 6 to the power of th space term
rightwards double arrow space 1 half open parentheses 11 space plus space 13 close parentheses
rightwards double arrow space 12
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 18

If the mode of the data : 64, 60, 48, x, 43, 48, 43, 34 is 43 then x + 3 =

(a) 44

(b) 45

(c) 46

(d) 48Solution 18

Mode is the number in observation data is that which repeats most number of time

In the given data 48 comes twice and 43 comes twice but mode is 43.

Hence if x = 43 then 43 comes thrice.

So x + 3 = 43 + 3 = 46

So, the correct option is (c).Question 19

If the mode of the data : 16, 15, 17, 16, 15, x, 19, 17, 14 is 15 then x =

(a) 15

(b) 16

(c) 17

(d) 19Solution 19

In the given data 15, 16, 17 comes twice but given 15 is mode.

Hence 15 comes more than 16, 17.

This is only possible if x = 15.

So, the correct option is (a).Question 20

The mean of 1, 3, 4, 5, 7, 4 is m. The numbers 3, 2, 2, 4, 3, 3, p have mean m – 1 and median q. Then, p + q =

(a) 4

(b) 5

(c) 6

(d) 7Solution 20

begin mathsize 12px style mean space of space 1 comma space 3 comma space 4 comma space 5 comma space 7 comma space 4
rightwards double arrow space fraction numerator 1 space plus space 3 space plus space 4 space plus space 5 space plus space 7 space plus space 4 over denominator 6 end fraction space equals space straight m space space space space space space space open parentheses given close parentheses
rightwards double arrow straight m space equals space 24 over 6
rightwards double arrow straight m space equals space 4
mean space of space 3 comma space 2 comma space 2 comma space 4 comma space 3 comma space 3 comma space straight p
rightwards double arrow space fraction numerator 3 space plus space 2 space plus space 2 space plus space 4 space plus space 3 space plus space 3 space plus space straight p over denominator 7 end fraction equals space rightwards double arrow space straight m space minus space 1 space space left parenthesis given right parenthesis
rightwards double arrow fraction numerator 17 space plus space straight p over denominator 7 end fraction equals space 4 space minus space 1
rightwards double arrow 17 space plus space straight p space equals space 21
rightwards double arrow straight p space equals space 4
so space data space is space 2 comma space 2 comma space 3 comma space 3 comma space 3 comma space 4 comma space 4
median space of space this space is space straight q space left parenthesis given right parenthesis
But space for space this space data space median space is space 3
Hence space straight q space equals space 3
rightwards double arrow straight p space plus space straight q space equals space 7
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 21

begin mathsize 12px style If space the space mean space of space straight a space frequency space distribution space is space 8.1 space and space sum for blank of straight f subscript straight i straight x subscript straight i space equals space 132 space plus space 5 straight k comma space sum for blank of straight f subscript straight i space equals space 20 comma space then space straight k space equals space
left parenthesis straight a right parenthesis space 3
left parenthesis straight b right parenthesis space 4
left parenthesis straight c right parenthesis space 5
left parenthesis straight d right parenthesis space 6 end style

Solution 21

begin mathsize 12px style mean space equals space fraction numerator sum straight f subscript straight i straight x subscript straight i over denominator sum straight f subscript straight i end fraction
rightwards double arrow 8.1 space equals space fraction numerator 132 space plus space 5 straight k over denominator 20 end fraction
rightwards double arrow 162 space equals space 132 space plus space 5 straight k
rightwards double arrow space 5 straight k space equals space 30
rightwards double arrow straight k space equals space 6
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 22

If the mean of 6, 7, x , 8, y, 14 is 9, then

(a) x + y = 21

(b) x + y = 19

(c) x – y = 19

(d) x – y = 21Solution 22

begin mathsize 12px style 9 equals space fraction numerator 6 space plus space 7 space plus space straight x space plus space 8 space plus space straight y space plus space 14 over denominator 6 end fraction
rightwards double arrow 54 space equals space straight x space plus space straight y space plus space 35
rightwards double arrow straight x space plus space straight y space equals space 19
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 23

begin mathsize 12px style The space mean space of space straight n space observation space is space straight x with bar on top. space If space the space first space observation space is space increased space by space 1 comma space the space second space by space 2 comma space the space third space by space 3 comma space and space so space on comma space then space the space new space mean space is
left parenthesis straight a right parenthesis space straight x with bar on top space plus space open parentheses 2 straight n space plus space 1 close parentheses
open parentheses straight b close parentheses space straight x with bar on top space plus space fraction numerator straight n space plus space 1 over denominator 2 end fraction
open parentheses straight c close parentheses space straight x with bar on top space plus space open parentheses straight n space plus space 1 close parentheses
open parentheses straight d close parentheses space straight x with bar on top minus fraction numerator straight n space plus space 1 over denominator 2 end fraction end style

Solution 23

begin mathsize 12px style Let space sum space of space straight n space observation space is space apostrophe straight s apostrophe
rightwards double arrow straight x with bar on top space equals space straight s over straight n
rightwards double arrow straight s space equals space straight x with bar on top straight n space space space space space space space...... left parenthesis 1 right parenthesis
If space the space first space item space is space increased space by space 1 comma space second space by space 2 space and space so space on comma space then space sum space of space new space straight n space observations space
equals space straight s space plus space 1 space plus space 2 space plus space 3 space plus space........... straight n
equals space straight s space plus space fraction numerator straight n open parentheses straight n space plus space 1 close parentheses over denominator 2 end fraction
New space mean space equals space fraction numerator straight s space plus begin display style fraction numerator straight n open parentheses straight n space plus space 1 close parentheses over denominator 2 end fraction end style over denominator straight n end fraction
space space space space space space space space space space space space space space space space space space space space space space space equals space straight s over straight n space plus space fraction numerator straight n space plus space 1 over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space space equals straight x with bar on top space plus space fraction numerator straight n space plus space 1 over denominator 2 end fraction
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 24

begin mathsize 12px style If space the space mean space of space first space straight n space natural space numbers space is space fraction numerator 5 straight n over denominator 9 end fraction space then space straight n space equals
left parenthesis straight a right parenthesis space 5
left parenthesis straight b right parenthesis space 4
left parenthesis straight c right parenthesis space 9
left parenthesis straight d right parenthesis space 10 end style

Solution 24

begin mathsize 12px style First space straight n space natural space numbers space 1 comma space 2 comma space 3 space.......... straight n
mean space equals space fraction numerator 1 space plus space 2 space plus space 3 space plus space....... plus space straight n over denominator straight n end fraction
mean space equals space fraction numerator begin display style fraction numerator straight n open parentheses straight n space plus space 1 close parentheses over denominator 2 end fraction end style over denominator straight n end fraction
space space space space space space space space space space space space space equals space fraction numerator straight n space plus space 1 over denominator 2 end fraction
given space mean space equals space fraction numerator 5 straight n over denominator 9 end fraction
rightwards double arrow fraction numerator straight n space plus space 1 over denominator 2 end fraction space equals space fraction numerator 5 straight n over denominator 9 end fraction
rightwards double arrow 9 straight n space plus space 9 space equals space 10 straight n
rightwards double arrow space straight n space equals space 9
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Chapter 7 Statistics Exercise 7.68

Question 25

The arithmetic mean and mode of a data are 24 and 12 respectively, then its median is

(a) 25

(b) 18

(c) 20

(d) 22Solution 25

We know, 3 Median = Mode + 2 Mean

mean = 24

mode = 12

3 median = 12 + 2 × 24

              = 12 + 48

              = 60

median = 20

So, the correct option is (c).Question 26

Solution 26

begin mathsize 12px style First space straight n space odd space natural space number space 1 comma space 3 comma space 5 comma space 7 comma space......
straight S space equals space 1 space plus space 3 space plus space 5 space plus space 7 space plus space........ space straight n space terms
This space is space an space AP space with space straight a space equals space 1 space and space straight d space equals space 2
straight S space equals space straight n over 2 open parentheses 2 space plus space open parentheses straight n space minus space 1 close parentheses space 2 close parentheses
space space space space equals space straight n over 2 open parentheses 2 straight n close parentheses
space space space space equals space straight n squared
mean space equals space straight S over straight n equals straight n squared over straight n equals space straight n
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. space space space space space space space space space space space end style

Question 27

begin mathsize 12px style The space mean space of space first space straight n space odd space natural space numbers space is space straight n squared over 81 comma space then space straight n space equals
open parentheses straight a close parentheses space 9
open parentheses straight b close parentheses space 81
open parentheses straight c close parentheses space 27
open parentheses straight d close parentheses space 18 end style

Solution 27

begin mathsize 12px style First space straight n space odd space natural space number space 1 comma space 3 comma space 5 comma space 7 comma space......
straight S space equals space 1 space plus space 3 space plus space 5 space plus space 7 space plus space........ space straight n space terms
This space is space an space AP space with space straight a space equals space 1 space and space straight d space equals space 2
straight S space equals space straight n over 2 open parentheses 2 space plus space open parentheses straight n space minus space 1 close parentheses space 2 close parentheses
space space space space equals space straight n over 2 open parentheses 2 straight n close parentheses
space space space space equals space straight n squared
mean space equals space straight S over straight n equals space straight n over straight n squared equals space straight n
Mean space of space first space straight n space odd space natural space numbers space equals space straight n
given space straight n squared over 81 space equals space straight n
rightwards double arrow space straight n space equals space 81
So comma space the space correct space option space is space left parenthesis straight b right parenthesis.
end style

Question 28

If the difference of mode and median of a data is 24, then the difference of median and mean is

(a) 12

(b) 24

(c) 8

(d) 36Solution 28

begin mathsize 12px style We space know comma space 3 space median space equals space mode space plus space 2 space mean
rightwards double arrow 2 space median space minus space 2 space mean space equals space mode space minus space median
rightwards double arrow 2 open parentheses median space minus space mean close parentheses space equals space mode space minus space median
given space mode space minus space median space equals space 24
rightwards double arrow 2 open parentheses median space minus space mean close parentheses space equals space 24
rightwards double arrow median space minus space mean space equals space 12
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 29

If the arithmetic mean of 7, 8, x, 11, 14 is x then x = 

(a) 1

(b) 9.5

(c) 10

(d) 10.5Solution 29

begin mathsize 12px style mean space equals space fraction numerator 7 space plus space 8 space plus space straight x space plus space 11 space plus space 14 over denominator 5 end fraction
rightwards double arrow space straight x space plus space 40 space equals space 5 straight x
rightwards double arrow 4 straight x space equals space 40
rightwards double arrow straight x space equals space 10
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 30

If mode of a series exceeds its mean by 12, then mode exceeds the median by

(a) 4

(b) 8

(c) 6

(d) 10Solution 30

begin mathsize 12px style We space know
3 space median space equals space mode space plus space 2 space mean space space space space space space space space space space space space....... open parentheses 1 close parentheses
Given space mode space minus space mean space equals space 12 space space space space space space space space...... open parentheses 2 close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
rightwards double arrow 3 space median space equals space 12 space plus space mean space plus space 2 space mean
rightwards double arrow 3 space median space equals space 12 space plus space 3 space mean
rightwards double arrow 3 open parentheses median close parentheses space minus space 3 space mean space equals space 12
rightwards double arrow 3 open parentheses median close parentheses space minus space 3 space open parentheses mode space minus space 12 close parentheses space equals space 12
rightwards double arrow 3 space median space minus space 3 space mode space plus space 36 space equals space 12
rightwards double arrow 3 space mode space minus space 3 space median space equals space 8
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 31

If the mean of first n natural number is 15, then  n =

(a) 15

(b) 30

(c) 14

(d) 29Solution 31

begin mathsize 12px style mean space equals space fraction numerator 1 space plus space 2 plus space 3 space plus space.... space plus space straight n over denominator straight n end fraction
space space space space space space space space space space space space space equals space fraction numerator begin display style fraction numerator straight n open parentheses straight n space plus space 1 close parentheses over denominator 2 end fraction end style over denominator straight n end fraction
space space space space space space space space space space space space space equals space space fraction numerator straight n space plus space 1 over denominator 2 end fraction
given space mean space equals space 15
rightwards double arrow fraction numerator straight n space plus space 1 over denominator 2 end fraction equals space 15
rightwards double arrow space straight n space equals space 29
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 32

begin mathsize 12px style If space the space mean space of space observation space straight x subscript 1 comma space straight x subscript 2 comma space...... comma space straight x subscript straight n space is space straight x with bar on top comma space then space the space mean space of space straight x subscript 1 plus straight a comma space straight x subscript 2 plus straight a comma space..... comma space straight x subscript straight n plus straight a space is space
open parentheses straight a close parentheses space straight a straight x with bar on top
open parentheses straight b close parentheses space straight x with bar on top space minus space straight a
open parentheses straight c close parentheses space straight x with bar on top space plus space straight a
open parentheses straight d close parentheses space fraction numerator straight x with bar on top over denominator straight a end fraction end style

Solution 32

begin mathsize 12px style straight x with bar on top space equals space fraction numerator straight x subscript 1 space plus space straight x subscript 2 space plus space..... space plus space straight x subscript straight n over denominator straight n end fraction space space space space space space space space space space space space space..... open parentheses 1 close parentheses
mean space of space straight x subscript 1 space plus space straight a subscript 1 comma......... comma straight x subscript straight n plus space straight a
equals fraction numerator open parentheses straight x subscript 1 space plus space straight a close parentheses space plus space open parentheses straight x subscript 2 space plus space straight a close parentheses space plus space...... space open parentheses straight x subscript straight n space plus space straight a close parentheses over denominator straight n end fraction
equals fraction numerator open parentheses straight x subscript 1 space plus space straight x subscript 2 space plus space straight x subscript 3 space plus space..... space plus space straight x subscript straight n close parentheses space plus space na over denominator straight n end fraction
equals fraction numerator open parentheses straight x subscript 1 space plus space straight x subscript 2 space plus space....... space plus space straight x subscript straight n close parentheses over denominator straight n end fraction space plus space straight a
equals new space mean space equals space straight x with bar on top space plus space straight a
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 33

begin mathsize 12px style Mean space of space straight a space certain space number space of space observations space is space straight x with bar on top. space If space each space observation space isdivided space by space straight m open parentheses straight m space not equal to space 0 close parentheses
and space increased space by space straight n comma space the space the space mean space of space new space observation space is
open parentheses straight a close parentheses space fraction numerator straight x with bar on top over denominator straight m end fraction space plus space straight n
open parentheses straight b close parentheses space fraction numerator straight x with bar on top over denominator straight n end fraction space plus space straight m
open parentheses straight c close parentheses space straight x with bar on top space plus space straight n over straight m
open parentheses straight d close parentheses space straight x with bar on top space plus space straight m over straight n end style

Solution 33

begin mathsize 12px style Let space the space observations space be space straight a subscript 1 comma space straight a subscript 2 space........ space straight a subscript straight n
It space is space given space that space fraction numerator straight a subscript 1 space plus space straight a subscript 2 space plus space...... space plus space straight a subscript straight n over denominator straight n end fraction equals space straight x with bar on top
Also space given space if space each space observation space is space divided space by space straight m space and space increased space by space straight n comma space then space new space observations space are
rightwards double arrow straight a subscript 1 over straight m plus space straight n comma space straight a subscript 2 over straight m space plus space straight n space space........ space straight a subscript straight n over straight m space plus space straight n
rightwards double arrow space mean space equals space fraction numerator open parentheses begin display style straight a subscript 1 over straight m plus straight n end style close parentheses space plus space open parentheses begin display style straight a subscript 2 over straight m space plus space straight n end style close parentheses space plus space........ space open parentheses begin display style straight a subscript straight n over straight m plus space straight n end style close parentheses over denominator straight n end fraction
space space space space space space space space space space space space space space space space space space space equals space fraction numerator begin display style fraction numerator open parentheses straight a subscript 1 space plus space straight a subscript 2 space plus space......... space plus space straight a subscript straight n close parentheses over denominator straight m end fraction end style plus space straight n squared over denominator straight n end fraction space
space space space space space space space space space space space space space space space space space space space equals space open parentheses fraction numerator straight a subscript 1 space plus space straight a subscript 2 space plus space...... space plus space straight a subscript straight n over denominator straight n end fraction close parentheses 1 over straight m space plus space straight n
space space space space space space space space space space space space space space space space space space space equals space fraction numerator top enclose straight x over denominator straight m end fraction plus space straight n
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 34

begin mathsize 12px style If space straight u subscript straight i space equals space fraction numerator straight x subscript straight i space minus space 25 over denominator 10 end fraction comma space sum for blank of straight f subscript straight i straight u subscript straight i space equals space 20 comma space sum for blank of straight f subscript straight i space end subscript space equals space 100 comma space then space straight x with bar on top equals
open parentheses straight a close parentheses space 23
open parentheses straight b close parentheses space 24
open parentheses straight c close parentheses space 27
open parentheses straight d close parentheses space 25 end style

Solution 34

begin mathsize 12px style straight x with bar on top space equals space fraction numerator begin display style sum for blank of straight f subscript straight i straight x subscript straight i end style over denominator begin display style sum for blank of straight f subscript straight i end style end fraction
given space straight u subscript straight i space equals space fraction numerator straight x subscript straight i space minus space 25 over denominator 10 end fraction
rightwards double arrow straight x subscript straight i space equals space 10 straight u subscript straight i space plus space 25
rightwards double arrow straight x with bar on top space equals space fraction numerator begin display style sum for blank of straight f subscript straight i space open parentheses 10 straight u subscript straight i space plus space 25 close parentheses end style over denominator begin display style sum for blank of straight f subscript straight i end style end fraction
rightwards double arrow straight x with bar on top space equals fraction numerator 10 begin display style sum for blank of end style straight f subscript straight i straight u subscript straight i space plus space 25 begin display style sum for blank of end style straight f subscript straight i over denominator begin display style sum for blank of straight f subscript straight i end style end fraction
given space space sum for blank of straight f subscript straight i straight u subscript straight i space equals space 20 space and space sum for blank of straight f subscript straight i space equals space 100
rightwards double arrow straight x with bar on top space equals space fraction numerator 10 space cross times space 20 space plus space 25 space cross times space 100 over denominator 100 end fraction
space space space space space space space space equals space 27 space
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 35

If 35 is removed from the data: 30, 34, 35, 36, 37, 38, 39, 40, then the median increases by

(a) 2

(b) 1.5

(c) 1

(d) 0.5Solution 35

begin mathsize 12px style Initially space there space are space 8 space observations
Hence comma space median space equals space fraction numerator 4 to the power of th space plus space 5 to the power of th space term over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 36 space plus space 37 over denominator 2 end fraction space equals space 73 over 2
After space removal space of space 35
median space equals space 4 to the power of th space end exponent space term
space space space space space space space space space space space space space space space space equals space 37
difference space equals space 37 space minus space 73 over 2 space equals space 0.5
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 36

While computing mean of grouped data, we assume that the frequencies are

a. evenly distributed over all the classes.

b. centred at the class marks of the classes.

c. centred at the upper limit of the classes.

d. centred at the lower limit of the classes.Solution 36

While computing the mean of the grouped data, we assume that the frequencies are centred at the class marks of the classes.

Hence, correct option is (b).Question 37

In the formula  , for finding the mean of grouped frequency distribution ui =

a. 

b. h(xi – a)

c. 

d.  Solution 37

Chapter 15 – Statistics Exercise 15.69

Question 38

For the following distribution:

Class:0-55-1010-1515-2020-25
Frequency:101512209

The sum of the lower limits of the median and modal class is

a. 15

b. 25

c. 30

d. 35Solution 38

Question 39

For the following distribution:

Below:102030405060
Number of students:31227577580


The modal class is

a. 10-20

b. 20-30

c. 30-40

d. 50-60Solution 39

Question 40

Consider the following frequency distribution:

Class:65-8585-105105-125125-145145-165165-185185-205
Frequency:4513201474

The difference of the upper limit of the median class and the lower limit of the modal class is

a. 0

b. 19

c. 20

d. 38Solution 40

Question 41

In the formula  , for finding the mean of grouped data dis are deviations from a of

a. Lower limits of classes

b. Upper limits of classes

c. Mid-points of classes

d. Frequency of the class marksSolution 41

di‘s are the deviations from a of mid-points of classes.

Hence, correct option is (c).Question 42

The abscissa of the point of intersection of less than type and of the more than type cumulative frequency curves of a grouped data given its

a. Mean

b. Median

c. Mode

d. All the three aboveSolution 42

The abscissa of the point of intersection of less than type and of the more than type cumulative frequency curves of a grouped data given its median.

Hence, correct option is (b).Question 43

Consider the following frequency distribution:

Class:0-56-1112-1718-2324-29
Frequency:131015811

The upper limit of the median class is

a. 17

b. 17.5

c. 18

d. 18.5Solution 43

Read More

RD SHARMA SOLUTION CHAPTER- 6 Trigonometric Identities | CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 6 Trigonometric Identities Exercise Ex. 6.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23(i)

Solution 23(i)

Question 23(ii)

Solution 23(ii)

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

Solution 36

Question 37. i

Solution 37. i

Question 37. ii

Prove the following trigonometric identities:

Solution 37. ii

L.H.S.,

Question 38(i)

Solution 38(i)

Question 38(ii)

Solution 38(ii)

Question 38(iii)

Solution 38(iii)

Question 38(iv)

Solution 38(iv)

Question 39

Solution 39

Question 40

Solution 40

Question 41

Solution 41

Question 42

Solution 42

Question 43

Solution 43

Question 44

Solution 44

Question 45

Solution 45

Question 46

Solution 46

Question 47 (i)

Solution 47 (i)

Question 47 (ii)

Solution 47 (ii)

Question 47 (iii)

Solution 47 (iii)

Question 47(iv)

Prove that:

(sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θSolution 47(iv)

Question 48

Solution 48

Question 49

Solution 49

Question 50

Prove that:

Solution 50

Question 51

Solution 51

Question 52

Solution 52

Question 53

Solution 53

Question 54

Solution 54

Question 55. i

Solution 55. i

Question 55. ii

Solution 55. ii

Question 56

Solution 56

Question 57

Solution 57

Question 58

Solution 58

Question 59

begin mathsize 12px style If space 3 space sin space straight theta space plus space 5 space cos space straight theta equals 5 comma space prove space that space 5 space sin space straight theta minus space 3 space cosθ equals plus-or-minus 3. end style

Solution 59

Question 60

Solution 60

Question 61

Solution 61

Question 62

Solution 62

Question 63

Solution 63

Question 64

Solution 64

Question 65. i

Solution 65. i

Question 65(ii)

Solution 65(ii)

Question 66

Solution 66

Question 67

Solution 67

Question 68

Solution 68

Question 69

Solution 69

Question 70

Solution 70

Question 71

Solution 71

Question 72

Solution 72

Question 73

Solution 73

Question 74

Solution 74

Question 75

Solution 75

Question 76

Solution 76

Question 77

Solution 77

Question 78

Solution 78

Question 79

Solution 79

Question 80

Solution 80

Question 81

Solution 81

Question 82

Solution 82

Question 83

Solution 83

Question 84

Solution 84

Question 85

Solution 85

Question 86

If sin θ + 2 cos θ = 1 prove that 2 sin θ – cos θ = 2.Solution 86

Question 23 (iii)

Solution 23 (iii)

To prove: 

Consider LHS

= RHS

Hence, proved.

Chapter 6 Trigonometric Identities Exercise Ex. 6.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

If 2sinθ – cosθ = 2, then find the value of θ.Solution 13

Question 14

If  tan θ – 1 = 0, find the value of sin2θ – cosθ.Solution 14

Question 4

If   evaluate   Solution 4

Given: 

Consider,

  … [Multiplying and dividing by tan θ]

Chapter 6 Trigonometric Identities Exercise 6.56

Question 1

begin mathsize 11px style table attributes columnalign left end attributes row cell If text  sec end text straight theta text  + tan end text straight theta text  = x then sec end text straight theta end cell row cell left parenthesis straight a right parenthesis text   end text fraction numerator straight x squared plus 1 over denominator straight x end fraction text        end text left parenthesis straight b right parenthesis text   end text fraction numerator straight x squared plus 1 over denominator 2 straight x end fraction text      end text left parenthesis straight c right parenthesis fraction numerator straight x squared minus 1 over denominator 2 straight x end fraction text       end text left parenthesis straight d right parenthesis text   end text fraction numerator straight x squared minus 1 over denominator straight x end fraction end cell end table end style

Solution 1

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text    tan end text to the power of text 2 end text end exponent straight theta text  = sec end text to the power of text 2 end text end exponent straight theta minus 1 end cell row cell text    end text rightwards double arrow text  sec end text to the power of text 2 end text end exponent straight theta minus tan squared straight theta equals 1 end cell row cell text    end text rightwards double arrow left parenthesis secθ minus tanθ right parenthesis text   end text left parenthesis secθ plus tanθ right parenthesis equals 1 end cell row cell text    end text rightwards double arrow secθ minus tanθ equals fraction numerator 1 over denominator secθ plus tanθ end fraction text      -- end text box enclose 1 end cell row cell Given text  sec end text straight theta text  + tan end text straight theta text  = x    --- end text box enclose 2 end cell row cell so comma text   sec end text straight theta text  - tan end text straight theta text  =  end text 1 over straight x text     --- end text box enclose 3 end cell row cell Apply text   end text box enclose 2 text   +   end text box enclose 3 end cell row cell rightwards double arrow 2 secθ equals straight x plus 1 over straight x end cell row cell rightwards double arrow 2 secθ equals fraction numerator straight x squared plus 1 over denominator straight x end fraction end cell row cell rightwards double arrow box enclose secθ equals fraction numerator straight x squared plus 1 over denominator 2 straight x end fraction end enclose end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 2

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text secθ text   end text plus text   end text tanθ equals text   end text straight x comma text   end text then text   end text tanθ end cell row cell left parenthesis straight a right parenthesis fraction numerator straight x squared plus 1 over denominator straight x end fraction text       end text left parenthesis straight b right parenthesis fraction numerator straight x squared minus 1 over denominator straight x end fraction text      end text left parenthesis straight c right parenthesis text   end text fraction numerator straight x squared plus 1 over denominator 2 straight x end fraction text     end text left parenthesis straight d right parenthesis fraction numerator straight x squared minus 1 over denominator 2 straight x end fraction end cell end table end style

Solution 2

begin mathsize 11px style table attributes columnalign left end attributes row cell Given space secθ  +  tanθ equals space straight x space space space space space minus negative negative box enclose 1 end cell row cell text ⇒ end text fraction numerator 1 over denominator space secθ space plus space tanθ end fraction equals space 1 over straight x end cell row cell text ⇒ end text fraction numerator space secθ space minus space tanθ over denominator space secθ squared space minus space tanθ squared end fraction equals space 1 over straight x end cell row cell text ⇒ end text space secθ space minus space tanθ equals space 1 over straight x.... left parenthesis Since space space secθ squared space equals 1 plus space tanθ squared right parenthesis end cell end table
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space minus negative negative box enclose 2
table attributes columnalign left end attributes row cell Apply straight space box enclose 1    -   box enclose 2 end cell row cell rightwards double arrow space space 2 tanθ space equals space straight x minus 1 over straight x end cell row cell rightwards double arrow straight space box enclose tanθ equals fraction numerator straight x squared minus 1 over denominator 2 straight x end fraction end enclose end cell end table
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 3

begin mathsize 11px style table attributes columnalign left end attributes row cell square root of fraction numerator 1 plus sinθ over denominator 1 minus sinθ end fraction end root text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  sec end text straight theta plus tanθ text        end text left parenthesis straight b right parenthesis text  sec end text straight theta minus tanθ text   end text end cell row cell left parenthesis straight c right parenthesis text  sec end text to the power of text 2 end text end exponent straight theta plus tan squared straight theta text      end text left parenthesis straight d right parenthesis text  sec end text to the power of text 2 end text end exponent straight theta minus tan squared straight theta end cell end table end style

Solution 3

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text      end text sin squared straight theta plus cos squared equals 1 end cell row cell rightwards double arrow text   end text box enclose cos squared equals 1 minus sin squared straight theta end enclose text     --- end text box enclose 1 end cell row cell Given text   end text square root of fraction numerator 1 plus sinθ over denominator 1 minus sinθ end fraction end root end cell row cell text     end text rightwards double arrow text   end text square root of fraction numerator left parenthesis 1 plus sinθ right parenthesis text   end text left parenthesis 1 plus sinθ right parenthesis over denominator left parenthesis 1 minus sinθ right parenthesis text   end text left parenthesis 1 plus sinθ right parenthesis end fraction end root end cell row cell text    end text rightwards double arrow text   end text square root of fraction numerator left parenthesis 1 plus sinθ right parenthesis squared over denominator 1 minus sin squared straight theta end fraction end root end cell row cell from text   end text box enclose 1 end cell row cell text    end text rightwards double arrow text    end text square root of fraction numerator left parenthesis 1 plus sinθ right parenthesis squared over denominator cos squared straight theta end fraction end root text       end text end cell row cell text    end text rightwards double arrow text   end text fraction numerator 1 plus sinθ over denominator cosθ end fraction end cell row cell text    end text rightwards double arrow text   end text 1 over cosθ text   end text plus text   end text sinθ over cosθ end cell row cell text    end text rightwards double arrow text  sec end text straight theta text  + tan end text straight theta end cell end table
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 4

begin mathsize 11px style table attributes columnalign left end attributes row cell The text  value of  end text square root of fraction numerator 1 plus cosθ over denominator 1 minus cosθ end fraction end root text  is  end text end cell row cell left parenthesis straight a right parenthesis text  cos end text straight theta plus cosecθ text        end text left parenthesis straight b right parenthesis text   end text cosecθ plus cotθ text   end text end cell row cell left parenthesis straight c right parenthesis text  cosec end text to the power of text 2 end text end exponent straight theta plus cot squared straight theta text      end text left parenthesis straight d right parenthesis text   end text left parenthesis cotθ plus cosecθ right parenthesis squared end cell end table end style

Solution 4

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text      cos end text squared straight theta plus sin squared equals 1 end cell row cell rightwards double arrow text   end text box enclose sin squared straight theta equals 1 minus cso squared straight theta end enclose text     --- end text box enclose 1 end cell row cell Given text   end text square root of fraction numerator 1 plus cosθ over denominator 1 minus cosθ end fraction end root end cell row cell text     end text equals text   end text square root of fraction numerator left parenthesis 1 plus cosθ right parenthesis text   end text left parenthesis 1 plus cosθ right parenthesis over denominator left parenthesis 1 minus cosθ right parenthesis text   end text left parenthesis 1 plus cosθ right parenthesis end fraction end root end cell row cell text     end text equals text   end text square root of fraction numerator left parenthesis 1 plus cosθ right parenthesis squared over denominator 1 minus cos squared straight theta end fraction end root end cell row cell text     end text equals text    end text square root of fraction numerator left parenthesis 1 plus cosθ right parenthesis squared over denominator sin squared straight theta end fraction end root text      from equation   end text box enclose 1 end cell row cell text     end text equals text   end text fraction numerator 1 plus cosθ over denominator sinθ end fraction end cell row cell text     end text equals text   end text 1 over sinθ text   end text plus text   end text cosθ over sinθ end cell row cell text     end text equals text  cosec end text straight theta text  + cot end text straight theta end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 5

sec4 – sec2A  is equal to

(a)  tan2A –  tan4A     (b) tan4A –  tan2

(c) tan4A + tan2A      (d) tan2A –  tan4A  Solution 5

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text       end text 1 text  + tan end text to the power of text 2 end text end exponent straight A text  = sec end text to the power of text 2 end text end exponent straight A text      --- end text box enclose 1 end cell row cell rightwards double arrow text  sec end text to the power of text 2 end text end exponent straight A minus 1 equals tan squared straight A text     --- end text box enclose 2 end cell row cell Given colon text  sec end text to the power of text 4 end text end exponent straight A minus sec squared text A end text end cell row cell text         end text equals text  sec end text to the power of text 2 end text end exponent straight A left parenthesis sec squared text A end text minus 1 right parenthesis end cell row cell text from   end text box enclose 1 text   &  end text box enclose 2 end cell row cell text        end text rightwards double arrow text   end text left parenthesis 1 plus tan squared straight A right parenthesis tan squared straight A end cell row cell text        end text equals text   tan end text to the power of text 2 end text end exponent straight A plus text tan end text to the power of 4 straight A end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 6

cos4A-sin4A is equal  to

(a)  2cos2A+1    (b) 2cos2A-1   

(c)  2sin2A-1     (d) 2sin2A+1  Solution 6

begin mathsize 11px style We space space know
table attributes columnalign left end attributes row cell text           end text sin squared straight A plus cos squared straight A equals 1 text     --- end text box enclose 1 end cell row cell Given text   cos end text to the power of text 4 end text end exponent straight A minus sin to the power of 4 straight A end cell row cell text       end text equals text   end text left parenthesis cos squared straight A right parenthesis squared minus left parenthesis sin squared straight A right parenthesis squared text                           end text end cell row cell text       end text equals text   end text left parenthesis cos squared straight A plus sin squared straight A right parenthesis text   end text left parenthesis cos squared straight A minus sin squared straight A right parenthesis end cell row cell from text    end text box enclose 1 end cell row cell text       end text rightwards double arrow text   cos end text to the power of text 2 end text end exponent straight A minus sin squared straight A text                    end text left curly bracket table attributes columnalign left end attributes row cell straight a squared minus straight b squared end cell row cell equals left parenthesis straight a minus straight b left parenthesis straight a plus straight b right parenthesis right parenthesis end cell end table right curly bracket end cell row cell text       end text equals text   cos end text to the power of text 2 end text end exponent straight A minus left parenthesis text 1- cos end text to the power of text 2 end text end exponent straight A right parenthesis end cell row cell text       end text equals text   cos end text to the power of text 2 end text end exponent straight A minus text  1 +cos end text to the power of text 2 end text end exponent straight A end cell row cell text       end text equals text   2cos end text to the power of text 2 end text end exponent straight A minus 1 text     end text end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Chapter 6 Trigonometric Identities Exercise 6.57

Question 7

begin mathsize 11px style table attributes columnalign left end attributes row cell fraction numerator sinθ over denominator 1 plus cosθ end fraction text   is equal to end text end cell row cell left parenthesis straight a right parenthesis text   end text fraction numerator 1 plus cosθ over denominator sinθ end fraction text     end text left parenthesis straight b right parenthesis text   end text fraction numerator 1 minus cosθ over denominator cosθ end fraction text     end text left parenthesis straight c right parenthesis text   end text fraction numerator 1 minus cosθ over denominator sinθ end fraction text     end text left parenthesis straight d right parenthesis text   end text fraction numerator 1 minus sinθ over denominator cosθ end fraction end cell end table end style

Solution 7

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text             sin end text to the power of text 2 end text end exponent straight theta plus cos squared straight theta equals 1 end cell row cell text        end text rightwards double arrow text  1-  end text cos squared straight theta equals text  sin end text to the power of text 2 end text end exponent straight theta text      --- end text box enclose 1 text   end text end cell row cell text Given :  end text fraction numerator sinθ over denominator 1 plus cosθ end fraction end cell row cell text       end text equals text    end text fraction numerator sinθ left parenthesis 1 minus cosθ right parenthesis over denominator left parenthesis 1 plus cosθ right parenthesis text   end text left parenthesis 1 minus cosθ right parenthesis end fraction end cell row cell text       end text equals text    end text fraction numerator sinθ left parenthesis 1 minus cosθ right parenthesis over denominator text  1-cos end text to the power of text 2 end text end exponent straight theta end fraction end cell row cell from text   end text box enclose 1 end cell row cell text       end text rightwards double arrow text   end text fraction numerator sinθ left parenthesis 1 minus cosθ right parenthesis over denominator text  sin end text to the power of text 2 end text end exponent straight theta end fraction end cell row cell text       end text equals text   end text fraction numerator 1 minus cosθ over denominator sinθ end fraction end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 8

begin mathsize 11px style table attributes columnalign left end attributes row cell fraction numerator sinθ over denominator 1 minus cotθ end fraction plus fraction numerator cosθ over denominator 1 minus tanθ end fraction text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  0      end text left parenthesis straight b right parenthesis text  1       end text left parenthesis straight c right parenthesis text  sin end text straight theta text  + cos end text straight theta text     end text left parenthesis straight d right parenthesis text  sin end text straight theta text  - cos end text straight theta end cell end table end style

Solution 8

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text            tan end text straight theta text  =  end text sinθ over cosθ text      --- end text box enclose 1 end cell row cell text            cot end text straight theta text  =  end text cosθ over sinθ text      --- end text box enclose 2 end cell row cell Given colon text   end text fraction numerator sinθ over denominator 1 minus cosθ end fraction plus fraction numerator cosθ over denominator 1 minus tanθ end fraction end cell row cell from text    end text box enclose 1 text  &  end text box enclose 2 end cell row cell text     end text rightwards double arrow text    end text fraction numerator sinθ over denominator 1 minus cosθ over sinθ end fraction text   end text plus text   end text fraction numerator cosθ over denominator 1 minus sinθ over cosθ end fraction end cell row cell text    end text equals text    end text fraction numerator sin squared straight theta over denominator sinθ minus cosθ end fraction text   end text plus text    end text fraction numerator cos squared straight theta over denominator cosθ minus sinθ end fraction end cell row cell text    end text equals text   end text fraction numerator sin squared straight theta minus text   end text cos squared straight theta text   end text over denominator sinθ minus text   end text cosθ text   end text end fraction end cell row cell text    end text equals text   end text fraction numerator left parenthesis sinθ minus up diagonal strike straight c osθ right parenthesis text   end text left parenthesis sinθ plus cosθ right parenthesis over denominator left parenthesis sinθ minus up diagonal strike straight c osθ right parenthesis end fraction end cell row cell text    end text equals text   end text left parenthesis sinθ plus text cos end text straight theta right parenthesis end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 9

The value of (1+cotθ – cosecθ )  (1+tanθ + secθ) is

 (a) 1     (b) 2      (c) 4      (d) 0Solution 9

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell cotθ equals text   end text cosθ over sinθ text     --- end text box enclose 1 text        end text cosecθ equals text   end text 1 over sinθ text     --- end text box enclose 3 end cell row cell tanθ equals text   end text sinθ over cosθ text     --- end text box enclose 2 text        end text secθ equals text   end text 1 over cosθ text     --- end text box enclose 4 text    end text end cell row cell text Given :  end text left parenthesis 1 plus cotθ minus text  cosec end text straight theta right parenthesis text   end text left parenthesis 1 plus tanθ plus secθ right parenthesis text   end text end cell row cell from text    end text box enclose 1 text ,    end text box enclose 2 text ,    end text box enclose 3 text ,    end text box enclose 4 end cell row cell rightwards double arrow left parenthesis 1 plus cosθ over sinθ minus 1 over sinθ right parenthesis text   end text left parenthesis 1 plus sinθ over cosθ plus 1 over cosθ right parenthesis end cell row cell rightwards double arrow left parenthesis fraction numerator sinθ plus cosθ minus 1 over denominator sinθ end fraction right parenthesis text   end text left parenthesis fraction numerator sinθ plus cosθ plus 1 over denominator cosθ end fraction right parenthesis end cell row cell rightwards double arrow fraction numerator left parenthesis sinθ plus cosθ right parenthesis squared minus 1 over denominator sinθcosθ end fraction text                      end text left curly bracket left parenthesis straight a plus straight b right parenthesis left parenthesis straight a minus straight b right parenthesis equals straight a squared minus straight b squared right curly bracket end cell row cell rightwards double arrow fraction numerator sin squared straight theta plus cos squared plus 2 sinθcosθ minus 1 over denominator sinθcosθ end fraction equals 2 text    end text left curly bracket sin squared straight theta plus cos squared straight theta equals 1 right curly bracket end cell row cell rightwards double arrow fraction numerator 1 plus 2 sinθcosθ minus 1 over denominator sinθcosθ end fraction equals 2 end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis.
end style

Question 10

begin mathsize 11px style table attributes columnalign left end attributes row cell fraction numerator tanθ over denominator secθ minus 1 end fraction plus fraction numerator tanθ over denominator secθ plus 1 end fraction text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  2 tan end text straight theta text    end text left parenthesis straight b right parenthesis text  2 sec end text straight theta text    end text left parenthesis straight c right parenthesis text  2 cosec end text straight theta text    end text left parenthesis straight d right parenthesis text  2 tan end text straight theta text  sec end text straight theta end cell end table end style

Solution 10

begin mathsize 11px style table attributes columnalign left end attributes row cell text      end text fraction numerator tanθ over denominator secθ minus 1 end fraction plus fraction numerator tanθ over denominator secθ plus 1 end fraction end cell row cell rightwards double arrow text   end text fraction numerator tanθ left parenthesis secθ plus 1 right parenthesis plus tanθ left parenthesis secθ minus 1 right parenthesis over denominator left parenthesis secθ minus 1 right parenthesis left parenthesis secθ plus 1 right parenthesis end fraction text   end text end cell row cell rightwards double arrow text   end text fraction numerator tanθ text   end text secθ plus tanθ plus tanθ text   end text secθ minus tanθ over denominator sec squared straight theta minus 1 end fraction end cell row cell rightwards double arrow text   end text fraction numerator 2 tanθsecθ over denominator tan squared straight theta end fraction text                     end text left curly bracket sec squared straight theta equals 1 plus tan squared straight theta right curly bracket end cell row cell rightwards double arrow text   end text fraction numerator 2 secθ over denominator tanθ end fraction end cell row cell rightwards double arrow text   end text fraction numerator 2 left parenthesis 1 over cosθ right parenthesis over denominator sinθ over cosθ end fraction end cell row cell rightwards double arrow text   end text 2 over sinθ equals 2 cosecθ end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 11

(cosecθ – sinθ) (secθ – cosθ) (tanθ + cotθ) is equal

(a) 0          (b)   1       (c)-1        (d) None of theeSolution 11

begin mathsize 11px style table attributes columnalign left end attributes row cell We text  know  end text box enclose sin squared straight theta plus cos squared straight theta plus 1 end enclose text          --- end text box enclose 1 end cell row cell text   end text left parenthesis cosecθ minus sinθ right parenthesis left parenthesis secθ minus cosθ right parenthesis left parenthesis tanθ plus cotθ right parenthesis end cell row cell equals text   end text left parenthesis 1 over sinθ minus sinθ right parenthesis left parenthesis 1 over cosθ minus cosθ right parenthesis left parenthesis sinθ over cosθ plus cosθ over sinθ right parenthesis end cell row cell equals text   end text fraction numerator left parenthesis 1 minus sin squared straight theta right parenthesis over denominator sinθ end fraction cross times fraction numerator left parenthesis 1 minus cos squared straight theta right parenthesis over denominator cosθ end fraction cross times fraction numerator left parenthesis sinθ plus cos squared straight theta right parenthesis over denominator sinθcosθ end fraction end cell row cell from text   end text box enclose 1 end cell row cell rightwards double arrow text   end text fraction numerator cos squared straight theta over denominator sinθ end fraction cross times fraction numerator sin squared straight theta over denominator cosθ end fraction cross times 1 over sinθcosθ end cell row cell equals text  1 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 12

begin mathsize 11px style table attributes columnalign left end attributes row cell If space text   end text straight x equals acosθ space space and text    end text space straight y equals text   end text bsinθ comma text   end text than text   end text straight b squared straight x squared plus straight a squared straight y squared equals end cell row cell left parenthesis straight a right parenthesis straight a squared straight b squared space space space space space left parenthesis straight b right parenthesis ab space space space space space space left parenthesis straight c right parenthesis text   end text straight a to the power of 4 straight b to the power of 4 space space space left parenthesis straight d right parenthesis text   end text straight a squared plus straight b squared end cell end table end style

Solution 12

begin mathsize 11px style Given space straight x equals acosθ space space space space and space space space straight y equals bsinθ
table attributes columnalign left end attributes row cell space space space space straight x squared equals straight a squared cos squared straight theta space space space space and space space space straight y to the power of straight 2 equals straight b squared sin squared straight theta end cell row cell rightwards double arrow space straight b to the power of straight 2 straight x squared equals straight a squared straight b to the power of straight 2 cos squared straight theta space space space and space space straight a squared straight y to the power of straight 2 equals straight a squared straight b to the power of straight 2 sin squared straight theta end cell row cell rightwards double arrow space straight b to the power of straight 2 straight x squared plus straight space straight a squared straight y to the power of straight 2 equals straight space straight a squared straight b to the power of straight 2 straight space left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis end cell row cell rightwards double arrow space straight b to the power of straight 2 straight x squared plus straight space straight a squared straight y to the power of straight 2 equals straight space straight a squared straight b to the power of straight 2 left parenthesis 1 right parenthesis end cell row cell space space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight a squared straight b to the power of straight 2 end cell end table
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 13

If  x =a secθ  and  y=b tanθ  then  b2x2a2y2=

(a) ab      (b) a– b2       (c) a+ b2    (d) a2b2Solution 13

begin mathsize 11px style table attributes columnalign left end attributes row cell We straight space know space space    end cell row cell         sec squared straight theta straight space – straight space tan squared straight theta equals 1 space space     --- box enclose 1 end cell row cell straight space rightwards double arrow space straight b to the power of straight 2 straight x squared straight space minus space straight a to the power of straight 2 straight y squared end cell row cell straight space equals space straight b to the power of straight 2 left parenthesis straight a straight space secθ right parenthesis squared minus space straight a to the power of straight 2 left parenthesis straight b straight space tanθ right parenthesis squared end cell row cell straight space equals space straight a to the power of straight 2 straight b to the power of straight 2 straight space sec squared straight theta minus straight a to the power of straight 2 straight b to the power of straight 2 straight space tan squared straight theta end cell row cell straight space equals space straight a to the power of straight 2 straight b to the power of straight 2 straight space left parenthesis sec squared straight theta straight space – straight space tan squared straight theta right parenthesis end cell row cell straight space space from space box enclose 1 end cell row cell straight space rightwards double arrow space straight a to the power of straight 2 straight b to the power of straight 2 straight space left parenthesis sec squared straight theta straight space – straight space tan squared straight theta right parenthesis equals space straight a to the power of straight 2 straight b to the power of straight 2 straight space end cell end table
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 14

begin mathsize 11px style table attributes columnalign left end attributes row cell fraction numerator cotθ over denominator cotθ minus cot 30 end fraction text   end text plus text   end text fraction numerator tanθ over denominator tanθ minus tan 30 end fraction text      is equal to end text end cell row cell left parenthesis straight a right parenthesis text  0       end text left parenthesis straight b right parenthesis 1 text        end text left parenthesis straight c right parenthesis minus 1 text        end text left parenthesis straight d right parenthesis text  2 end text end cell end table end style

Solution 14

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text         cot 3 end text straight theta text  =  end text fraction numerator 3 cotθ minus cot cubed straight theta over denominator 1 minus 3 cot squared straight theta end fraction text    ---- end text box enclose 1 end cell row cell text         tan 3 end text straight theta text  =  end text fraction numerator 3 tanθ minus tan cubed straight theta over denominator 1 minus 3 tan squared straight theta end fraction text    ---- end text box enclose 2 end cell row cell rightwards double arrow text   end text fraction numerator cotθ over denominator cotθ minus cot 3 straight theta end fraction text   end text plus text   end text fraction numerator tanθ over denominator tanθ minus tan 3 straight theta end fraction end cell row cell from text     end text box enclose 1 text    &   end text box enclose 2 text   end text end cell row cell rightwards double arrow text   end text fraction numerator cotθ over denominator cotθ minus left parenthesis fraction numerator 3 cotθ minus cot cubed straight theta over denominator 1 minus 3 cot squared straight theta end fraction right parenthesis end fraction text   end text plus text   end text fraction numerator tanθ over denominator tanθ minus left parenthesis fraction numerator 3 tanθ minus tan cubed straight theta over denominator 1 minus 3 tan squared straight theta end fraction right parenthesis end fraction end cell row cell equals text   end text fraction numerator cotθ left parenthesis 1 minus 3 cot squared straight theta right parenthesis over denominator negative 2 cotθ minus 2 cot cubed straight theta end fraction text  +  end text fraction numerator tanθ left parenthesis 1 minus 3 tan squared straight theta right parenthesis over denominator negative 2 tanθ minus 2 tan cubed straight theta end fraction end cell row cell equals text  - end text fraction numerator left parenthesis 1 minus 3 tan squared straight theta right parenthesis over denominator 2 left parenthesis 1 plus tan squared straight theta right parenthesis end fraction text   end text minus text   end text fraction numerator left parenthesis 1 minus 3 cot squared straight theta right parenthesis over denominator 2 left parenthesis 1 plus cot squared straight theta right parenthesis end fraction end cell row cell equals text  - end text 1 half left curly bracket fraction numerator 1 minus 3 tan squared straight theta over denominator sec squared straight theta end fraction text  +  end text fraction numerator 1 minus 3 cot squared straight theta over denominator cosec squared straight theta end fraction text   end text right curly bracket end cell row cell equals text  - end text 1 half left curly bracket fraction numerator 1 minus fraction numerator 3 sin squared straight theta over denominator cos squared straight theta end fraction over denominator fraction numerator 1 over denominator cos squared straight theta end fraction end fraction text  +  end text fraction numerator 1 minus fraction numerator 3 cos squared straight theta over denominator sin squared straight theta end fraction over denominator fraction numerator 1 over denominator cos squared straight theta end fraction end fraction text   end text right curly bracket end cell row cell equals text  - end text 1 half left curly bracket cosθ minus 3 sin squared straight theta text  + sin end text to the power of text 2 end text end exponent straight theta minus 3 cos squared straight theta right curly bracket end cell row cell equals text  - end text 1 half left curly bracket negative 2 cos squared straight theta text  - 2sin end text to the power of text 2 end text end exponent straight theta right curly bracket end cell row cell equals text  sin end text to the power of text 2 end text end exponent straight theta text  + cos end text to the power of text 2 end text end exponent straight theta end cell row cell equals text  1 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 15

begin mathsize 11px style table attributes columnalign left end attributes row cell 2 left parenthesis sin to the power of 6 straight theta plus cos to the power of 6 straight theta right parenthesis minus 3 left parenthesis sin to the power of 4 straight theta plus cos to the power of 4 straight theta right parenthesis text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  0     end text left parenthesis straight b right parenthesis text  1      end text left parenthesis straight c right parenthesis text  -1      end text left parenthesis straight d right parenthesis text  None of these end text end cell end table end style

Solution 15

Error converting from MathML to accessible text.

Question 16

If acosθ + bsinθ = 4 and asinθ-bcosθ = 3, then a2+b2=

(a) 7    (b) 12      (c) 25      (d) None of theseSolution 16

begin mathsize 11px style table attributes columnalign left end attributes row cell acosθ plus bsinθ equals 4 end cell row cell On text  squaring both sides end text end cell row cell rightwards double arrow text  a end text to the power of text 2 end text end exponent cos squared straight theta plus straight b squared sin squared straight theta plus 2 absinθcosθ equals 16 text      --- end text box enclose 1 end cell row cell text      asin end text straight theta text  - bcos end text straight theta equals 3 end cell row cell text On squaring both sides end text end cell row cell rightwards double arrow text  a end text to the power of text 2 end text end exponent sin squared straight theta plus straight b squared cos squared straight theta minus 2 absincosθ equals 9 text       --- end text box enclose 2 end cell row cell Adding text    end text box enclose 1 text   &  end text box enclose 2 text   end text end cell row cell rightwards double arrow text  a end text to the power of text 2 end text end exponent left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis plus straight b squared left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis equals 25 end cell row cell rightwards double arrow text  a end text to the power of text 2 end text end exponent plus straight b squared equals 25 end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 17

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text acotθ plus bcosecθ equals straight p text   and bcot+ end text straight theta plus acosecθ equals straight q comma text    end text end cell row cell text then p end text to the power of text 2 end text end exponent text-end text straight q squared equals end cell row cell left parenthesis straight a right parenthesis text  a end text to the power of text 2 end text end exponent minus straight b to the power of text 2 end text end exponent text      end text left parenthesis straight b right parenthesis text  b end text to the power of text 2 end text end exponent minus text a end text to the power of text 2 end text end exponent text       end text left parenthesis straight c right parenthesis text  a end text to the power of text 2 end text end exponent plus straight b squared text        end text left parenthesis straight d right parenthesis text  b-a end text end cell end table end style

Solution 17

begin mathsize 11px style table attributes columnalign left end attributes row cell Given straight space acotθ plus bcosecθ equals straight p end cell row cell Squaring straight space both space sides end cell row cell rightwards double arrow space straight a to the power of straight 2 cot squared straight theta plus straight b squared cosec squared straight theta plus 2 abcotθcosecθ equals straight p squared     --- box enclose 1 end cell row cell Given space bcotθ  +  acosecθ equals straight q end cell row cell Squaring space both space sides end cell row cell rightwards double arrow space straight b to the power of straight 2 cot squared straight theta plus straight a squared cosec squared straight theta plus 2 abcotθcoseθ equals straight q squared     --- box enclose 2 end cell row cell Subtracting space space box enclose 2 space from space box enclose 1 comma end cell row cell rightwards double arrow space straight a to the power of straight 2 left parenthesis cot squared straight theta minus cosec squared straight theta right parenthesis plus straight b squared left parenthesis cosec squared straight theta minus cot squared straight theta right parenthesis equals straight p squared minus straight q squared   --- box enclose 3 end cell row cell We space know space space cosec squared straight theta equals 1 plus straight space cot squared straight theta end cell row cell space rightwards double arrow cosec squared straight theta minus cot squared straight theta equals 1        --- box enclose 4    end cell row cell from space box enclose 3   &   box enclose 4 end cell row cell rightwards double arrow negative straight a to the power of straight 2 plus straight b to the power of straight 2 equals straight p squared minus straight q squared end cell row cell rightwards double arrow space space    straight p squared minus straight q squared equals straight b to the power of straight 2 minus straight a to the power of straight 2 end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 18

begin mathsize 11px style table attributes columnalign left end attributes row cell The text   end text value text   end text of text   end text sin squared 29 to the power of 0 plus sin squared 61 to the power of 0 text  is end text end cell row cell left parenthesis straight a right parenthesis text  1        end text left parenthesis straight b right parenthesis text  0        end text left parenthesis straight c right parenthesis text  2sin end text to the power of text 2 end text end exponent 29 to the power of 0 text      end text left parenthesis straight d right parenthesis text  2cos end text to the power of text 2 end text end exponent 61 to the power of 0 end cell end table end style

Solution 18

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text      end text sin left parenthesis 90 minus straight theta right parenthesis equals cos left parenthesis straight theta right parenthesis end cell row cell rightwards double arrow text  for  end text straight theta text  = 29 end text to the power of text 0 end text end exponent end cell row cell rightwards double arrow text  sin end text left parenthesis 61 to the power of 0 right parenthesis equals cos 29 to the power of 0 text       --- end text box enclose 1 end cell row cell text      end text also text   sin end text to the power of text 2 end text end exponent straight theta plus cos squared straight theta equals 1 text    --- end text box enclose 2 end cell row cell rightwards double arrow text  sin end text to the power of text 2 end text end exponent text 29 end text to the power of text 0 end text end exponent plus sin squared 61 to the power of 0 end cell row cell text      end text from text      end text box enclose 1 end cell row cell rightwards double arrow text  sin end text to the power of text 2 end text end exponent text 29 end text to the power of text 0 end text end exponent plus cos to the power of text 2 end text end exponent text 29 end text to the power of text 0 end text end exponent end cell row cell rightwards double arrow text  1 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 19

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text straight x text   end text equals text   end text rsinθcosϕ comma text  y=  end text rsinθsinϕ text   and z= rcos end text straight theta text , then end text end cell row cell left parenthesis straight a right parenthesis text  x end text to the power of text 2 end text end exponent plus straight y squared plus straight z squared equals straight r squared text         end text left parenthesis straight b right parenthesis text  x end text to the power of text 2 end text end exponent plus straight y squared minus straight z squared equals straight r squared end cell row cell left parenthesis straight c right parenthesis text  x end text to the power of text 2 end text end exponent minus straight y squared plus straight z squared equals straight r squared text         end text left parenthesis straight d right parenthesis text  z end text to the power of text 2 end text end exponent plus straight y squared plus straight x squared equals straight r squared end cell end table end style

Solution 19

begin mathsize 11px style table attributes columnalign left end attributes row cell straight x equals straight space rsinθcosϕ end cell row cell straight y equals straight space rsinθsinϕ end cell row cell straight z equals space rcosθ end cell row cell We space know space space space sin to the power of straight 2 straight A plus cos squared straight A equals 1   --- box enclose 1 end cell row cell rightwards double arrow space straight x to the power of straight 2 plus straight y to the power of straight 2 end cell row cell rightwards double arrow straight space straight r squared sin squared θcos squared straight ϕ plus straight r squared sin squared θsin squared straight ϕ end cell row cell rightwards double arrow straight space straight r squared sin squared straight theta left parenthesis cos squared straight ϕ plus sin squared straight ϕ right parenthesis end cell row cell rightwards double arrow straight space straight r squared sin squared straight theta          --- box enclose 1 end cell row cell rightwards double arrow straight space straight r squared sin squared straight theta straight space equals space straight x to the power of straight 2 plus straight y to the power of straight 2 end cell row cell Add space straight z to the power of straight 2 space both space side end cell row cell rightwards double arrow space straight x to the power of straight 2 plus straight y to the power of straight 2 plus straight z to the power of straight 2 equals straight r squared sin squared straight theta plus straight r squared cos squared straight theta end cell row cell                space space space space space     =  straight r squared left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis               end cell row cell rightwards double arrow space straight x to the power of straight 2 plus straight y to the power of straight 2 plus straight z to the power of straight 2 equals straight r squared end cell end table
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Chapter 6 Trigonometric Identities Exercise 6.58

Question 20

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text sinθ plus sin squared straight theta equals 1 text   then  cos end text to the power of text 2 end text end exponent straight theta plus cos to the power of 4 straight theta equals end cell row cell left parenthesis straight a right parenthesis text  -1     end text left parenthesis straight b right parenthesis text  1      end text left parenthesis straight c right parenthesis text  0       end text left parenthesis straight d right parenthesis text  None of these end text end cell end table end style

Solution 20

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text    end text sin squared straight theta plus cos squared straight theta equals 1 end cell row cell rightwards double arrow cos squared straight theta equals 1 minus sin squared straight theta text             --- end text box enclose 1 end cell row cell Given text     s end text inθ plus sin squared straight theta text  =1    --- end text box enclose 2 text   end text end cell row cell text              end text sinθ equals text  1- end text sin squared straight theta text   end text end cell row cell text              from  end text box enclose 1 end cell row cell text               end text box enclose sinθ equals cos squared straight theta end enclose text       --- end text box enclose 3 end cell row cell To text  find    end text cos squared straight theta plus cos to the power of 4 straight theta end cell row cell text           end text rightwards double arrow cos squared straight theta left parenthesis 1 plus cos squared straight theta right parenthesis end cell row cell text           from   end text box enclose 3 end cell row cell text           end text rightwards double arrow sinθ left parenthesis 1 plus sinθ right parenthesis end cell row cell text           end text rightwards double arrow sinθ plus sin squared straight theta end cell row cell text           from  end text box enclose 2 end cell row cell text            end text rightwards double arrow text  1 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 21

begin mathsize 11px style table attributes columnalign left end attributes row cell If text   end text acosθ plus bsinθ equals straight m text   and asin end text straight theta text -bcos end text straight theta text  = n, then a end text to the power of text 2 end text end exponent plus straight b squared equals end cell row cell left parenthesis straight a right parenthesis text  m end text to the power of text 2 end text end exponent minus straight n squared text      end text left parenthesis straight b right parenthesis text  m end text to the power of text 2 end text end exponent straight n squared text     end text left parenthesis straight c right parenthesis text   end text straight n squared text  - m end text to the power of text 2 end text end exponent text     end text left parenthesis straight d right parenthesis text  m end text to the power of text 2 end text end exponent plus straight n squared text   end text end cell end table end style

Solution 21

begin mathsize 11px style table attributes columnalign left end attributes row cell acosθ plus bsinθ equals straight m end cell row cell On text  squaring end text end cell row cell text a end text to the power of text 2 end text end exponent cos squared straight theta plus straight b squared sin squared straight theta plus 2 absinθcosθ equals straight m squared text     --- end text box enclose 1 end cell row cell asinθ minus bcosθ equals straight n end cell row cell On text  squaring end text end cell row cell text a end text to the power of text 2 end text end exponent sin squared straight theta plus straight b squared cos squared straight theta minus 2 absinθcosθ equals straight n squared text       --- end text box enclose 2 end cell row cell On text   end text adding text   end text box enclose 1 text  &  end text box enclose 2 text   and knowing sin end text to the power of text 2 end text end exponent straight theta plus cos squared straight theta equals 1 end cell row cell rightwards double arrow text a end text to the power of text 2 end text end exponent left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis plus straight b squared left parenthesis sin squared straight theta plus cos squared straight theta right parenthesis equals straight m squared plus straight n squared end cell row cell rightwards double arrow text a end text to the power of text 2 end text end exponent plus straight b to the power of text 2 end text end exponent equals straight m to the power of text 2 end text end exponent plus straight n to the power of text 2 end text end exponent end cell end table
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 22

begin mathsize 11px style table attributes columnalign left end attributes row cell If text  cosA + cos end text to the power of text 2 end text end exponent straight A equals 1 comma text   then  sin end text to the power of text 2 end text end exponent straight A plus sin to the power of 4 straight A equals end cell row cell left parenthesis straight a right parenthesis text  -1       end text left parenthesis straight b right parenthesis text  0        end text left parenthesis straight c right parenthesis text  1       end text left parenthesis straight d right parenthesis text  None of these end text end cell end table end style

Solution 22

begin mathsize 11px style table attributes columnalign left end attributes row cell text            end text sin squared straight A plus cos squared straight A equals 1 end cell row cell text            end text sin squared straight A equals 1 minus cos squared straight A text            --- end text box enclose 1 end cell row cell given text    cosA + cos end text to the power of text 2 end text end exponent straight A equals 1 text             --- end text box enclose 2 end cell row cell text           cosA = 1-cos end text to the power of text 2 end text end exponent straight A end cell row cell text        from  end text box enclose text 1 end text end enclose end cell row cell text           cosA end text equals text sin end text to the power of text 2 end text end exponent text A                   --- end text box enclose 3 end cell row cell To text  find:    s end text in squared straight A plus sin to the power of 4 straight A end cell row cell text             end text rightwards double arrow sin squared straight A left parenthesis 1 plus sin squared straight A right parenthesis end cell row cell text           end text from text   end text box enclose 3 text     end text end cell row cell text              end text rightwards double arrow text  cosA end text left parenthesis 1 plus text cosA end text right parenthesis end cell row cell text              end text rightwards double arrow text  cosA end text plus text cos end text to the power of text 2 end text end exponent text A end text end cell row cell text            end text from text   end text box enclose 2 end cell row cell text               end text rightwards double arrow text  1 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 23

begin mathsize 11px style table attributes columnalign left end attributes row cell If text  x = asec end text θcosϕ comma text  y = bsec end text θsinϕ text   and z = ctan end text straight theta end cell row cell text then   end text straight x squared over straight a squared text   end text plus text   end text straight y squared over straight b squared equals end cell row cell left parenthesis straight a right parenthesis text   end text straight z squared over straight c squared text      end text left parenthesis straight b right parenthesis text  1- end text straight z squared over straight c squared text        end text left parenthesis straight c right parenthesis text   end text straight z squared over straight c squared minus 1 text       end text left parenthesis straight d right parenthesis text  1+ end text straight z squared over straight c squared text   end text end cell end table end style

Solution 23

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell sin squared straight theta plus cos squared plus 1 text          --- end text box enclose 1 end cell row cell 1 plus tan squared straight theta equals sec squared straight theta text      --- end text box enclose 2 end cell row cell rightwards double arrow straight x squared over straight a squared text   end text plus text   end text straight y squared over straight b squared end cell row cell equals fraction numerator straight a squared sec squared θcos squared straight ϕ over denominator straight a squared end fraction text   end text plus text   end text fraction numerator straight b squared sec squared θsin squared straight ϕ over denominator straight b squared end fraction end cell row cell equals text   end text sec squared θcos squared straight ϕ text   end text plus text   end text sec squared θsin squared straight ϕ end cell row cell equals text   end text sec squared straight theta left parenthesis cos squared straight ϕ plus sin squared straight ϕ right parenthesis end cell row cell text  from  end text box enclose 1 text  &  end text box enclose 2 end cell row cell rightwards double arrow text   end text left parenthesis 1 plus tan squared straight theta right parenthesis text          --- end text box enclose 3 end cell row cell given text   z = ctan end text straight theta end cell row cell rightwards double arrow text  tan end text straight theta equals straight z over straight c text    --- end text box enclose 4 end cell row cell rightwards double arrow straight x squared over straight a squared text   end text plus text   end text straight y squared over straight b squared equals 1 plus straight z squared over straight c squared end cell end table
So comma space the space correct space option space is space left parenthesis straight d right parenthesis.
end style

Question 24

begin mathsize 11px style table attributes columnalign left end attributes row cell If text  acos end text straight theta text  - bsin end text straight theta text  = c, then asin end text straight theta text  + bcos end text straight theta equals end cell row cell left parenthesis straight a right parenthesis text   end text plus-or-minus space root index blank of straight a to the power of straight 2 plus straight b to the power of straight 2 plus straight c to the power of straight 2 end root text        end text left parenthesis straight b right parenthesis text   end text plus-or-minus space root index blank of straight a to the power of straight 2 plus straight b to the power of straight 2 minus straight c to the power of straight 2 end root end cell row cell left parenthesis straight c right parenthesis plus-or-minus space root index blank of straight c to the power of straight 2 plus straight a squared minus straight b to the power of straight 2 end root text         end text left parenthesis straight d right parenthesis text  None of these  end text end cell end table end style

Solution 24

begin mathsize 11px style table attributes columnalign left end attributes row cell acosθ minus bsinθ equals straight c end cell row cell rightwards double arrow space space space On space squaring end cell row cell space space space space space space space straight a to the power of straight 2 cos squared straight theta plus straight b squared sin squared straight theta minus 2 abcosθsinθ equals straight c squared space space space minus negative negative box enclose 1 end cell row cell Let space space space asinθ plus bcosθ space equals space straight t end cell row cell space space space space space space space On space squaring end cell row cell space space rightwards double arrow space straight a to the power of straight 2 sin to the power of straight 2 straight theta space plus space straight b to the power of straight 2 cos to the power of straight 2 straight theta space plus space 2 absinθcosθ space equals space straight t to the power of straight 2 space space space minus negative negative box enclose 2 end cell row cell Adding straight space box enclose straight 1 space & space box enclose 2 comma space space we space get end cell row cell rightwards double arrow space straight a to the power of straight 2 left parenthesis sin to the power of straight 2 straight theta plus cos to the power of straight 2 straight theta right parenthesis space plus space straight b to the power of straight 2 left parenthesis sin to the power of straight 2 straight theta plus cos to the power of straight 2 straight theta right parenthesis equals space straight c to the power of straight 2 plus straight t squared space space space minus negative negative box enclose 3 end cell row cell rightwards double arrow space sin to the power of straight 2 straight theta plus cos to the power of straight 2 straight theta equals 1 space space space left parenthesis we space know right parenthesis end cell row cell space space space space space from space box enclose 3 end cell row cell space space space space straight a to the power of straight 2 plus straight b to the power of straight 2 equals straight c to the power of straight 2 plus straight t squared end cell row cell rightwards double arrow space straight t equals plus-or-minus space root index blank of straight a to the power of straight 2 plus straight b to the power of straight 2 minus straight c to the power of straight 2 end root end cell row cell Hence comma end cell row cell asinθ space plus space bcosθ space equals plus-or-minus space root index blank of straight a to the power of straight 2 plus straight b to the power of straight 2 minus straight c to the power of straight 2 end root end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 25

begin mathsize 11px style table attributes columnalign left end attributes row cell 9 sec squared straight A minus 9 tan squared straight A text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  1     end text left parenthesis straight b right parenthesis text  9      end text left parenthesis straight c right parenthesis text  8       end text left parenthesis straight d right parenthesis text  0 end text end cell end table end style

Solution 25

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell text      end text 1 text  + tan end text to the power of text 2 end text end exponent straight a equals sec squared straight A end cell row cell rightwards double arrow sec squared straight A minus tan squared straight A equals 1 text        --- end text box enclose 1 end cell row cell To text  find:  9sec end text to the power of text 2 end text end exponent straight A minus 9 tan squared straight A end cell row cell text            end text rightwards double arrow text  9 end text left parenthesis text sec end text to the power of text 2 end text end exponent straight A minus tan squared straight A right parenthesis end cell row cell text         from  end text box enclose 1 end cell row cell text           end text rightwards double arrow text  9(1) = 9 end text end cell end table
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 26

begin mathsize 11px style table attributes columnalign left end attributes row cell left parenthesis 1 plus tanθ plus secθ right parenthesis left parenthesis 1 plus cotθ minus cosecθ right parenthesis equals end cell row cell left parenthesis straight a right parenthesis text  0     end text left parenthesis straight b right parenthesis text  1      end text left parenthesis straight c right parenthesis text  2        end text left parenthesis straight d right parenthesis text  -1 end text end cell end table end style

Solution 26

begin mathsize 11px style table attributes columnalign left end attributes row cell    left parenthesis 1 plus sinθ over cosθ plus 1 over cosθ right parenthesis left parenthesis 1 plus cosθ over sinθ minus 1 over sinθ right parenthesis end cell row cell equals left parenthesis fraction numerator sinθ plus cosθ plus 1 over denominator cosθ end fraction right parenthesis left parenthesis fraction numerator sinθ plus cosθ minus 1 over denominator sinθ end fraction right parenthesis end cell row cell We space know end cell row cell        left parenthesis straight a plus straight b right parenthesis left parenthesis straight a minus straight b right parenthesis plus straight a squared minus straight b squared          --- box enclose 1 end cell row cell and    sin to the power of straight 2 straight theta plus cos squared plus 1           space   --- box enclose 2 end cell row cell from straight space box enclose 1 comma space we space get end cell row cell             fraction numerator left parenthesis sinθ plus cosθ right parenthesis squared minus 1 over denominator sinθcosθ end fraction end cell row cell         equals space fraction numerator sin to the power of straight 2 straight theta plus cos squared plus 2 sinθcosθ minus 1 over denominator sinθcosθ end fraction end cell row cell from straight space box enclose 2       end cell row cell          rightwards double arrow straight space fraction numerator 1 plus 2 sinθcosθ minus 1 over denominator sinθcosθ end fraction    end cell row cell          rightwards double arrow   2 end cell row cell space So comma space the space correct space option space is space left parenthesis straight c right parenthesis. space space space end cell end table
end style

Question 27

begin mathsize 11px style table attributes columnalign left end attributes row cell left parenthesis secA plus tanA right parenthesis left parenthesis 1 minus sinA right parenthesis equals end cell row cell left parenthesis straight a right parenthesis text  secA      end text left parenthesis straight b right parenthesis text  sinA      end text left parenthesis straight c right parenthesis text  cosecA      end text left parenthesis straight d right parenthesis cosA end cell end table end style

Solution 27

begin mathsize 11px style table attributes columnalign left end attributes row cell text     end text left parenthesis secA plus tanA right parenthesis left parenthesis 1 minus sinA right parenthesis end cell row cell equals text   end text open parentheses 1 over cosA plus sinA over cosA close parentheses left parenthesis 1 minus sinA right parenthesis end cell row cell equals text   end text fraction numerator left parenthesis 1 plus sinA right parenthesis left parenthesis 1 minus sinA right parenthesis over denominator cosA end fraction end cell row cell equals text   end text fraction numerator 1 minus sin squared straight A over denominator cos squared end fraction end cell row cell equals text   end text fraction numerator cos squared straight A over denominator cosA end fraction end cell row cell equals text   cosA end text end cell end table
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 28

begin mathsize 11px style table attributes columnalign left end attributes row cell fraction numerator 1 plus tan squared straight A over denominator 1 plus cot squared straight A end fraction text  is equal to end text end cell row cell left parenthesis straight a right parenthesis text  sec end text to the power of text 2 end text end exponent straight A text      end text left parenthesis straight b right parenthesis text  -1    end text left parenthesis straight c right parenthesis text  cot end text to the power of text 2 end text end exponent straight A text    end text left parenthesis straight d right parenthesis text  tan end text to the power of text 2 end text end exponent straight A text    end text end cell end table end style

Solution 28

begin mathsize 11px style We space know
table attributes columnalign left end attributes row cell 1 plus tan squared straight A equals sec squared straight A equals fraction numerator 1 over denominator cos squared straight A end fraction text        --- end text box enclose 1 end cell row cell 1 plus cot squared straight A equals cosec squared straight A equals fraction numerator 1 over denominator sin squared straight A end fraction text        --- end text box enclose 1 end cell row cell To text  find:  end text fraction numerator 1 plus tan squared straight A over denominator 1 plus cot squared straight A end fraction end cell row cell from text    end text box enclose 1 text  &  end text box enclose 2 end cell row cell text      end text rightwards double arrow text   end text fraction numerator fraction numerator 1 over denominator cos squared straight A end fraction over denominator fraction numerator 1 over denominator sin squared straight A end fraction end fraction text   end text end cell row cell text      end text rightwards double arrow text   end text fraction numerator sin squared straight A over denominator cos squared straight A end fraction end cell row cell text      end text rightwards double arrow text  tan end text to the power of text 2 end text end exponent straight A end cell row cell text  So, the correct option is (d). end text end cell end table end style

Question 29

If sin θ – cos θ = 0, then the value of sinθ + cosθ is

  1. 1

Solution 29

Question 30

The value of sin (45° + θ) – cos (45° – θ) is equal to

  1. 2 cos θ
  2. 0
  3. 2 sin θ
  4. 1

Solution 30

Question 31

If ΔABC is right angled at C, then the value of cos (A + B) is

  1. 0
  2. 1

Solution 31

Chapter 6 Trigonometric Identities Exercise 6.59

Question 32

If cos 8θ = sin θ and 8θ < 90°, then the value of tan 6θ is

  1. 1
  2. 0

Solution 32

Question 33

If cos (α + β) = 0, then sin (α  –  β) can be reduced to

  1. cos β
  2. cos 2β
  3. sin α
  4. sin 2α

Solution 33

Read More

RD SHARMA SOLUTION CHAPTER- 5 Trigonometric Ratios | CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 5 Trigonometric Ratios Exercise Ex. 5.1

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 1 (v)

Solution 1 (v)

Question 1 (vi)

Solution 1 (vi)

Question 1 (vii)

Solution 1 (vii)

Question 1 (viii)

Solution 1 (viii)

Question 1 (ix)

Solution 1 (ix)

Question 1 (x)

Solution 1 (x)

Question 1 (xi)

Solution 1 (xi)

Question 1 (xii)

Solution 1 (xii)

Question 2

In ABC right angled at B, AB = 24 cm, BC = 7 cm. Determine

(i)  sin A, cos A
(ii)  sin C, cos C

Solution 2

In ABC by applying Pythagoras theorem
AC2 = AB2 + BC2
= (24)2 + (7)2
= 576 + 49
= 625
AC =  = 25 cm






Question 3

Solution 3

Question 4

Solution 4

Question 5

Given 15 cot A = 8. Find sin A and sec ASolution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

begin mathsize 10px style If space angle straight A space and space angle straight P space are space acute space angles space such space that space tan space straight A equals space tanP comma space then space show space that space angle straight A space equals space angle straight P. end style

Solution 36

Question 25

If   find the value of   Solution 25

Given: 

Chapter 5 Trigonometric Ratios Exercise Ex. 5.2

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26 (i)

Solution 26 (i)

Question 26 (ii)

Solution 26 (ii)

Question 26 (iii)

Solution 26 (iii)

Question 26 (iv)

Solution 26 (iv)

Question 27 (i)

If A = B = 60o, verify that cos (A – B) = cos A cos B + sin A sin BSolution 27 (i)

Question 27 (ii)

Solution 27 (ii)

Question 27 (iii)

Solution 27 (iii)

Question 28 (i)

Solution 28 (i)

Question 28 (ii)

Solution 28 (ii)

Question 29

Solution 29

Question 30 (i)

Solution 30 (i)

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

If sin (A – B) = sin A cos B – cos A sin B and cos(A – B) = cos A cos B + sin A sin B, find the values of sin 15o and cos 15o.Solution 35

Question 36

Solution 36

Question 37

Solution 37

Question 38

Solution 38

Question 39

Solution 39

Question 40

Prove that

Solution 40

Question 30 (ii)

If tan(A + B) = 1 and   0o < A + B < 90o, A > B, then find the values of A and B. Solution 30 (ii)

Given: tan(A + B) = 1 and 

Therefore,

A + B = 45o … (i)

A – B = 30o … (ii)

Adding the two equations, we get

Chapter 5 Trigonometric Ratios Exercise Ex. 5.3

Question 1

Solution 1

Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Solution 2 (iii)

Question 2 (iv)

Solution 2 (iv)

Question 2 (v)

Solution 2 (v)

Question 2 (vi)

Solution 2 (vi)

Question 2 (vii)

Solution 2 (vii)

Question 2 (viii)

Solution 2 (viii)

Question 2 (ix)

Solution 2 (ix)

Question 2 (x)

Solution 2 (x)

Question 2 (xi)

Solution 2 (xi)

Question 3

Express each one of the following in terms of trigonometric ratios of angles lying between 0o and 45o

(i) sin 59o + cos 56o

(ii) tan 65o + cot 49o

(iii) sec 76o + cosec 52o

(iv) cos 78o + sec 78o

(v) cosec 54o + sin 72o

(vi) cot 85o + cos 75o

(vii) sin 67o + cos 75oSolution 3

Question 4

Solution 4

Question 5

If sin 3A = cos (A – 26o), where 3A is an acute angle, find the value of A.Solution 5

Question 6(i)

Solution 6(i)

Question 6(ii)

Solution 6(ii)

Question 7 (i)

Solution 7 (i)

Question 7 (ii)

Solution 7 (ii)

Question 7 (iii)

Solution 7 (iii)

Question 7 (iv)

Solution 7 (iv)

Question 8 (i)

Solution 8 (i)

Question 8 (ii)

Solution 8 (ii)

Question 8 (iii)

Solution 8 (iii)

Question 8 (iv)

Solution 8 (iv)

Question 8 (v)

Solution 8 (v)

Question 9 (i)

Solution 9 (i)

Question 9 (ii)

Solution 9 (ii)

Question 9 (iii)

Solution 9 (iii)

Question 9 (iv)

Solution 9 (iv)

Question 9 (v)

Solution 9 (v)

Question 9 (vi)

Solution 9 (vi)

Question 9 (vii)

Solution 9 (vii)

Question 9 (viii)

Solution 9 (viii)

Question 9 (ix)

Solution 9 (ix)

Question 9 (x)

Solution 9 (x)

Question 10

Solution 10

Question 11 (ii)

If A, B,C are the interior angles of a ΔABC,show that

begin mathsize 10px style left parenthesis ii right parenthesis space cos space fraction numerator straight B plus straight C over denominator 2 end fraction equals sin space straight A over 2 end style

Solution 11 (ii)

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 6 (iii)

If A, B, C, are the interior angles of a triangle ABC, ∠A = 90o, then find the value of   Solution 6 (iii)

Given: ∠A = 90o

For a triangle ABC, ∠A + ∠B + ∠C = 90o

Question 9 (xi)

Evaluate:   Solution 9 (xi)

Using the identities

Question 11 (i)

If A, B, C are the interior angles of a ∆ABC, show that:   Solution 11 (i)

For a triangle ABC, ∠A + ∠B + ∠C = 90o

Question 18

If tan 2A = cot(A – 18o), where 2A is an acute angle, find the value of A.Solution 18

Given: tan 2A = cot(A – 18o

As tan x = cot(90o – x), we have

cot(90o – 2A) = cot(A – 18o)

90o – 2A = A – 18o

3A = 108o

Therefore, A = 36o.

Chapter 5 Trigonometric Ratios Exercise 5.56

Question 1

begin mathsize 11px style If space straight theta space is space an space acute space angle space such space that space cos space straight theta space equals space 3 over 5 comma space then space fraction numerator sin space straight theta space tan space straight theta space minus space 1 over denominator 2 space tan squared straight theta end fraction equals
left parenthesis straight a right parenthesis space 16 over 625
left parenthesis straight b right parenthesis space 1 over 36
left parenthesis straight c right parenthesis space 3 over 160
left parenthesis straight d right parenthesis space 160 over 3 end style

Solution 1

begin mathsize 11px style It space is space given space that space straight theta space is space an space acute space angle space so space straight theta space lies space in space 1 to the power of st space quadrant.
In space the space first space quadrant space all space trigonometric space functions space are space positive.
sin space straight theta space equals space square root of 1 minus cos squared end root straight theta
space space space space space space space space space space equals square root of 1 minus open parentheses 3 over 5 close parentheses squared end root
space space space space space space space space space space equals square root of 1 minus 9 over 25 end root equals 4 over 5
tan space straight theta space equals space fraction numerator sin space straight theta over denominator cos space straight theta end fraction
space space space space space space space space space space space equals fraction numerator begin display style 4 over 5 end style over denominator begin display style 3 over 5 end style end fraction equals 4 over 3
Now space fraction numerator sin space straight theta space tan space straight theta space minus 1 over denominator 2 space tan space squared straight theta end fraction
equals fraction numerator begin display style 4 over 5 cross times 4 over 3 minus 1 end style over denominator 2 open parentheses begin display style 4 over 3 end style close parentheses squared end fraction
equals fraction numerator begin display style 1 over 15 end style over denominator begin display style 32 over 9 end style end fraction equals fraction numerator 9 over denominator 15 cross times 32 end fraction equals 3 over 160
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 2

begin mathsize 11px style If space tan space straight theta space equals space straight a over straight b comma space then space fraction numerator straight a space sin space straight theta space plus space straight b space cos space straight theta over denominator straight a space sin space straight theta space minus space straight b space cos space straight theta end fraction space is space equal space to
left parenthesis straight a right parenthesis space fraction numerator straight a squared plus straight b squared over denominator straight a squared minus straight b squared end fraction
left parenthesis straight b right parenthesis space fraction numerator straight a squared minus straight b squared over denominator straight a squared plus straight b squared end fraction
left parenthesis straight c right parenthesis space fraction numerator straight a plus straight b over denominator straight a minus straight b end fraction
left parenthesis straight d right parenthesis space fraction numerator straight a minus straight b over denominator straight a plus straight b end fraction end style

Solution 2

begin mathsize 11px style fraction numerator straight a space sin space straight theta space plus space straight b space cos space straight theta over denominator straight a space sin space straight theta space minus space straight b space cos space straight theta end fraction
equals space fraction numerator begin display style fraction numerator straight a space sin space straight theta over denominator cos space straight theta end fraction plus straight b end style over denominator begin display style fraction numerator straight a space sin space straight theta over denominator cos space straight theta end fraction minus space straight b end style end fraction
equals fraction numerator straight a space tan space straight theta plus straight b over denominator straight a space tan space straight theta space minus space straight b end fraction space space space space space space space space space space space space space space space space space space space space space space space space open curly brackets fraction numerator sin space straight theta over denominator cos space straight theta end fraction equals space tan space straight theta close curly brackets
equals fraction numerator straight a open parentheses begin display style straight a over straight b end style close parentheses plus straight b over denominator straight a open parentheses begin display style straight a over straight b end style close parentheses minus straight b end fraction equals fraction numerator straight a squared plus straight b squared over denominator straight a squared minus straight b squared end fraction
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 3

begin mathsize 11px style If space 5 space tan space straight theta minus 4 equals 0 comma space then space the space value space of space fraction numerator 5 space sin space straight theta space minus space 4 space cos space straight theta over denominator 5 space sin space straight theta space plus space 4 space cos space straight theta end fraction space is space
left parenthesis straight a right parenthesis space 5 over 3
left parenthesis straight b right parenthesis space 5 over 6
left parenthesis straight c right parenthesis space 0
left parenthesis straight d right parenthesis space 1 over 6 end style

Solution 3

begin mathsize 11px style 5 space tan space straight theta space minus 4 space equals space 0
box enclose tan space straight theta space equals space 4 over 5 end enclose space minus space circle enclose 1
To space find space colon space fraction numerator 5 space sin space straight theta space minus space 4 space cos space straight theta over denominator 5 space sin space straight theta space plus space 4 space cos space straight theta end fraction
space space space space space space space space space space space equals fraction numerator 5 space tan space straight theta minus 4 over denominator 5 space tan space straight theta plus 4 end fraction space space space...... space left parenthesis after space taking space cosθ space common right parenthesis
from space circle enclose 1 comma space
fraction numerator 5 space tan space straight theta minus 4 over denominator 5 space tan space straight theta plus 4 end fraction equals space fraction numerator 5 open parentheses begin display style 4 over 5 end style close parentheses minus 4 over denominator 5 open parentheses begin display style 4 over 5 end style close parentheses plus 4 end fraction equals space 0
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 4

begin mathsize 11px style If space 16 space cot space straight x space equals space 12 comma space then space fraction numerator sin space straight x space minus space cos space straight x over denominator sin space straight x space plus space cos space straight x end fraction space equals
left parenthesis straight a right parenthesis space 1 over 7
left parenthesis straight b right parenthesis space 3 over 7
left parenthesis straight c right parenthesis space 2 over 7
left parenthesis straight d right parenthesis space 0 end style

Solution 4

begin mathsize 12px style 16 space cot space straight x space equals space 12
rightwards double arrow space cot space straight x space equals space 12 over 16
rightwards double arrow box enclose cot space straight x space equals space 3 over 4 end enclose space minus space circle enclose 1
To space find space colon space fraction numerator space sin space straight x space minus space cos space straight x over denominator sin space straight x space plus space cos space straight x end fraction
equals space fraction numerator open parentheses 1 minus begin display style cosx over sinx end style close parentheses over denominator open parentheses 1 plus fraction numerator cos space straight x over denominator sin space straight x end fraction close parentheses end fraction
equals space fraction numerator 1 space minus space cot space straight x over denominator 1 space plus space cot space straight x end fraction
from space circle enclose 1
equals space fraction numerator 1 minus begin display style 3 over 4 end style over denominator 1 plus begin display style 3 over 4 end style end fraction
equals fraction numerator begin display style 1 fourth end style over denominator begin display style 7 over 4 end style end fraction equals 1 over 7 end style

So, the correct option is (a).Question 5

begin mathsize 11px style If space 8 space tan space straight x space equals space 15 comma space then space sin space straight x space minus space cos space straight x space is space equal space to
left parenthesis straight a right parenthesis space 8 over 17
left parenthesis straight b right parenthesis space 17 over 7
left parenthesis straight c right parenthesis space 1 over 17
left parenthesis straight d right parenthesis space space 7 over 17 end style

Solution 5

begin mathsize 11px style 8 space tan space straight x space equals space 15
space tan space straight x space equals space 15 over 8
square root of 8 squared plus 15 squared end root space equals space square root of 64 space plus 225 end root
space space space space space space space space space space space space space space space space space space space equals space square root of 289
space space space space space space space space space space space space space space space space space space space equals space 17 space space space space space space
Sin space straight x space equals space 15 over 17 space space space space space space space space space space space space space space cos space straight x space equals space 8 over 17
To space find space colon space sin space straight x space minus space cos space straight x
space space space space space space space space space space space space space space space equals 15 over 17 minus 8 over 17
space space space space space space space space space space space space space space space equals 7 over 17
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 6

begin mathsize 11px style If space tan space straight theta space equals space fraction numerator 1 over denominator square root of 7 end fraction comma then space fraction numerator cosec squared straight theta minus sec squared straight theta over denominator cosec squared straight theta plus sec squared straight theta end fraction equals
left parenthesis straight a right parenthesis space 5 over 7
left parenthesis straight b right parenthesis space 3 over 7
left parenthesis straight c right parenthesis space 1 over 12
left parenthesis straight d right parenthesis space 3 over 4 end style

Solution 6

begin mathsize 11px style We space know comma space tan space straight theta space equals space fraction numerator 1 over denominator cot space straight theta end fraction space minus space circle enclose 1
space space space space space space space space space space space space space space space space space space 1 plus tan squared straight theta space equals space sec squared straight theta minus circle enclose 2
space space space space space space space space space space space space space space space space space space 1 space plus space cot squared straight theta space equals space cosec squared straight theta space minus space circle enclose 3
from space circle enclose 1
space space space space space space space space space space box enclose cot space straight theta space equals space square root of 7 end enclose
from space circle enclose 2
space space space space space space space space space 1 space plus space open parentheses fraction numerator 1 over denominator square root of 7 end fraction close parentheses squared space equals space sec squared straight theta
space rightwards double arrow space space sec squared straight theta space equals space 1 plus 1 over 7 equals 8 over 7
rightwards double arrow space box enclose sec squared straight theta equals 8 over 7 end enclose minus space circle enclose 4
from space circle enclose 3
space space space space 1 space plus space open parentheses square root of 7 close parentheses squared equals space cosec squared straight theta
rightwards double arrow space space box enclose cosec squared straight theta equals 8 end enclose space minus space circle enclose 5
To space find colon space fraction numerator cosec squared straight theta minus sec squared straight theta over denominator cosec squared straight theta plus sec squared straight theta end fraction
space space space space space space space equals fraction numerator 8 minus begin display style 8 over 7 end style over denominator 8 plus begin display style 8 over 7 end style end fraction equals fraction numerator begin display style 48 over 7 end style over denominator begin display style 64 over 7 end style end fraction
space space space space space space space equals space 48 over 64 equals space 3 over 4
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Chapter 5 Trigonometric Ratios Exercise 5.57

Question 7

begin mathsize 11px style If space tan space straight theta space equals space 3 over 4 comma space then space cos squared straight theta space minus space sin space squared straight theta space equals space
left parenthesis straight a right parenthesis space 7 over 25
left parenthesis straight b right parenthesis space 1
left parenthesis straight c right parenthesis space fraction numerator negative 7 over denominator 25 end fraction
left parenthesis straight d right parenthesis space 4 over 25 end style

Solution 7

Error converting from MathML to accessible text.
begin mathsize 11px style from space circle enclose 1 comma circle enclose 2 comma circle enclose 3
box enclose sin space straight theta space equals space 3 over 5 end enclose minus space circle enclose 4
box enclose cos space straight theta space equals space 4 over 5 space end enclose minus space circle enclose 5
To space find space colon space space cos squared straight theta space minus space space sin squared straight theta
space space space space space space space space space space space space space space space space equals open parentheses 4 over 5 close parentheses squared space minus space open parentheses 3 over 5 close parentheses squared... left parenthesis from space circle enclose 4 space and space circle enclose 5 right parenthesis
space space space space space space space space space space space space space space space space equals space 7 over 25
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 8

begin mathsize 11px style If space straight theta space is space an space acute space angle space such space that space tan squared straight theta space equals space 8 over 7 comma space then space the space value space of space
fraction numerator open parentheses 1 plus sinθ close parentheses open parentheses 1 minus sinθ close parentheses over denominator open parentheses 1 plus cosθ close parentheses open parentheses 1 minus cosθ close parentheses end fraction space is
left parenthesis straight a right parenthesis space 7 over 8
left parenthesis straight b right parenthesis space 8 over 7
left parenthesis straight c right parenthesis space 7 over 4
left parenthesis straight d right parenthesis space 64 over 49 end style

Solution 8

Error converting from MathML to accessible text.
begin mathsize 11px style sin space straight theta space equals space square root of 8 over 15 end root
cos space straight theta space equals space square root of 7 over 15 end root
To space find space colon space fraction numerator open parentheses 1 plus sin space straight theta close parentheses open parentheses 1 minus sin space straight theta close parentheses over denominator open parentheses 1 plus cos space straight theta close parentheses open parentheses 1 minus cosθ close parentheses end fraction
space space space space space space space space space space space space space equals fraction numerator 1 minus sin squared straight theta over denominator 1 minus cos squared straight theta end fraction
space space space space space space space space space space space space space space equals fraction numerator 1 minus open parentheses square root of begin display style 8 over 15 end style end root close parentheses squared over denominator 1 minus open parentheses begin display style 7 over 15 end style close parentheses squared end fraction
space space space space space space space space space space space space space space equals fraction numerator 1 minus begin display style 8 over 15 end style over denominator 1 minus begin display style 7 over 15 end style end fraction equals fraction numerator begin display style 7 over 15 end style over denominator begin display style 8 over 15 end style end fraction
space space space space space space space space space space space space space space equals 7 over 8
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 9

begin mathsize 11px style If space 3 space cos space straight theta space equals space 5 space sin space straight theta comma space then space the space value space of space fraction numerator 5 space sin space straight theta minus 2 sec cubed straight theta plus 2 space cosθ over denominator 5 space sin space straight theta space plus space 2 space sec cubed straight theta minus 2 space cosθ end fraction space is
left parenthesis straight a right parenthesis space 271 over 979
left parenthesis straight b right parenthesis space 316 over 2937
left parenthesis straight c right parenthesis space 542 over 2937
left parenthesis straight d right parenthesis space None space of space these end style

Solution 9

Error converting from MathML to accessible text.
begin mathsize 11px style sin space straight theta space equals space fraction numerator 3 over denominator square root of 34 end fraction
cos space straight theta space equals space fraction numerator 5 over denominator square root of 34 end fraction
We space know space sec space straight theta space equals space fraction numerator 1 over denominator cos space straight theta end fraction space equals space fraction numerator square root of 34 over denominator 5 end fraction
To space find space colon space fraction numerator 5 space sin space straight theta space minus space 2 space sec cubed straight theta space plus space 2 space cosθ over denominator 5 space sin space straight theta space plus space 2 space sec cubed straight theta space minus space 2 space cos space straight theta end fraction

space space space space space space space space space space space rightwards double arrow fraction numerator 5 open parentheses begin display style fraction numerator 3 over denominator square root of 34 end fraction end style close parentheses minus 2 open parentheses square root of begin display style 34 over 5 end style end root close parentheses cubed plus 2 open parentheses begin display style fraction numerator 5 over denominator square root of 34 end fraction end style close parentheses over denominator 5 open parentheses begin display style fraction numerator 3 over denominator square root of 34 end fraction end style close parentheses plus 2 open parentheses begin display style fraction numerator square root of 34 over denominator 5 end fraction end style close parentheses cubed minus 2 open parentheses begin display style fraction numerator 5 over denominator square root of 34 end fraction end style close parentheses end fraction
space space space space space space space space space space rightwards double arrow fraction numerator begin display style fraction numerator 25 over denominator square root of 34 end fraction minus fraction numerator 68 square root of 34 over denominator 125 end fraction end style over denominator begin display style fraction numerator 5 over denominator square root of 34 end fraction plus fraction numerator 68 square root of 34 over denominator 125 end fraction end style end fraction
space space space space space space space space space space space rightwards double arrow fraction numerator space 125 space cross times space 25 space minus space 68 space cross times space 34 over denominator 5 space cross times space 125 space plus space 68 space cross times 34 end fraction
space space space space space space space space space space space rightwards double arrow space 813 over 2937
space space space space space space space space space space space space space rightwards double arrow 271 over 979
space So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 10

begin mathsize 11px style If space tan squared 45 to the power of straight o space minus space cos squared 30 to the power of straight o space equals space straight x space sin space 45 to the power of straight o space cos 45 to the power of straight o comma space then space straight x space equals space
left parenthesis straight a right parenthesis space 2
left parenthesis straight b right parenthesis space minus 2
left parenthesis straight c right parenthesis space minus 1 half
left parenthesis straight d right parenthesis space 1 half end style

Solution 10

begin mathsize 11px style We space know
space space space space space space space space space space space tan space 45 to the power of straight o space equals space 1 space space space space minus space circle enclose 1
space space space space space space space space space space cos space 30 to the power of straight o space space equals space fraction numerator square root of 3 over denominator 2 end fraction space minus space circle enclose 2
space space space space space space space space space sin space 45 to the power of straight o space equals space fraction numerator 1 over denominator square root of 2 end fraction space space space minus space circle enclose 3 space space space space
space space space space space space space cos space 45 to the power of straight o space end exponent equals space fraction numerator 1 over denominator square root of 2 end fraction space minus space circle enclose 4
Given space tan squared 45 to the power of straight o space minus space cos squared 30 to the power of straight o space end exponent space equals space straight x space sin space 45 to the power of straight o space cos space 45 to the power of straight o
from space circle enclose 1 comma circle enclose 2 comma circle enclose 3
rightwards double arrow 1 space minus space open parentheses fraction numerator square root of 3 over denominator 2 end fraction close parentheses squared space equals space straight x open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses open parentheses fraction numerator 1 over denominator square root of 2 end fraction close parentheses
rightwards double arrow 1 space minus space 3 over 4 equals space straight x over 2
rightwards double arrow space straight x over 2 space equals space 1 fourth
rightwards double arrow space straight x space equals space 2 over 4 space equals space 1 half end style

So, the correct option is (d).Question 11

begin mathsize 11px style The space value space of space cos squared space 17 to the power of straight o space minus space sin squared 73 to the power of straight o space is
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space 1 third
left parenthesis straight c right parenthesis space 0
left parenthesis straight d right parenthesis space minus 1 end style

Solution 11

begin mathsize 11px style We space know space sin space left parenthesis 90 space minus space straight theta right parenthesis space equals space cos space straight theta
space space space space space space space space space space space so space space sin space left parenthesis 90 minus space 17 right parenthesis space equals space cos 17
space space space space space space space space space space space space space rightwards double arrow space sin space left parenthesis 73 to the power of straight o right parenthesis space equals space cos 17 to the power of straight o space space minus space circle enclose 1
To space find space colon space cos squared 17 to the power of straight o space minus space sin squared 73 to the power of straight o
from space circle enclose 1
space space space space space space space space space space rightwards double arrow cos squared 17 to the power of straight o space minus space cos squared 17 to the power of straight o
space space space space space space space space space space rightwards double arrow space 0 end style

So, the correct option is (c).Question 12

begin mathsize 11px style The space value space of space fraction numerator cos cubed 20 to the power of straight o minus cos cubed 70 to the power of straight o over denominator sin cubed 70 to the power of straight o minus sin cubed 20 to the power of straight o end fraction space is
left parenthesis straight a right parenthesis space 1 half
left parenthesis straight b right parenthesis space fraction numerator 1 over denominator square root of 2 end fraction
left parenthesis straight c right parenthesis space 1
left parenthesis straight d right parenthesis space 2 end style

Solution 12

begin mathsize 11px style We space know space sin space left parenthesis 90 minus straight theta right parenthesis equals cos space straight theta
so space space space space space space space space space space space space space space sin space left parenthesis 90 degree minus 20 to the power of straight o right parenthesis space equals space cos 20 to the power of straight o
space space space space space space space space space space space space space space space rightwards double arrow box enclose sin space 70 to the power of straight o space equals space cos space 20 to the power of straight o end enclose space minus space circle enclose 1
space space space space space space space space space space space space space space space space space space sin space left parenthesis 90 degree minus 70 to the power of straight o right parenthesis space equals space ws space 70 to the power of straight o
space space space space space space space space space space space space space space space space space box enclose sin space left parenthesis 20 to the power of straight o right parenthesis space equals space cos space left parenthesis 70 to the power of straight o right parenthesis end enclose space minus space circle enclose 2
To space find space fraction numerator cos cubed 20 to the power of straight o space minus space cos cubed 70 to the power of straight o over denominator sin space cubed 70 to the power of straight o space minus space sin space cubed 20 to the power of straight o end fraction
space space space from space circle enclose 1 space end enclose space space and space circle enclose 2
rightwards double arrow space fraction numerator cos cubed 20 to the power of straight o minus cos cubed 70 to the power of straight o over denominator cos cubed 20 to the power of straight o minus cos cubed 70 to the power of straight o end fraction equals 1
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 13

begin mathsize 11px style If space fraction numerator straight x space cosec squared 30 to the power of straight o space sec squared 45 to the power of straight o over denominator 8 space cos squared 45 to the power of straight o space sin squared 60 to the power of straight o end fraction equals tan squared 60 to the power of straight o space minus space tan squared 30 to the power of straight o comma space then space straight x space equals space
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space minus 1
left parenthesis straight c right parenthesis space 2
left parenthesis straight d right parenthesis space 0 end style

Solution 13

begin mathsize 11px style We space know
rightwards double arrow space tan space 60 to the power of straight o equals space square root of 3
rightwards double arrow tan space 30 to the power of straight o space equals space fraction numerator 1 over denominator square root of 3 end fraction
rightwards double arrow cos space 45 to the power of straight o space equals space fraction numerator 1 over denominator square root of 2 end fraction
rightwards double arrow sec space 45 to the power of straight o space equals space square root of space 2 end root
rightwards double arrow sin space 60 to the power of straight o space equals space fraction numerator square root of 3 over denominator 2 end fraction
rightwards double arrow cosec space 30 to the power of straight o space equals space 2
given space fraction numerator xcosec squared 30 to the power of straight o sec squared 45 to the power of straight o over denominator 8 cos squared 45 to the power of straight o space sin space squared 60 to the power of straight o end fraction equals space tan squared 6 to the power of straight o minus tan squared 30 to the power of straight o
rightwards double arrow fraction numerator straight x space left parenthesis 4 right parenthesis space left parenthesis 2 right parenthesis over denominator 8 space open parentheses begin display style 1 half end style close parentheses open parentheses begin display style 3 over 4 end style close parentheses end fraction equals 3 minus 1 third
rightwards double arrow fraction numerator 8 straight x over denominator 3 end fraction space equals space 8 over 3
rightwards double arrow box enclose straight x space equals space 1 end enclose
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 14

If A and B are complementary angles, then

(a) sin A = sin B

(b) cos A and cos B

(c) tan A = tan B

(d) sec A = cosec BSolution 14

begin mathsize 11px style Complementary space angles space means space that space sum space of space two space angles space is space 90 to the power of straight o
straight A space and space straight B space are space complementary space angles space so
straight A space plus space straight B space equals space 90 to the power of straight o
rightwards double arrow space straight A space equals space 90 to the power of straight o space minus space straight B space space minus space circle enclose 1
left parenthesis straight a right parenthesis space Applying space sin space on space both space sides space in space circle enclose 1
space space space space space space space space sin space straight A space equals space sin space left parenthesis 90 to the power of straight o space minus space straight B right parenthesis
space space space space space space space rightwards double arrow sin space straight A space equals space cos space straight B
left parenthesis straight b right parenthesis space Applying space cos space on space both space sides space in space circle enclose 1
space space space space space space cos space straight A space equals space cos space left parenthesis 90 degree space minus space straight B right parenthesis
space space space space space space rightwards double arrow cos space straight A space equals space sin space straight B
left parenthesis straight c right parenthesis space Applying space tan space on space both space sides space in space circle enclose 1
space space space space space space space space space tan space straight A space equals space tan space left parenthesis 90 degree minus straight B right parenthesis
space space space space space space rightwards double arrow space tan space straight A space equals space cot space straight B
left parenthesis straight d right parenthesis space Applying space sec space on space both space sides space in space circle enclose 1
space space space space space space space space sec space straight A space equals space sec space left parenthesis 90 degree minus straight B right parenthesis
space space space space space space space box enclose sec space straight A space equals space cosec space straight B end enclose
So comma space correct space option space is space left parenthesis straight d right parenthesis end style

Question 15

begin mathsize 11px style If space straight x space sin space left parenthesis 90 to the power of straight o space minus space straight theta right parenthesis space cot space left parenthesis 90 to the power of straight o space minus space straight theta right parenthesis space equals space cos space left parenthesis 90 to the power of straight o space minus straight theta right parenthesis comma space then space straight x space equals space
left parenthesis straight a right parenthesis space 0
left parenthesis straight b right parenthesis thin space 1
left parenthesis straight c right parenthesis space minus 1
left parenthesis straight d right parenthesis space 2 end style

Solution 15

begin mathsize 11px style We space know space that
space space space space space space space space space space space space space space space space sin space left parenthesis 90 degree space minus space straight theta right parenthesis space equals space cos space straight theta
space space space space space space space space space space space space space space space space cos space left parenthesis 90 degree space minus straight theta right parenthesis space equals space sin space straight theta
space space space space space space space space space space space space space space space space cot space left parenthesis 90 degree space minus space straight theta right parenthesis space equals space tan space straight theta
rightwards double arrow space straight x space sin space left parenthesis 90 degree space minus space straight theta right parenthesis space cot space left parenthesis 90 degree space minus space straight theta right parenthesis space equals space cos space left parenthesis 90 degree space minus space straight theta right parenthesis
rightwards double arrow straight x space cos space straight theta space tan space straight theta space equals space sin space straight theta
rightwards double arrow space straight x space cos space straight theta space open parentheses fraction numerator sin space straight theta over denominator cos space straight theta end fraction close parentheses space equals space sin space straight theta
rightwards double arrow space box enclose straight x space equals space 1 end enclose end style

So, the correct option is (b).Question 16

begin mathsize 11px style If space straight x space tan space 45 to the power of straight o space cos space 60 to the power of straight o space equals space sin space 60 to the power of straight o cot 60 to the power of straight o comma space then space straight x space is space equal space to
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis thin space square root of 3
left parenthesis straight c right parenthesis space 1 half
left parenthesis straight d right parenthesis space fraction numerator 1 over denominator square root of 2 end fraction end style

Solution 16

begin mathsize 11px style We space know
space space space space space space space space space space space space space space rightwards double arrow space tan space 45 to the power of straight o space equals space 1
space space space space space space space space space space space space space space rightwards double arrow cos space 60 to the power of straight o space equals space 1 half
space space space space space space space space space space space space space space rightwards double arrow sin space 60 to the power of straight o space equals space fraction numerator square root of 3 over denominator 2 end fraction
space space space space space space space space space space space space space space rightwards double arrow cot space 60 to the power of straight o space equals space fraction numerator 1 over denominator square root of 3 end fraction
To space find space colon space straight x space tan space 45 to the power of straight o cos space 60 to the power of straight o space equals space sin space 60 to the power of straight o cot 60 to the power of straight o
space space space space space space space space space space space space space space space rightwards double arrow straight x space left parenthesis 1 right parenthesis space open parentheses 1 half close parentheses space equals space open parentheses fraction numerator square root of 3 over denominator 2 end fraction close parentheses open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses
space space space space space space space space space space space space space space space space rightwards double arrow box enclose straight x space equals space 1 end enclose end style

So, the correct option is (a).Question 17

begin mathsize 11px style If space angles space straight A comma straight B comma straight C space of space straight a space triangle ABC space form space an space increasing space AP comma space then space sin space straight B space equals space
left parenthesis straight a right parenthesis space 1 half
left parenthesis straight b right parenthesis space fraction numerator square root of 3 over denominator 2 end fraction
left parenthesis straight c right parenthesis space 1
left parenthesis straight d right parenthesis space fraction numerator 1 over denominator square root of 2 end fraction end style

Solution 17

begin mathsize 11px style We space know comma space sum space of space all space angles space of space straight a space triangle space equals space 180
space space space space space space space space space space space space space rightwards double arrow space straight A space plus space straight B space plus space straight C space equals space 180
it space is space given space that space straight A comma straight B comma straight C space are space in space AP comma
So comma space let space straight A space equals space straight B minus straight r space space and space straight C space equals space straight B space plus space straight r
Now space angles space are space straight B space minus space straight r comma space straight B comma space straight B space plus space straight r
space space space space space space space space space From space circle enclose 1 space and space circle enclose 2
space space space space space space space space space space space space space space space space space space space space space space space space space left parenthesis straight B minus straight r right parenthesis plus space straight B space plus space left parenthesis straight B space plus straight r right parenthesis space equals space 180 to the power of straight o
space space space space space space space space space space space space space space rightwards double arrow space 3 straight B space equals space 180 to the power of straight o space rightwards double arrow space straight B space equals space 60 to the power of straight o
Now space sin space straight B space rightwards double arrow space box enclose sin space 60 to the power of straight o space equals space fraction numerator square root of 3 over denominator 2 end fraction end enclose end style

So, the correct option is (b).Question 18

begin mathsize 11px style If space straight theta space is space an space acute space such space that space sec squared straight theta space equals space 3 comma space then space the space value space of space fraction numerator tan squared straight theta minus cosec squared straight theta over denominator tan squared straight theta space plus space cosec squared straight theta end fraction space is
left parenthesis straight a right parenthesis space 4 over 7
left parenthesis straight b right parenthesis space 3 over 7
left parenthesis straight c right parenthesis space 2 over 7
left parenthesis straight d right parenthesis space 1 over 7 end style

Solution 18

Error converting from MathML to accessible text.
begin mathsize 11px style space space space space space space space space space space space space space space space space space space space space space space space space space space space space sin space straight theta space equals space fraction numerator square root of 2 over denominator square root of 3 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space cosec space straight theta space equals space fraction numerator 1 over denominator sin space straight theta end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow box enclose cosec space straight theta space equals space fraction numerator square root of 3 over denominator square root of 2 end fraction end enclose space minus space circle enclose 2
To space find space colon space space fraction numerator tan squared straight theta space minus space cosec squared straight theta over denominator tan squared straight theta space plus space cosec squared straight theta end fraction
space space space space space space space space space space space space From space circle enclose 2 space end enclose space and space circle enclose 1
space space space space space space space space space space space rightwards double arrow fraction numerator 2 minus open parentheses begin display style 3 over 2 end style close parentheses over denominator 2 plus open parentheses begin display style 3 over 2 end style close parentheses end fraction equals fraction numerator begin display style 1 half end style over denominator begin display style 7 over 2 end style end fraction
space space space space space space space space space equals space 1 over 7 end style

So, the correct option is (d).

Chapter 5 Trigonometric Ratios Exercise 5.58

Question 19

begin mathsize 11px style The space value space of space tan space 1 to the power of straight o space tan 2 to the power of straight o space tan 3 to the power of straight o space............. space tan space 89 to the power of straight o space is
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space minus 1
left parenthesis straight c right parenthesis space 0
left parenthesis straight d right parenthesis space None space of space these end style

Solution 19

begin mathsize 11px style We space know space tan space left parenthesis 90 minus straight theta right parenthesis space equals space cot space straight theta space minus space circle enclose 1
space space space space space space space space space space space space and space tan space open parentheses straight theta close parentheses space equals space fraction numerator 1 over denominator cot space straight theta end fraction space minus space circle enclose 2
from space circle enclose 1 space and space circle enclose 2
space space space space space space space space space space space space box enclose tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space fraction numerator 1 over denominator tan space straight theta end fraction end enclose
or space space space space space space space space space box enclose tan space straight theta space tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space 1 end enclose space minus space circle enclose 3
To space find space colon space space tan space 1 to the power of straight o space tan space 2 to the power of straight o space tan space 3 to the power of straight o straight _ space straight _ space straight _ space straight _ space straight _ thin space straight _ space straight _ space tan space 89 to the power of straight o
space space space space space space space space space space space space space it space can space also space be space rewritten space space as
space space space space space space space space space space rightwards double arrow left parenthesis tan space 1 to the power of straight o space tan 89 to the power of straight o right parenthesis space left parenthesis tan 2 to the power of straight o space tan 88 to the power of straight o right parenthesis space straight _ space straight _ thin space straight _ space straight _ thin space straight _ open parentheses tan space 44 to the power of straight o space tan space 46 to the power of straight o close parentheses space tan space 45 to the power of straight o
space space space space space space space space space space rightwards double arrow from space circle enclose 3 space and space tan space 45 to the power of straight o space equals space 1
space space space space space space space space space space rightwards double arrow left parenthesis 1 right parenthesis space left parenthesis 1 right parenthesis space left parenthesis 1 right parenthesis space straight _ space straight _ space straight _ space straight _ space straight _ thin space straight _ space straight _ left parenthesis 1 right parenthesis
space space space space space space space space space space space equals space 1 space
space So comma space the space correct space option space is space left parenthesis straight a right parenthesis. space space space space space space space space space end style

Question 20

begin mathsize 11px style The space value space of space cos 1 to the power of straight o space cos 2 to the power of straight o space cos 3 to the power of straight o space............ space cos space 180 to the power of straight o space is space
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space 0
left parenthesis straight c right parenthesis space minus 1
left parenthesis straight d right parenthesis space None space of space these end style

Solution 20

begin mathsize 11px style We space know space box enclose cos space 90 to the power of straight o space equals space 0 end enclose space minus space circle enclose 1
space space space space space space space space So space cos 1 to the power of straight o space space cos 2 to the power of straight o space straight _ space straight _ space straight _ thin space straight _ thin space straight _ space space cos 90 to the power of straight o space straight _ space straight _ space straight _ space straight _ thin space space cos space 180 to the power of straight o space minus space circle enclose 2
space space space space space space space space space from space circle enclose 1 space and space circle enclose 2
space space space space space space space rightwards double arrow space 0 end style

So, the correct option is (b).Question 21

begin mathsize 11px style The space value space of space tan space 10 to the power of straight o space tan space 15 to the power of straight o space tan space 75 to the power of straight o space tan space 80 to the power of straight o space is
left parenthesis straight a right parenthesis space minus 1
left parenthesis straight b right parenthesis space 0
left parenthesis straight c right parenthesis space 1
left parenthesis straight d right parenthesis space None space of space these end style

Solution 21

begin mathsize 11px style space space space space space space space We space know
space space space space space space space space space space space space space space tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space cot space straight theta space space space minus space circle enclose 1
space space and space space space space space tan space straight theta space equals space fraction numerator 1 over denominator cot space straight theta end fraction space minus space space space space space space space space space space circle enclose 2
From space circle enclose 1 space and space circle enclose 2
space space space space space space space space space box enclose tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space fraction numerator 1 over denominator tan space straight theta end fraction end enclose space minus space circle enclose 3
For space straight theta space equals space 10 to the power of straight o space space rightwards double arrow tan space left parenthesis 80 to the power of straight o right parenthesis space equals space fraction numerator 1 over denominator tan space 10 to the power of straight o end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space tan space left parenthesis 80 to the power of straight o right parenthesis space tan space left parenthesis 10 to the power of straight o right parenthesis space equals space 1 space space space space space space space space minus space circle enclose 4
For space straight theta space equals space 15 to the power of straight o space space rightwards double arrow space tan space left parenthesis 75 to the power of straight o right parenthesis space equals space fraction numerator 1 over denominator tan space left parenthesis 15 to the power of straight o right parenthesis end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space tan space left parenthesis 75 to the power of straight o right parenthesis space tan space left parenthesis 15 to the power of straight o right parenthesis space equals space 1 space space space space space minus space circle enclose 5
To space Find space colon space space space tan space 10 to the power of straight o space tan space 15 to the power of straight o space tan space 75 to the power of straight o space tan space 80 to the power of straight o
space space space space space space space space space space space space space space space space space rightwards double arrow space open parentheses tan space 10 to the power of straight o space tan space 80 to the power of straight o close parentheses space left parenthesis tan space 15 to the power of straight o space tan space 75 to the power of straight o right parenthesis
space space space space space space space space space space space from space circle enclose 4 space and space circle enclose 5
space space space space space space space space space space space space space space space space space space space rightwards double arrow 1
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 22

begin mathsize 11px style The space value space of space fraction numerator cos space left parenthesis 90 to the power of straight o minus straight theta right parenthesis space sec space left parenthesis 90 to the power of straight o minus straight theta right parenthesis space tan space straight theta over denominator cosec space left parenthesis 90 to the power of straight o space minus space straight theta right parenthesis space sin space left parenthesis 90 to the power of straight o space minus space straight theta right parenthesis space cot space left parenthesis 90 to the power of straight o space minus space straight theta right parenthesis end fraction plus fraction numerator tan space left parenthesis 90 to the power of straight o minus straight theta right parenthesis over denominator cot space straight theta end fraction space is
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space minus 1 space
left parenthesis straight c right parenthesis space 2
left parenthesis straight d right parenthesis space minus 2 end style

Solution 22

begin mathsize 11px style We space know comma space space space space space space space cos space left parenthesis 90 space minus space straight theta right parenthesis space equals space sin space straight theta space space minus space circle enclose 1
space space space space space space space space space space space space space space space space space space space space space space space space sec space left parenthesis 90 space minus space straight theta right parenthesis space equals space cosec space straight theta space minus space circle enclose 2
space space space space space space space space space space space space space space space space space space space space space space space space cosec space left parenthesis 90 space minus space straight theta right parenthesis space equals space sec space straight theta space minus space circle enclose 3
space space space space space space space space space space space space space space space space space space space space space space space sin space left parenthesis 90 space minus space straight theta right parenthesis space space equals space cos space straight theta space space minus space circle enclose 4
space space space space space space space space space space space space space space space space space space space space space space cot space left parenthesis 90 space minus space straight theta right parenthesis space equals space tan space straight theta space space minus space circle enclose 5
space space space space space space space space space space space space space space space space space space space space space space tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space cot space straight theta space space minus space circle enclose 6
To space find space colon space space fraction numerator cos space left parenthesis 90 degree space minus space straight theta right parenthesis space sec space left parenthesis 90 degree space minus space straight theta right parenthesis space tan space straight theta over denominator cosec space left parenthesis 90 degree minus space straight theta right parenthesis space sin space left parenthesis 90 degree minus space straight theta right parenthesis cot left parenthesis 90 degree minus space straight theta right parenthesis end fraction space plus space fraction numerator tan space left parenthesis 90 degree space minus space straight theta right parenthesis over denominator cot space left parenthesis straight theta right parenthesis end fraction
space space space space space space space rightwards double arrow space with space the space help space of space eq space circle enclose 1 comma space circle enclose 2 comma circle enclose 3 comma circle enclose 4 comma circle enclose 5 comma circle enclose 6
space space space space space space space rightwards double arrow fraction numerator sin space straight theta space cosec space straight theta space up diagonal strike tan space straight theta end strike over denominator sin space straight theta space cosec space straight theta space up diagonal strike tan space straight theta end strike end fraction space plus space fraction numerator up diagonal strike cot space straight theta end strike over denominator up diagonal strike cot space straight theta end strike end fraction
space space space space space space space rightwards double arrow space fraction numerator sin space straight theta space cosec space straight theta over denominator sec space straight theta space cos space straight theta end fraction plus 1
We space also space know space that
space space space space space space space space space space space sin space straight theta space equals space fraction numerator 1 over denominator cosec space straight theta end fraction rightwards double arrow space sin space straight theta space cosec space equals space 1 space space minus space circle enclose 8
and space space space cos space straight theta space equals space fraction numerator 1 over denominator sec space straight theta end fraction space rightwards double arrow sec space straight theta space cos space straight theta space equals space 1 space space space minus space circle enclose 9
From space circle enclose 7 comma circle enclose 8 comma circle enclose 9
rightwards double arrow space we space get
space space space space space space space space space fraction numerator sin space straight theta space cosec space straight theta over denominator cos space straight theta space sec space straight theta end fraction plus 1
space space rightwards double arrow space 2
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 23

begin mathsize 11px style If space straight theta space and space 2 straight theta space minus space 45 to the power of straight o space are space acute space angles space such space that space sin space straight theta space equals space cos space left parenthesis 2 straight theta space minus space 45 to the power of straight o right parenthesis comma space then space tanθ space is space equal space to
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space minus 1 space
left parenthesis straight c right parenthesis space square root of 3
left parenthesis straight d right parenthesis space fraction numerator 1 over denominator square root of 3 end fraction end style

Solution 23

begin mathsize 11px style space space space space space space space space space space space space We space know space cos space left parenthesis 90 space minus space straight theta right parenthesis space equals space sin space straight theta space space minus space circle enclose 1
space space space space space space space space space space space space rightwards double arrow Given space space space space space space space sin space straight theta space equals space cos space left parenthesis 2 straight theta space minus space 45 to the power of straight o right parenthesis space minus space circle enclose 2
from space circle enclose 1 space and space circle enclose 2
space space space space space space space space space space space cos space left parenthesis 90 space minus space straight theta right parenthesis space equals space cos space left parenthesis 2 straight theta space minus space 45 to the power of straight o right parenthesis
space space space space space rightwards double arrow space 90 space minus space straight theta space equals space 2 straight theta space minus 45 to the power of straight o
space space space space space rightwards double arrow 90 to the power of straight o space plus space 45 to the power of straight o space equals space 3 straight theta
space space space space space space space rightwards double arrow 3 straight theta space equals space 135 to the power of straight o
space space space space space space space rightwards double arrow box enclose straight theta space equals space 45 to the power of straight o end enclose
Then space tan space straight theta
space space space space space space rightwards double arrow tan space 45 to the power of straight o
space space space space space space rightwards double arrow space 1
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 24

begin mathsize 11px style If space 5 straight theta space and space 4 straight theta space are space acute space angles space satisfying space sin space 5 straight theta space equals space cos space 4 straight theta comma space then space 2 space sin space 3 straight theta minus square root of 3 space tan 3 straight theta space is space equal space to
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space 0
left parenthesis straight c right parenthesis space minus 1
left parenthesis straight d right parenthesis space 1 space plus space square root of 3 end style

Solution 24

begin mathsize 11px style space space space space space space We space know
space space space space space space space space space space space space space space space space space space sin space left parenthesis 90 space minus space 4 straight A right parenthesis space equals space cos space 4 straight A space minus space circle enclose 1
space space space space given space space space space sin space 5 straight theta space space equals space cos space 4 straight theta space space space space minus space circle enclose 2
From space circle enclose 1 space end enclose space and space circle enclose 2
space space space space space space space space space space space space space space space space sin space left parenthesis 5 straight theta right parenthesis space equals space sin space left parenthesis 90 space minus space 4 straight theta right parenthesis
space space space space space space rightwards double arrow space space space space space space space 5 straight theta space equals space 90 space minus space 4 straight theta
space space space space space space space rightwards double arrow space space space space space space 9 straight theta equals space 90
space space space space space space space rightwards double arrow space space box enclose straight theta space equals space 10 to the power of straight o end enclose
To space find space 2 space sin space 3 straight theta space minus space square root of 3 space tan space 3 straight theta
space space space space space space space rightwards double arrow space 2 space sin space 30 to the power of straight o space minus space square root of 3 space end root space tan space 30 to the power of straight o
space space space space space space space rightwards double arrow 2 space open parentheses 1 half close parentheses space minus space square root of 3 open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
space space space space space space space rightwards double arrow space 1 space minus space 1 space equals space 0
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 25

begin mathsize 11px style If space straight A space plus space straight B space equals space 90 to the power of straight o comma space then space fraction numerator tan space straight A space tan space straight B space plus space tan space straight A space cot space straight B over denominator sin space straight A space sec space straight B end fraction minus fraction numerator sin squared straight B over denominator cos squared straight A end fraction space is space equal space to
left parenthesis straight a right parenthesis space cot squared straight A
left parenthesis straight b right parenthesis space cot squared straight B
left parenthesis straight c right parenthesis space minus space tan squared straight A
left parenthesis straight d right parenthesis space minus space cot squared straight A end style

Solution 25

begin mathsize 11px style space space space space space space space Given space straight A space plus space straight B space equals space 90 to the power of straight o
space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space straight A equals space 90 to the power of straight o space minus space straight B space minus space circle enclose 1
space space space space Apply space sin space both space side space in space circle enclose 1
space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space sin space straight A space equals space space sin space left parenthesis 90 to the power of straight o space minus space straight B right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space box enclose sin space straight A space equals space cos space straight B end enclose space space minus space circle enclose 2
space space space Apply space cos space both space side space in space circle enclose 1
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space cos space straight A space equals space cos space left parenthesis 90 to the power of straight o minus straight B right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space box enclose cos space straight A space equals space sin space straight B end enclose space minus space circle enclose 3
space space space Apply space cosec space both space side space in space circle enclose 1
space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space cosec space straight A space equals space cosec space left parenthesis 90 space minus space straight B right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow box enclose cosec space straight A space equals space sec space straight B end enclose space minus space circle enclose 4
To space find space colon thin space space fraction numerator tan space straight A space tan space straight B space plus space tan space straight A space cot space straight B over denominator space space space space sin space straight A space sec space straight B end fraction space minus space fraction numerator sin squared straight B over denominator cos squared straight A end fraction
space space space space space space space space space space space space space space space space space rightwards double arrow fraction numerator open parentheses begin display style fraction numerator sin space straight A over denominator cos space straight A end fraction end style close parentheses open parentheses begin display style fraction numerator sin space straight B over denominator cos space straight B end fraction end style close parentheses plus open parentheses begin display style fraction numerator sin space straight A over denominator cos space straight A end fraction end style close parentheses open parentheses begin display style fraction numerator cos space straight B over denominator sin space straight B end fraction end style close parentheses over denominator sin space straight A. space cosec space straight A end fraction space space minus fraction numerator sin squared straight B over denominator cos squared straight A end fraction
space space space space space space space space space space space space space space space space space With space help space of space circle enclose 2 comma circle enclose 3 comma circle enclose 4
space space space space space space space rightwards double arrow fraction numerator 1 plus begin display style fraction numerator sin squared straight A over denominator cos squared straight A end fraction end style over denominator sin space straight A. open parentheses begin display style fraction numerator 1 over denominator sin space straight A end fraction end style close parentheses end fraction minus 1
space space space space space space space equals 1 space space plus space tan squared straight A space minus space 1
space space space space space space space equals tan squared straight A
space space space space space space space equals open square brackets tan space left parenthesis 90 minus straight B right parenthesis close square brackets squared space space space space space space.... open curly brackets straight A space equals space 90 minus straight B close curly brackets
space space space space space space space equals space open square brackets cot space straight B close square brackets squared
space space space space space space space equals cot squared straight B
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. space space space space space space space space space space space end style

Question 26

begin mathsize 11px style fraction numerator 2 space tan space 30 to the power of straight o over denominator 1 space plus space tan space squared 30 to the power of straight o end fraction space is space equal space to
left parenthesis straight a right parenthesis space sin space 60 to the power of straight o
left parenthesis straight b right parenthesis space cos space 60 to the power of straight o
left parenthesis straight c right parenthesis space tan space 60 to the power of straight o
left parenthesis straight d right parenthesis space sin space 30 to the power of straight o end style

Solution 26

begin mathsize 11px style We space know
space space space space space space space space space space space space space tan space 30 to the power of straight o space equals space fraction numerator 1 over denominator square root of 3 end fraction
space space To space find space colon space space fraction numerator 2 space tan 30 to the power of straight o over denominator 1 plus tan squared 30 to the power of straight o end fraction
space space space space space space space space space space space space rightwards double arrow fraction numerator 2 open parentheses begin display style fraction numerator 1 over denominator square root of 3 end fraction end style close parentheses over denominator 1 plus open parentheses begin display style 1 third end style close parentheses end fraction equals space fraction numerator begin display style fraction numerator 2 over denominator square root of 3 end fraction end style over denominator begin display style 4 over 3 end style end fraction
space space space space space space space space space space space space space rightwards double arrow fraction numerator square root of 3 over denominator 2 end fraction
Value space of space sin space 60 to the power of straight o space equals space fraction numerator square root of 3 over denominator 2 end fraction
space space space space space space space space space space space cos space 60 to the power of straight o space equals space 1 half
space space space space space space space space space space space tan space 60 to the power of straight o space equals space square root of 3
space space space space space space space space space space space sin space 30 to the power of straight o space equals space 1 half
Hence space correct space option space is space left parenthesis straight a right parenthesis end style

Question 27

begin mathsize 11px style fraction numerator 1 minus tan squared 45 to the power of straight o over denominator 1 plus tan squared 45 to the power of straight o end fraction space is space equal space to
left parenthesis straight a right parenthesis space tan space 90 to the power of straight o
left parenthesis straight b right parenthesis space 1
left parenthesis straight c right parenthesis space sin space 45 to the power of straight o
left parenthesis straight d right parenthesis space sin space 0 degree end style

Solution 27

begin mathsize 11px style tan space 45 to the power of straight o space equals space 1
To space find space colon space minus space fraction numerator 1 minus tan squared 45 to the power of straight o over denominator 1 plus tan squared 45 to the power of straight o end fraction
space space space space space space space space space space space space space space space space space rightwards double arrow fraction numerator 1 space minus space 1 over denominator 1 space plus space 1 end fraction equals 0
We space know space sin space left parenthesis 0 to the power of straight o right parenthesis space equals space 0 end style

So, the correct option is (d).Question 28

Sin 2A = 2 sin A is true when A = 

(a) 0o

(b) 30o

(c) 45o

(d) 60oSolution 28

begin mathsize 11px style We space know space
space space space space space space space space space space space space space space sin space 2 straight A space equals space 2 sin space straight A space cos space straight A space minus space circle enclose 1
Given space space sin space 2 straight A space equals space 2 space sin space straight A space minus space circle enclose 2
space space space space from space circle enclose 1 space and space circle enclose 2
space space space space space space space rightwards double arrow 2 space sin space straight A space cos space straight A space equals space 2 space sin space straight A
space space space space space space space rightwards double arrow 2 space sin space straight A space left parenthesis cos space straight A space minus space 1 right parenthesis space equals space 0
space space space space space space space rightwards double arrow sin space straight A space equals space 0 space space space space space space or space cos space straight A space equals space 1
space We space knows space sin space 0 to the power of straight o space equals space 0 space and space cos space 0 to the power of straight o space equals space 1
space space space space space space space Hence space box enclose straight A space equals space 0 to the power of straight o end enclose end style

So, the correct option is (a).Question 29

begin mathsize 11px style fraction numerator 2 space tan space 30 to the power of straight o over denominator 1 minus tan squared 30 to the power of straight o end fraction space is space equal space to
left parenthesis straight a right parenthesis space cos space 60 to the power of straight o
left parenthesis straight b right parenthesis space sin space 60 to the power of straight o
left parenthesis straight c right parenthesis space tan space 60 to the power of straight o
left parenthesis straight d right parenthesis space sin space 30 to the power of straight o end style

Solution 29

begin mathsize 11px style We space know comma space tan space 30 to the power of straight o space equals space fraction numerator 1 over denominator square root of 3 end fraction
space space space space space Given comma space fraction numerator 2 space tan space 30 to the power of straight o over denominator 1 minus space tan squared 30 end fraction
space space space space space space space space space space space rightwards double arrow fraction numerator 2 open parentheses begin display style fraction numerator 1 over denominator square root of 3 end fraction end style close parentheses over denominator 1 minus open parentheses begin display style 1 third end style close parentheses end fraction
space space space space space space space space space space space rightwards double arrow fraction numerator begin display style fraction numerator 2 over denominator square root of 3 end fraction end style over denominator begin display style 2 over 3 end style end fraction
space space space space space space space space space space space rightwards double arrow square root of 3
We space also space know space that space tan space 60 to the power of straight o space equals space square root of 3
So comma space correct space answer space is space left parenthesis straight c right parenthesis end style

Question 30

begin mathsize 11px style if space straight A comma straight B space and space straight C space are space interior space angles space of space straight a space triangle space ABC comma space then space sin space open parentheses fraction numerator straight B space plus space straight C over denominator 2 end fraction close parentheses equals
left parenthesis straight a right parenthesis space sin space straight A over 2
left parenthesis straight b right parenthesis space cos space straight A over 2
left parenthesis straight c right parenthesis space minus space sin space straight A over 2
left parenthesis straight d right parenthesis space minus space cos space straight A over 2 end style

Solution 30

begin mathsize 11px style We space know comma space if space straight A comma straight B comma straight C space are space angles space of space straight a space triangle space then
space space space space space straight A space plus space straight B space plus space straight C space equals space 180 to the power of straight o
space space rightwards double arrow space straight B space plus thin space straight C space equals space 180 to the power of straight o space minus space straight A
space space rightwards double arrow fraction numerator straight B plus straight C over denominator 2 end fraction equals 90 to the power of straight o space minus straight A over 2
space space space rightwards double arrow sin space open parentheses fraction numerator straight B plus straight C over denominator 2 end fraction close parentheses equals sin space open parentheses 90 to the power of straight o minus straight A over 2 close parentheses
space space space space rightwards double arrow sin space open parentheses fraction numerator straight B plus straight C over denominator 2 end fraction close parentheses space equals space cos space open parentheses straight A over 2 close parentheses
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 31

begin mathsize 11px style If space cos space straight theta space equals space 2 over 3 comma space then space 2 space sec squared straight theta space plus space 2 space tan squared straight theta minus space 7 space is space equal space to
left parenthesis straight a right parenthesis space 1
left parenthesis straight b right parenthesis space 0
left parenthesis straight c right parenthesis space 3
left parenthesis straight d right parenthesis space 4 end style

Solution 31

Error converting from MathML to accessible text.
begin mathsize 11px style space space space space space space tan space straight theta space equals space fraction numerator square root of 5 over denominator 2 end fraction
space space space space space space space sec space straight theta space equals space 3 over 2
To space find space colon space space 2 space sec squared straight theta space plus space 2 space tan squared straight theta space minus space 7
space space space space space space space space space space space space space space space space rightwards double arrow 2 space open parentheses 3 over 2 close parentheses squared space space plus space 2 open parentheses fraction numerator square root of 5 over denominator 2 end fraction close parentheses squared space minus space 7
space space space space space space space space space space space space space space space rightwards double arrow 9 over 2 space plus space 5 over 2 space minus space 7
space space space space space space space space space space space space space space rightwards double arrow space 7 space minus space 7
space space space space space space space space space space space space space space rightwards double arrow space 0 space
space So comma space the space correct space answer space is space left parenthesis straight b right parenthesis. end style

Question 32

begin mathsize 11px style tan space 5 to the power of straight o space cross times space tan 30 to the power of straight o space cross times space 4 space tan space 85 to the power of straight o space is space equal space to space
left parenthesis straight a right parenthesis space fraction numerator 4 over denominator square root of 3 end fraction
left parenthesis straight b right parenthesis space 4 square root of 3
left parenthesis straight c right parenthesis space 1
left parenthesis straight d right parenthesis space 4 end style

Solution 32

begin mathsize 11px style We space know space tan space left parenthesis 90 minus straight theta right parenthesis space equals space cot space straight theta space minus space circle enclose 1
and space space space cot space straight theta space equals space fraction numerator 1 over denominator tan space straight theta end fraction space space minus space circle enclose 2
from space circle enclose 1 space and space circle enclose 2
tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space fraction numerator 1 over denominator tan space straight theta end fraction
rightwards double arrow tan space left parenthesis straight theta right parenthesis space tan space left parenthesis 90 space minus space straight theta right parenthesis space equals space 1
for space straight theta space equals space 5 to the power of straight o
space space space space space space rightwards double arrow box enclose tan space left parenthesis 5 to the power of straight o right parenthesis space tan space left parenthesis 85 to the power of straight o right parenthesis space equals space 1 end enclose space space space space minus space circle enclose 3
Also space space tan space 30 to the power of straight o space equals space fraction numerator 1 over denominator square root of 3 end fraction space space minus space circle enclose 4
To space find colon space tan space 5 to the power of straight o space cross times space tan space 30 to the power of straight o space cross times space 4 space tan space 85 to the power of straight o
space space space space space space space space rightwards double arrow space tan space 5 to the power of straight o space tan space 85 to the power of straight o space cross times space 4 space tan space 30 to the power of straight o
space space space space space space space space rightwards double arrow 1 space cross times space 4 space cross times space fraction numerator 1 over denominator square root of 3 end fraction
space space space space space space space space space rightwards double arrow fraction numerator 4 over denominator square root of 3 end fraction
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Chapter 5 Trigonometric Ratios Exercise 5.59

Question 33

begin mathsize 11px style The space value space of space fraction numerator tan space 55 to the power of straight o over denominator cot space 35 to the power of straight o end fraction space plus space cot space 1 to the power of straight o space cot space 2 to the power of straight o space straight _ space straight _ space straight _ space straight _ space straight _ thin space straight _ space space cot space 90 to the power of straight o comma space is
left parenthesis straight a right parenthesis space minus 2 space
left parenthesis straight b right parenthesis space 2
left parenthesis straight c right parenthesis space 1
left parenthesis straight d right parenthesis space 0 end style

Solution 33

begin mathsize 11px style We space know space tan space left parenthesis 90 minus straight theta right parenthesis space equals space cot space straight theta
space space space For space straight theta space equals space 35 to the power of straight o space rightwards double arrow box enclose tan space left parenthesis 55 to the power of straight o right parenthesis space equals space cot space left parenthesis 35 to the power of straight o right parenthesis end enclose space minus space circle enclose 1
Also space cot space 90 to the power of straight o space equals space 0 space space minus space circle enclose 2
To space find space colon negative space fraction numerator tan space 55 to the power of straight o over denominator cot space 35 to the power of straight o end fraction plus cot space 1 to the power of straight o space cot space 2 to the power of straight o space straight _ space straight _ thin space straight _ space straight _ thin space straight _ space cot space 90 to the power of straight o
space space space space space space space space space rightwards double arrow space from space circle enclose 1 space and space circle enclose 2
space space space space space space space space space rightwards double arrow space 1 space plus space 0 space equals space 1 end style

So, the correct option is (c).Question 34

begin mathsize 11px style In space the space figure comma space the space value space of space cos space straight capital phi space is space
left parenthesis straight a right parenthesis space 5 over 4
left parenthesis straight b right parenthesis space 5 over 3
left parenthesis straight c right parenthesis space 3 over 5
left parenthesis straight d right parenthesis space 4 over 5 end style

Solution 34

begin mathsize 11px style ECB space is space straight a space straight space line
so space straight ϕ space plus space 90 to the power of straight o space plus space straight theta space equals space 180 to the power of straight o
space space space space space rightwards double arrow straight ϕ space plus space straight theta space equals space 90 to the power of straight o
space space space space space space rightwards double arrow straight ϕ space equals space 90 minus straight theta
space space space space space space rightwards double arrow cos space left parenthesis straight ϕ right parenthesis space equals space cos space left parenthesis 90 space minus straight theta right parenthesis
space space space space space space space space space space cos space straight ϕ space equals space sin space straight theta space space space space minus space circle enclose 1
In space increment space ABC
space space space space space space space space space sin space straight theta space equals space 4 over 5 space space space space space minus space circle enclose 2
from space circle enclose 1 space and space circle enclose 2
space space space space space space space space space space rightwards double arrow box enclose cos space straight ϕ space equals space 4 over 5 end enclose
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 35

begin mathsize 11px style In space the space figure comma thin space AD space equals space 4 space cm space BD space equals space 3 space cm space and space CB space equals space 12 space cm comma space find space cot space straight theta.
left parenthesis straight a right parenthesis space 12 over 5
left parenthesis straight b right parenthesis space 5 over 12
left parenthesis straight c right parenthesis space 13 over 12
left parenthesis straight d right parenthesis space 12 over 13 end style

Solution 35

begin mathsize 11px style In space increment space ABD
AB squared space equals space BD squared space plus space AD squared
space space space space space space space space space space space equals space 3 squared space plus space 4 squared
space space space space space space space space space space space space equals space 25
space space space space AB space equals space 5 space cm
In space increment space ABC
AC squared space equals space AB squared space plus space BC squared
rightwards double arrow space AC squared space equals space 5 squared space plus space 12 squared
space space space space space space space space space space space space space space space equals space 169
rightwards double arrow AC space equals space 13 space cm
space cot space straight theta space equals space BC over AB space equals space 12 over 5
box enclose cot space straight theta space equals space 12 over 5 end enclose
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style
Read More

RD SHARMA SOLUTION CHAPTER- 4 Triangles| CLASS 10TH MATHEMATICS-EDUGROWN

Chapter 4 – Quadratic Equations Exercise Ex. 4.1

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1 (iii)

Solution 1 (iii)

Question 1 (iv)

Solution 1 (iv)

Question 1 (v)

Solution 1 (v)

Question 1(vi)

Solution 1(vi)

Question 1 (vii)

Solution 1 (vii)

Question 1 (viii)

Solution 1 (viii)

Question 1 (ix)

Solution 1 (ix)

Question 1 (x)

Solution 1 (x)

Question 1 (xi)

Solution 1 (xi)

Question 1 (xii)

Solution 1 (xii)

Question 1 (xiii)

Solution 1 (xiii)

Question 1 (xiv)

Solution 1 (xiv)

Question 1 (xv)

Is X(x+1)+8=(x+2)(x-2) a quadratic equation?Solution 1 (xv)

Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Solution 2 (iii)

Question 2 (iv)

Solution 2 (iv)

Question 2 (v)

Are x = 2 and x = 3, solutions of the equation 2x2 – x + 9 = x2 + 4x + 3 , Solution 2 (v)

= 2x– x + 9 – x+ 4x + 3

= x2 – 5x + 6 = 0

Here, LHS = x2 – 5x + 6 and RHS = 0

Substituting x = 2 and x = 3

= x2 – 5x + 6

= (2)2 – 5(2) + 6

=10-10

=0

= RHS

= x2 – 5x + 6

= (3)2 – 5(3) + 6

= 9 – 15 + 6

=15 – 15

=0

= RHS

x = 2 and x = 3 both are the solutions of the given quadratic equation.Question 2 (vi)

Solution 2 (vi)

Question 2 (vii)

Solution 2 (vii)

Question 3 (i)

Solution 3 (i)

Question 3 (ii)

Solution 3 (ii)

Question 3 (iii)

Solution 3 (iii)

Question 3 (iv)

Solution 3 (iv)

Question 4

Solution 4

Question 5

Solution 5

Chapter 4 – Quadratic Equations Exercise Ex. 4.2

Question 1

The product of two consecutive positive integers is 306. Form the quadratic equation to find the integers, if x denotes the smaller integer.Solution 1

Question 2

John and Jivanti together have 45 marbles. Both of them lost 5 marbles each, and the product of the number of marbles they now have is 128. Form the quadratic equation to find how many marbles they had to start with, if John had x marbles.Solution 2

Question 3

A cottage industry produces a certain number of toys in a day. The cost of production of each toy (in rupees) was found to be 55 minus the number of articles produced in a day. On a particular day, the total cost of production was Rs. 750. If x denotes the number of toys produced that day, form the quadratic equation to find x.Solution 3

Question 4

The height of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, form the quadratic equation to find the base of the triangle.Solution 4

Question 5

An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore. If the average speed of the express train is 11 km/hr more than that of the passenger train, form the quadratic equation to find the average speed of express train.Solution 5

Question 6

A train travels 360 km at a uniform speed. If the speed had been 5 km/hr more, it would have taken 1 hour less for the same journey. Form the quadratic equation to find the speed of the train.Solution 6

Chapter 4 – Quadratic Equations Exercise Ex. 4.3

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solve the following quadratic equation by factorisation:

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solve the following quadratic equation by factorisation:

Solution 15

Question 16

Solution 16

Question 17

9x– 6b2x – (a4 – b4) = 0Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solve the following quadratic equation by factorisation:

2x+ ax – a2 = 0Solution 20

Question 21

Solve the following quadratic equation by factorisation:

Solution 21

Question 22

Solve the following quadratic equations by factorization:

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solve the following quadratic equation by factorisation:

Solution 29

Question 30

Solve the following quadratic equation by factorisation:

Solution 30

Question 31

Solve the following quadratic equation by factorisation:

Solution 31

Question 32

Solve the following quadratic equation by factorisation:

Solution 32

Question 33

Solve the following quadratic equation by factorisation:

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36

Solution 36

Question 37

Solution 37

Question 38

Solve the following quadratic equation by factorisation:

Solution 38

Question 39

Solution 39

Question 40

Solution 40

Question 41

Solution 41

Question 42

Solution 42

Question 43

Solve the following quadratic equations by factorization:

Solution 43

Question 44

Solution 44

Question 45

Solution 45

Question 46

Solution 46

Question 47

Solve the following quadratic equations by factorization:

Solution 47

Question 48

Solve the following quadratic equations by factorization:

Solution 48

Question 49

Solution 49

Question 50

Solution 50

Question 51

Solution 51

Question 52

Solution 52

Question 53

Solution 53

Question 54

Solution 54

Question 55

Solution 55

Question 56

Solution 56

Question 57

Solution 57

Question 58

Solve the following quadratic equation by factorisation:

Solution 58

Question 59

Solve the following quadratic equation by factorisation:

Solution 59

Question 60

Solve the following quadratic equation by factorisation:

Solution 60

Question 61

Solution 61

Question 62

Solution 62

Chapter 4 – Quadratic Equations Exercise Ex. 4.4

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Find the roots of the following quadratic equations (if they exist) by the method of completing the square

x2 – 8x + 18 = 0Solution 6

Given equation is x2 – 8x + 18 = 0

x2 – 2 × x × 4 + + 42 – 42 + 18 = 0

(x – 4)2 – 16 + 18 = 0

(x – 4)2 = 16 – 18

(x – 4)2 = -2

Taking square root on both the sides, we get 

Therefore, real roots does not exist.Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Chapter 4 – Quadratic Equations Exercise Ex. 4.5

Question 1 (i)

Solution 1 (i)

Question 1 (ii)

Solution 1 (ii)

Question 1(iii)

Solution 1(iii)

Question 1 (iv)

Solution 1 (iv)

Question 1(v)

Solution 1(v)

Question 1(vi)

Solution 1(vi)

Question 1 (vii)

Write the discriminant of the following quadratic equations:

(x + 5)2 = 2(5x – 3)Solution 1 (vii)

x2 + 2 × x × 5 + 52 = 10x – 6

x2 + 10x + 25 = 10x – 6

x2 + 31 = 0

Here, a = 1, b = 0 and c = 31

Therefore, the discriminant is

D = b2 – 4ac

 = 0 – 4 × 1 × 31

 = -124Question 2 (i)

Solution 2 (i)

Question 2 (ii)

Solution 2 (ii)

Question 2 (iii)

Solution 2 (iii)

Question 2 (iv)

Solution 2 (iv)

Question 2 (v)

Solution 2 (v)

Question 2 (vi)

Solution 2 (vi)

Question 2 (vii)

Solution 2 (vii)

Question 2 (viii)

Solution 2 (viii)

Question 2 (ix)

Solution 2 (ix)

Question 2(x)

Solution 2(x)

Question 2(xi)

Solution 2(xi)

Question 2(xii)

3x2 – 5x + 2 = 0Solution 2(xii)

Question 3(i)

Solution 3(i)

Question 3(ii)

Solve for x:

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solve for x:

Solution 3(iv)

Question 3(v)

Solve for x:

Solution 3(v)

Chapter 4 – Quadratic Equations Exercise Ex. 4.6

Question 1(i)

Determine the nature of the roots of the following quadratic equations:

2x2 – 3x + 5 = 0Solution 1(i)

Question 1(ii)

Determine the nature of the roots of the following quadratic equations:

2x2 – 6x + 3 = 0Solution 1(ii)

Question 1(iii)

Solution 1(iii)

Question 1(iv)

Solution 1(iv)

Question 1(v)

Solution 1(v)

Question 1 (vi)

Determine the nature of the roots of the following quadratic equations:

Solution 1 (vi)

Given quadratic equation is 

Here, 

Therefore, we have

As D = 0, roots of the given equation are real and equal.Question 2(i)

Solution 2(i)

Question 2(ii)

Solution 2(ii)

Question 2(iii)

Solution 2(iii)

Question 2(iv)

Solution 2(iv)

Question 2(v)

Solution 2(v)

Question 2(vi)

Solution 2(vi)

Question 2(vii)

Solution 2(vii)

Question 2(viii)

Solution 2(viii)

Question 2(ix)

Solution 2(ix)

Question 2(x)

Solution 2(x)

Question 2(xi)

Solution 2(xi)

Question 2(xii)

Solution 2(xii)

Question 2(xiii)

Solution 2(xiii)

Question 2(xiv)

Solution 2(xiv)

Question 2(xv)

Solution 2(xv)

Question 2(xvi)

Solution 2(xvi)

Question 2(xvii)

Solution 2(xvii)

Question 2(xviii)

Find the values of k for which the roots are real and equal in each of the following equations:

4x2 – 2 (k + 1)x + (k + 1) = 0 Solution 2(xviii)

4x2 – 2 (k + 1)x + (k + 1) = 0 Comparing with ax2 + bx + c = 0, we get a = 4, b = -2(k + 1), c = k + 1 According to the question, roots are real and equal. Hence, b2 – 4ac = 0 Question 3(i)

Solution 3(i)

Question 3(ii)

In the following, determine the set of values of k for which the given quadratic equation has real roots:

2x2 + x + k = 0Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 3(v)

Solution 3(v)

Question 4(i)

Solution 4(i)

Question 4(ii)

Solution 4(ii)

Question 4(iii)

Solution 4(iii)

Question 4(iv)

Find the values of k for which the following equations have real and equal roots:

x2 + k(2x + k – 1) + 2 = 0 Solution 4(iv)

x2 + k(2x + k – 1) + 2 = 0 x2 + 2kx + k(k – 1) + 2 = 0 Comparing with ax2 + bx + c = 0, we get a = 1, b = 2k, c = k(k – 1) + 2 According to the question, roots are real and equal. Hence, b2 – 4ac = 0 Question 5(i)

Find the values of k for which the roots are real and equal in each of the following equations:

2x2 + kx + 3 = 0Solution 5(i)

Question 5(ii)

Find the values of k for which the roots are real and equal in each of the following equations:

kx (x – 2) + 6 = 0Solution 5(ii)

Question 5(iii)

Find the values of k for which the roots are real and equal in each of the following equations:

x2 – 4kx + k = 0Solution 5(iii)

Question 5(iv)

Find the value of k for which the roots are real and equal in the following equation:

Solution 5(iv)

Question 5(v)

Find the value of p for which the roots are real and equal in the following equation:

px(x – 3) + 9 = 0Solution 5(v)

Question 5(vi)

Find the values of k for which the following equations have real roots.

4x2 + kx + 3 = 0 Solution 5(vi)

4x2 + kx + 3 = 0 Comparing with ax2 + bx + c = 0, we get a = 4, b = k, c = 3 According to the question, roots are real and equal. Hence, b2 – 4ac = 0 Question 6 (i)

Solution 6 (i)

Question 6 (ii)

Solution 6 (ii)

Question 7

Solution 7

Question 8

Solution 8

Question 9(i)

Find the values of k for which the quadratic equation (3k + 1)x2 + 2(k + 1)x + 1 = 0 has equal roots. Also, find the roots.Solution 9(i)

Question 9 (ii)

Write all the values of k for which the quadratic equation x2 + kx + 16 = 0 has equal roots. Find the roots of the equation so obtained.Solution 9 (ii)

Given quadratic equation is x2 + kx + 16 = 0

As it has equal roots, the discriminant will be 0.

Here, a = 1, b = k, c = 16

Therefore, D = k2 – 4(1)(16) = 0

i.e. k2 – 64 = 0

i.e. k = ± 8

When k = 8, the equation becomes x2 + 8x + 16 = 0

 or x2 – 8x + 16 = 0

As D = 0, roots of the given equation are real and equal.Question 10

Find the values of p for which the quadratic equation (2p + 1)x2 – (7p + 2)x + (7p – 3) = 0 has equal roots. Also, find these roots.Solution 10

Question 11

 If -5 is a root of the quadratic equation, 2x2 + px – 15 = 0, and the quadratic equation p(x2 + x) + k = 0 has equal roots, find the value of k.Solution 11

Question 12

 If 2 is a root of the quadratic equation 3x2 + px – 8 = 0 and the quadratic equation 4x2 – 2px + k = 0 has equal roots, find the value of k.Solution 12

Question 13

If 1 is root of the quadratic equation 3x2 + ax – 2 = 0 and the quadratic equation a(x2 + 6x) – b = 0 has equal roots, find the value of b.Solution 13

Question 14

Find the value of p for which the quadratic equation (p + 1)x2 – 6(p + 1)x + 3(p + 9) = 0, p ≠ -1 has equal roots. Hence, find the roots of equation.Solution 14

Question 15(i)

Solution 15(i)

Question 15(ii)

Solution 15(ii)

Question 15(iii)

Solution 15(iii)

Question 15(iv)

Solution 15(iv)

Question 16(i)

Solution 16(i)

Question 16(ii)

Solution 16(ii)

Question 16(iii)

Solution 16(iii)

Question 16(iv)

Solution 16(iv)

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

Solution 25

Chapter 4 – Quadratic Equations Exercise Ex. 4.7

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

The sum of a number and its square is 63/4. Find the numbers.Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

A natural number when increased by 12 equals 160 times its reciprocal. Find the number.Solution 24

Let x be the natural number.

As per the question, we have

Therefore, x = 8 as x is a natural number.

Hence, the required natural number is 8.Question 25

Solution 25

Question 26

Solution 26

Question 27

Solution 27

Question 28

The difference of the squares of two positive integers is 180. The square of the smaller number is 8 times the larger, find the numbers.Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

The sum of two numbers is 9. The sum of their reciprocals is 1/2. Find the numbers.Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Find two consecutives odd positive integers, sum of whose squares is 970.Solution 34

Question 35

The difference of two natural numbers is 3 and the difference of their reciprocal is  . Find the numbers.Solution 35

Question 36

The sum of the squares of two consecutive odd numbers is 394. Find the numbers.Solution 36

Question 37

The sum of the squares of two consecutive multiples of 7 is 637. Find the multiples.Solution 37

Question 38

The sum of the squares of two consecutive even numbers is 340. Find the numbers.Solution 38

Question 39

The numerator of a fraction is 3 less than the denominator. If 2 is added to both the numerator and the denominator, then the sum of the new fraction and the original fraction is . Find the original fraction.Solution 39

Question 40

Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number.Solution 40

Chapter 4 – Quadratic Equations Exercise Ex. 4.8

Question 1

Solution 1

Question 2

A train, travelling at a uniform speed for 360 km, would have taken 48 minutes less to travel the same distance if its speed were 5 km/hr more. Find the original speed of the train.Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

A train travels at a certain average speed for a distance 63 km and then travels a distance of 72 km at an average speed of 6 km/hr more than the original speed, If it takes 3 hours to complete total journey, what is its original average speed?Solution 8

Question 9

Solution 9

Question 10

Solution 10

Concept Insight: Use the relation s =d/t to crack this question and remember here distance is constant so speed and time will vary inversely.Question 11

Solution 11

Question 12

An aeroplane left 50 minutes later than its scheduled time, and in order to reach the destination, 1250 km away, in time, it had to increase its speed by 250 km/hr from its usual speed. Find its usual speed.Solution 12

Question 13

While boarding an aeroplane, a passenger got hurt. The pilot showing promptness and concern, made arrangements to hospitalize the injured and so the plane started late by 30 minutes to reach the destination, 1500 km away in time, the pilot increased the speed by 100 km/hr. Find the original speed/hour of the plane.Solution 13

Question 14

A motor boat whose speed in still water is 18 km/hr takes 1 hour more to go 24 km up stream than to return downstream to the same spot. Find the speed of the stream.Solution 14

Question 15

A car moves a distance of 2592 km with uniform speed. The number of hours taken for the journey is one-half the number representing the speed, in km/hour. Find the time taken to cover the distance.Solution 15

Let the speed of a car be x km/hr. According to the question, time is  hr. Distance = Speed × Time 2592 =     x = 72 km/hr Hence, the time taken by a car to cover a distance of 2592 km is 36 hrs.Question 16

A motor boat whose speed instill water is 9 km/hr, goes 15 km downstream and comes back to the same spot, in a total time of 3 hours 45 minutes. Find the speed of the stream.Solution 16

Let x km/hr be the speed of the stream.

Therefore, we have

Downstream speed = (9 + x) km/hr

Upstream speed = (9 – x) km/hr

Distance covered downstream = distance covered upstream

Total time taken = 3 hours 45 minutes =  hours

Therefore, x = 3 as the speed can’t be negative.

Hence, the speed of the motor boat is 3 km/hr.

Chapter 4 – Quadratic Equations Exercise Ex. 4.9

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

If Zeba were younger by 5 years than what she really is, then the square of her age (in years) would have been 11 more than 5 times her actual age. What is her age now?Solution 8

Question 9

At present Asha’s age (in years) is 2 more than the square of her daughter Nisha’s age. When Nisha grows to her mother’s present age, Asha’s age would be one year less than 10 times the present age of Nisha. Find the present ages of both Asha and Nisha.Solution 9

Chapter 4 – Quadratic Equations Exercise Ex. 4.10

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the difference of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible to do so? If yes, at what distances from the two gates should the pole be erected?Solution 4

Chapter 4 – Quadratic Equations Exercise Ex. 4.11

Question 1

Solution 1

Question 2

Solution 2

Question 3

Two squares have sides x cm and (x + 4) cm. The sum of their areas is 656 cm2. Find the sides of the squares.Solution 3

Question 4

Solution 4

Question 5

Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is 800 m2? If so, find its length and breadth.Solution 5

Question 6

Solution 6

Question 7

Sum of the areas of two squares is 640 m2. If the difference of their perimeter is 64 m, find the sides of the two squares.Solution 7

Question 8

Sum of the areas of two squares is 400 cm2. If the difference of their perimeters is 16 cm, find the sides of two squares.Solution 8

Question 9

The area of a rectangular plot is 528 m2. The length of the plot (in meters) is one meter more than twice its breadth. Find the length and the breadth of the plot.Solution 9

Question 10

In the centre of a rectangular lawn of dimension 50 m × 40 m, a rectangular pond has to be constructed so that the area of the grass surrounding the pond would be 1184 m2. Find the length and breadth of the pond.Solution 10

Chapter 4 – Quadratic Equations Exercise Ex. 4.12

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

To fill a swimming pool two pipes are used. If the pipe of larger diameter used for 4 hours and the pipe of smaller diameter for 9 hours, only half of the pool can be filled. Find, how long it would take for each pipe to fill the pool separately, if the pipe of smaller diameter takes 10 hours more than the pipe of larger diameter to fill the pool?Solution 5

Let us assume that the larger pipe takes ‘x’ hours to fill the pool.

So, as per the question, the smaller pipe takes ‘x + 10’ hours to fill the same pool.

Question 6

Two water taps together can fill a tank in   hours. The tap with longer diameter takes 2 hours less than the tap with the smaller one to fill the tank separately. Find the time in which each tap can fill the tank separately. Solution 6

Let the tap with smaller diameter takes x hours to completely fill the tank.

So, the other tap takes (x – 2) hours to fill the tank completely.

Total time taken to fill the tank   hours

As per the question, we have

When x = 5, then (x – 2) = 3

When   which can’t be possible as the time becomes negative.

Hence, the smaller diameter tap fills in 5 hours and the larger diameter tap fills in 3 hours.

Chapter 4 – Quadratic Equations Exercise Ex. 4.13

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

In a class test, the sum of the marks obtained by P in Mathematics and Science is 28. Had he got 3 marks more in Mathematics and 4 marks less in Science. The product of his marks, would have been 180. Find his marks in the two subjects.Solution 9

Question 10

Solution 10

Question 11

A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs 90, find the number of articles produced and the cost of each article.Solution 11

Question 12

At t minutes past 2 pm the time needed by the minutes hand and a clock to show 3 pm was found to be 3 minutes less than   minutes. Find t.Solution 12

Chapter 4 – Quadratic Equations Exercise 4.82

Question 1

If the equation x2 + 4x + k = 0 has real and distinct root, then

(a) k < 4

(b) k > 4

(c) k ≥ 4

(d) k ≤ 4Solution 1

We know for the quadratic equation

ax2 + bx + c = 0

condition for roots to be real and distinct is

D = b2 – 4ac > 0       ……….(1)

for the given question

x+ 4x + k = 0

a = 1, b = 4, c = k

from (1)

16 – 4k > 0

k < 4

So, the correct option is (a).

Chapter 4 – Quadratic Equations Exercise 4.83

Question 2

If the equation x2 – ax + 1 = 0 has two distinct roots, then

(a) |a| = 2

(b) |a| < 2

(c) |a| > 2

(d) None of theseSolution 2

For the equation x2 – ax + 1 = 0 has two distinct roots, condition is

(-a)– 4 (1) (1) > 0

a– 4 > 0

a> 4

|a| > 2

So, the correct option is (c).Question 3

begin mathsize 12px style If space the space equation space 9 x squared space plus space 6 kx space plus space 4 space equals space 0 space has space equal space roots comma space then space the space roots space are space both space equal space to
left parenthesis straight a right parenthesis space plus-or-minus space 2 over 3
left parenthesis straight b right parenthesis space plus-or-minus space 3 over 2
open parentheses straight c close parentheses space 0
open parentheses straight d close parentheses space plus-or-minus space 3 end style

Solution 3

begin mathsize 12px style For space quadratic space equation
ax squared space plus space bx space plus space straight c space equals space 0
condition space for space equal space roots space is
straight D space equals space straight b squared space minus space 4 ac space equals space 0 space space space space space space space space space space space.......... open parentheses 1 close parentheses
For space the space given space question
9 straight x squared space plus space 6 kx space plus space 4 space equals space 0
straight a space equals space 9 comma space space space straight b space equals space 6 straight k comma space space space space straight c space equals space 4
from space open parentheses 1 close parentheses
open parentheses 6 straight k close parentheses squared space minus space 4 space open parentheses 9 close parentheses space open parentheses 4 close parentheses space equals space 0
36 straight k squared space minus space 36 space cross times space 4 space equals space 0
36 space open parentheses straight k to the power of 2 space end exponent minus space 4 close parentheses space equals space 0
straight k squared space equals space 4
straight k space equals space plus-or-minus 2
Now comma space equation space is space 9 straight x squared space plus space 6 kx space plus space 4 space equals space 0
rightwards double arrow space 9 straight x squared space plus-or-minus space 12 straight x space plus space 4 space equals 0
rightwards double arrow open parentheses 3 straight x space plus-or-minus space 2 close parentheses squared space equals space 0
rightwards double arrow straight x space equals space plus-or-minus 2 over 3
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 4

begin mathsize 12px style If space ax squared space plus space bx space plus space straight c space equals 0 space has space equal space roots comma space then space straight c space equals
left parenthesis straight a right parenthesis space fraction numerator negative straight b over denominator 2 straight a end fraction
left parenthesis straight b right parenthesis space fraction numerator straight b over denominator 2 straight a end fraction
open parentheses straight c close parentheses space fraction numerator negative straight b squared over denominator 4 straight a end fraction
open parentheses straight d close parentheses space fraction numerator straight b squared over denominator 4 straight a end fraction end style

Solution 4

begin mathsize 12px style If space ax squared space plus space bx space plus space straight c space equals space 0 space has space equal space roots
then
straight b squared space minus space 4 ac space equals space 0
straight b squared space equals space 4 ac
straight c space equals space fraction numerator straight b squared over denominator 4 straight a end fraction
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 5

If the equation ax2 + 2x + a = 0 has two distinct roots, if

(a) a = ± 1

(b) a = 0

(c) a = 0, 1

(d) a = -1, 0Solution 5

For any quadratic equation

ax + bx + c = 0

having two distinct roots, condition is

b2 – 4ac > 0

For the equation ax2 + 2x + a = 0 to have two distinct roots,

(2)2 – 4 (a) (a) > 0

4 – 4a2 > 0

4(1 – a2) > 0

1 – a2 > 0 since 4 > 0

that is, a2 – 1 < 0

Hence -1 < a < 1, only integral solution possible is a = 0

So, the correct option is (b).Question 6

The positive value of k for which the equation x2 + kx + 64 = 0 and x2 – 8x + k = 0 will both have real roots, is

(a) 4

(b) 8

(c) 12

(d) 16Solution 6

For any quadratic equation

ax2 + bx + c = 0

having real roots, condition is

b2 – 4ac ≥ 0     …….(1)

According to question 

x+ kx + 64 = 0 have real root if

k– 4 × 64 ≥ 0

k2 ≥ 256

|k|≥ 16             ……..(2)

Also, x2 – 8x + k = 0 has real roots if

64 – 4k ≥ 0

k ≤ 16    ………(3)

from (2), (3) the only positive solution for k is

k = 16

So, the correct option is (d).Question 7

begin mathsize 12px style The space value space of space square root of 6 space plus square root of 6 space plus square root of 6 space plus space...... end root end root end root is
left parenthesis straight a right parenthesis space 4
left parenthesis straight b right parenthesis space 3
left parenthesis straight c right parenthesis space minus 2
left parenthesis straight d right parenthesis space 3.5 end style

Solution 7

begin mathsize 12px style Let space straight x space equals space square root of 6 space plus square root of 6 space plus square root of 6 space plus space...... end root end root end root space space space space space space space space space space space space space space space space....... left parenthesis 1 right parenthesis
On space squaring space both space sides
straight x squared space equals space 6 space plus space square root of 6 space plus square root of 6 space plus space..... end root end root space space space space space space space space space space space space space space space space space space space space space space space space space space....... left parenthesis 2 right parenthesis
From space left parenthesis 1 right parenthesis space & space left parenthesis 2 right parenthesis
straight x squared space equals space 6 space plus space straight x
straight x squared space minus space straight x space minus space 6 space equals space 0
straight x squared space minus space 3 straight x space plus space 2 straight x space minus space 6 space equals space 0
straight x space open parentheses straight x space minus space 3 close parentheses space plus space 2 left parenthesis straight x space minus space 3 right parenthesis space equals space 0
left parenthesis straight x space plus space 2 right parenthesis space left parenthesis straight x space minus space 3 right parenthesis space equals space 0
straight x space equals space minus 2 space or space straight x space equals space 3
but space straight x space can apostrophe straight t space be space negative comma space hence
box enclose straight x space equals space 3 end enclose
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 8

If 2 is a root of the equation x+ bx + 12 = 0 and the equation x2 + bx + q = 0 has equal roots, then q =

(a) 8

(b) -8

(c) 16

(d) -16Solution 8

It is given that 2 is a root of equation x + bx + 12 = 0

Hence

(2)+ b(2) + 12 = 0

4 + 2b + 12 = 0

2b + 16 = 0

b = -8        ………(1)

It is also given that x2 + bx + q = 0 has equal root 

so, b2 – 4(q) = 0         ……..(2)

from (1) & (2)

(-8)– 4q =0

q = 16

So, the correct option is (c).Question 9

begin mathsize 12px style If space the space equation space open parentheses straight a squared space plus space straight b squared close parentheses space straight x squared space minus space 2 open parentheses ac space plus space bd close parentheses space straight x space plus space straight c squared space plus space straight d squared space equals space 0 space has space equal space roots comma space then space
open parentheses straight a close parentheses space ab space equals space cd
open parentheses straight b close parentheses space ad space equals space bc
open parentheses straight c close parentheses space ad space equals space square root of bc
open parentheses straight d close parentheses space ab space equals space square root of cd end style

Solution 9

For any quadratic equation

ax2 + bx + c = 0

Having equal roots, the condition is

b – 4ac = 0

For the equation

(a2 + b2) x2 – 2 (ac + bd)x + c2 + d= 0

to have equal roots, we have

(-2(ac + bd))– 4 (c+ d2) (a+ b2) = 0

4 (ac + bd)– 4 (a2c+ b2c2 + d2a+ b2d2) = 0

(a2c+ b2d2 + 2abcd) – (a2c+ b2c2 + a2d2+ b2d2) = 0

2abcd – b2c2 – a2d2 = 0

b2c2 – a2d– 2abcd = 0

(bc – ad)= 0

bc = ad

So, the correct option is (b).Question 10

begin mathsize 12px style If space the space roots space of space the space equation space left parenthesis straight a squared plus space straight b squared right parenthesis straight x squared space minus space 2 straight b left parenthesis straight a space plus space straight c right parenthesis straight x space plus space left parenthesis straight b squared plus space straight c squared right parenthesis space equals space 0 space are space equal comma space then
left parenthesis straight a right parenthesis space 2 straight b space equals space straight a space plus space straight c
open parentheses straight b close parentheses space straight b squared space equals space ac
open parentheses straight c close parentheses space straight b space equals fraction numerator 2 ac over denominator straight a space plus space straight c end fraction
open parentheses straight d close parentheses space straight b space equals space ac end style

Solution 10

For any quadratic equation

ax+ bx + c = 0

having equal roots, condition is

b2 – 4ac = 0

According to question, quadratic equation is

(a2 + b2)x2 – 2b(a + c)x + b2 + c= 0

having equal roots, so

(2b(a + c))2 – 4(a2 + b2) (b2 + c2) = 0

4b2 (a + c)2 – 4(a2b2 + a2c+ b4 + b2c2) = 0

b2(a2 + c2 + 2ac) – (a2b2 + a2c+ b2c2 + b4) = 0

a2b2 + b2c2 + 2acb2 – a2b2 – a2c– b2c2 – b4 = 0

2acb2 – a2c2 – b4 = 0

a2c2 + b4 – 2acb2 = 0

(ac – b2)2 = 0

ac = b2

So, the correct option is (b).Question 11

If the equation x2 – bx + 1 = 0 does not possess real roots, then

(a) -3 < b < 3

(b) -2 < b < 2

(c) b < 2

(d) b < -2Solution 11

For any quadratic equation ax2 + bx + c = 0 having no real roots, condition is

b2 – 4ac < 0

For the equation, x2 – bx + 1 = 0 having no real roots

b2 – 4 < 0

b2 < 4

-2 < b < 2

So, the correct option is (b).Question 12

If x = 1 is a common root of the equations ax2 + ax + 3 = 0 and x2 + x + b = 0, then ab =

(a) 3

(b) 3.5

(c) 6

(d) -3Solution 12

begin mathsize 12px style If space straight x space equals space 1 space is space root space of space ax squared space plus space ax space plus space 3 space equals space 0
then
straight a open parentheses 1 close parentheses squared space plus space straight a open parentheses 1 close parentheses space plus space 3 space equals space 0
2 straight a space plus space 3 space equals space 0
straight a space equals space fraction numerator negative 3 over denominator 2 end fraction space space space space space space space space space space space space...... left parenthesis 1 right parenthesis
and space straight x space equals space 1 space is space also space root space of space straight x squared space plus space straight x space plus space straight b space equals 0
then
open parentheses 1 close parentheses squared space plus space open parentheses 1 close parentheses space plus space straight b space equals space 0
straight b space equals space minus 2 space space space space space space space space space.... left parenthesis 2 right parenthesis
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
ab space equals space open parentheses fraction numerator negative 3 over denominator 2 end fraction close parentheses open parentheses negative 2 close parentheses
ab space equals 3
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 13

If p and q are the roots of the equation x-px + q = 0, then

(a) p = 1, q = -2

(b) b = 0, q = 1

(c) p = -2, q = 0

(d) p = -2, q = 1Solution 13

If p, q are the roots of equation x– px + q = 0, then p and q satisfies the equation

Hence

(p)– p(p) + q = 0

p– p+ q = 0

q = 0

and (q)– p(q) + q = 0

q– p(q) + q = 0

0 = 0

p can take any value

p = -2 and q = 0

So, the correct option is (c).Question 14

If a and b can take values 1, 2, 3, 4. Then the number of the equations of the form ax2 + bx + 1 = 0 having real roots is

(a) 10

(b) 7

(c) 6

(d) 12Solution 14

For the ax+ bx + 1 = 0 having real roots condition is

b– 4(a) (1) ≥ 0

b2 ≥ 4a

For a = 1

b2 ≥ 4

b ≥ 2

b can take value 2, 3, 4

Here, 3 possible solutions are possible            …….(1)

For a = 2

b2 ≥ 8

Here, b can take value 3, 4            ……(2)

Here, 2 solutions are possible

For a = 3

b≥ 12

possible value of b is 4

Hence, only 1 possible solution      ……(3)

For a = 4

b2 ≥ 16

possible value of b is 4

Hence, only 1 possible solution    …….(4)

from (1), (2), (3), (4)

Total possible solutions are 7

So, the correct option is (b).Question 15

The number of quadratic equations having real roots and which do not change by squaring their roots is

(a) 4

(b) 3

(c) 2

(d) 1Solution 15

Any quadratic equation having roots 0 or 1 are only possible quadratic equation because on squaring 0 or 1, it remains same.

Hence, 2 solutions are possible, one having roots 1 and 1, while the other having roots 0 and 1.

So, the correct option is (c).

Chapter 4 – Quadratic Equations Exercise 4.84

Question 16

If (a+ b2) x+ 2(ab + bd) x + c2 + d= 0 has no real roots, then

(a) ad = bc

(b) ab = cd

(c) ac = bd

(d) ad ≠ bcSolution 16

If any quadratic equation ax+ bx + c has no real roots then b– 4ac < 0    ……(1)

According to the question, the equation is

(a+ b2) x+ 2(ac + bd) x + c2 + d= 0

from (1)

4(ac + bd)– 4(a2 + b2) (c2 + d2) < 0

a2c2 + b2d2 + 2abcd – (a2c2 + a2d2 + b2c2 + b2d2) < 0

a2c2 + b2d2 + 2abcd – a2c2 – a2d2 – b2c2 – b2d2 < 0

2abcd – a2d2 – b2c2 < 0

-(ad – bc)< 0

(ad – bc)> 0

For this condition to be true ad ≠ bc

So, the correct option is (d).Question 17

begin mathsize 12px style If space the space sum space of space the space roots space of space the space equation space straight x squared space minus space straight x space equals space straight lambda space open parentheses 2 straight x space minus space 1 close parentheses space is space zero comma space then space straight lambda space equals
open parentheses straight a close parentheses space minus 2
open parentheses straight b close parentheses space 2
open parentheses straight c close parentheses space fraction numerator negative 1 over denominator 2 end fraction
open parentheses straight d close parentheses space 1 half end style

Solution 17

begin mathsize 12px style We space know space for space any space quadratic space equation
ax squared space plus space bx space plus space straight c space equals space 0
sum space of space roots space equals fraction numerator negative straight b over denominator straight a end fraction
Now comma space according space to space the space question
straight x squared space minus space straight x space equals space straight lambda space open parentheses 2 straight x space minus space 1 close parentheses
straight x squared space minus space straight x space minus space 2 λx space plus space straight lambda space equals space 0
straight x squared space minus space straight x space open parentheses 1 space plus space 2 straight lambda close parentheses space plus space straight lambda space equals space 0
given space sum space of space roots space of space this space equation space is space zero
Hence comma space fraction numerator negative open parentheses negative open parentheses 1 space plus space 2 straight lambda close parentheses close parentheses over denominator 1 end fraction space equals space 0
space space space space space space space space space space space space space space space space space space 1 space plus space straight lambda 2 space equals space 0
space space space space space space space space space space space space space space space space space space space straight lambda space equals space fraction numerator negative 1 over denominator 2 end fraction
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 18

If x = 1 is a common root of ax+ ax + 2 = 0 and x+ x + b = 0 then, ab =

(a) 1

(b) 2

(c) 4

(d) 3Solution 18

It is given that x = 1 is root of equation ax2 + ax + 2 = 0

Hence, a(1)2 + a(1) + 2 = 0

           2a + 2 = 0

           a = -1         ……(1)

It is given that x = 1 is also root of x2 + x + b = 0

Hence, (1)+ (1) + b = 0

           b = -2     ……(2)

from (1) & (2)

ab = (-1) (-2)

ab = 2

So, the correct option is (b).Question 19

begin mathsize 12px style The space value space of space straight c space for space which space the space equation space ax squared plus space 2 bx space plus space straight c space equals space 0 space has space equal space roots space is
left parenthesis straight a right parenthesis space straight b squared over straight a
left parenthesis straight b right parenthesis space fraction numerator straight b squared over denominator 4 straight a end fraction
open parentheses straight c close parentheses space straight a squared over straight b
open parentheses straight d close parentheses space fraction numerator straight a squared over denominator 4 straight b end fraction end style

Solution 19

begin mathsize 12px style For space any space quadratic space equation space ax squared space plus space bx space plus space straight c space equals space 0 space having space equal space roots space condition space is
straight b squared space minus space 4 ac space equals space 0 space space space space space space space space space..... open parentheses 1 close parentheses
According space to space the space question comma space the space quadratic space equation space is
ax squared space plus space 2 bx space plus space straight c space equals space 0
from space left parenthesis 1 right parenthesis
open parentheses 2 straight b close parentheses squared space minus space 4 ac space equals space 0
4 straight b squared space minus space 4 ac space equals space 0
straight b squared space equals space ac
straight c space equals space straight b squared over straight a
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 20

begin mathsize 12px style If space straight x squared space plus space straight k left parenthesis 4 straight x space plus space straight k space minus space 1 right parenthesis space plus space 2 space equals space 0 space has space equal space roots comma space then space straight k space equals
left parenthesis straight a right parenthesis space fraction numerator negative 2 over denominator 3 end fraction comma space 1
open parentheses straight b close parentheses space 2 over 3 comma space minus 1
open parentheses straight c close parentheses space 3 over 2 comma space 1 third
open parentheses straight d close parentheses space fraction numerator negative 3 over denominator 2 end fraction comma space fraction numerator negative 1 over denominator 3 end fraction end style

Solution 20

begin mathsize 12px style For space equation comma space straight x squared space plus space straight k open parentheses 4 straight x space plus space straight k space minus space 1 close parentheses space plus space 2 space equals space 0
space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight x squared space plus space 4 kx space plus space straight k open parentheses straight k space minus space 1 close parentheses space plus space 2 space equals space 0
Condition space for space equal space roots space is comma
open parentheses 4 straight k close parentheses squared space minus space 4 space open parentheses straight k open parentheses straight k space minus space 1 close parentheses space plus space 2 close parentheses space equals space 0
16 straight k squared space minus space 4 open parentheses straight k squared space minus space straight k space plus space 2 close parentheses space equals space 0
4 straight k squared space minus space open parentheses straight k squared space minus space straight k space plus space 2 close parentheses space equals space 0
4 straight k squared space minus space straight k squared space plus space straight k space minus space 2 space equals space 0
3 straight k squared space plus space straight k space minus 2 space equals space 0
3 straight k squared space plus space 3 straight k space minus space 2 straight k space minus space 2 space equals space 0
3 straight k space open parentheses straight k space plus space 1 close parentheses space minus space 2 open parentheses straight k space plus space 1 close parentheses space equals space 0
open parentheses 3 straight k space minus space 2 close parentheses space open parentheses straight k space plus space 1 close parentheses space equals space 0
straight k space equals space minus 1 space or space straight k space equals space 2 over 3
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 21

begin mathsize 12px style If space the space sum space and space product space of space the space roots space of space the space equation space kx squared space plus space 6 straight x space plus 4 straight k space equals space 0 space are space equal comma space then space straight k space equals
open parentheses straight a close parentheses space fraction numerator negative 3 over denominator 2 end fraction
open parentheses straight b close parentheses space 3 over 2
open parentheses straight c close parentheses space 2 over 3
open parentheses straight d close parentheses space fraction numerator negative 2 over denominator 3 end fraction end style

Solution 21

begin mathsize 12px style For space any space quadratic space equation space ax squared space plus space bx space plus space straight c space equals space 0
sum space of space roots space equals space fraction numerator negative straight b over denominator straight a end fraction space and space product space of space roots space equals space straight c over straight a
For space equation comma space kx squared space plus space 6 straight x space plus space 4 straight k space equals space 0 comma space given space sum space and space product space of space roots space of space this space equation space are space equal comma
Hence comma
fraction numerator negative open parentheses 6 close parentheses over denominator straight k end fraction space equals space fraction numerator 4 straight k over denominator straight k end fraction
4 straight k space equals space minus 6
straight k space equals space fraction numerator negative 3 over denominator 2 end fraction
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 22

If sin α and cos α are the roots of the equation ax+ bx + c = 0, then b2 = 

(a) a– 2ac

(b) a+ 2ac

(c) a– ac

(d) a+ acSolution 22

begin mathsize 12px style ax squared space plus space bx space plus space straight c space equals space 0
sin space straight alpha space plus space cos space straight alpha space equals space fraction numerator negative straight b over denominator straight a end fraction space space..... open parentheses 1 close parentheses space space space space and
sin space straight alpha space cosα space equals space straight c over straight a space space space space space space space...... open parentheses 2 close parentheses
On space squaring space we space get comma
open parentheses sin space straight alpha space plus space cos space straight alpha close parentheses squared space equals space straight b squared over straight a squared
sin squared straight alpha space plus space cos squared straight alpha space plus space 2 space sinα space cosα space equals space straight b squared over straight a squared space space space space space space space space space space space space.... open parentheses 3 close parentheses
We space know space sin squared space straight alpha space plus space cos squared space straight alpha space equals space 1 space space space space space space space..... open parentheses 4 close parentheses
from space open parentheses 2 close parentheses comma space open parentheses 3 close parentheses comma space open parentheses 4 close parentheses
1 space plus space 2 open parentheses straight c over straight a close parentheses space equals space straight b squared over straight a squared
straight b squared over straight a squared space equals space fraction numerator straight a space plus space 2 straight c over denominator straight a end fraction
straight b squared space equals straight a to the power of 2 space end exponent plus space 2 ac
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 23

If 2 is a root of the equation x+ ax + 12 = 0 and the quadratic equation x + ax + q = 0 has equal roots, then q =

(a) 12

(b) 8

(c) 20

(d) 16Solution 23

Given, 2 is a root of equation x+ ax + 12 = 0

so (2)+ a(2) + 12 = 0

4 + 2a + 12 = 0

a = -8     …..(1)

Given x+ ax + q = 0 has equal roots so

a– 4q = 0   ……(2)

from (1) & (2)

(-8)– 4q = 0

4q = 64

q = 16

So, the correct option is (d).Question 24

If the sum of the roots of the equation x2 – (k + 6)x + 2(2k – 1) = 0 is equal to half of their product, then k =

(a) 6

(b) 7

(c) 1

(d) 5Solution 24

begin mathsize 12px style For space any space quadratic space equation space straight x squared space minus space left parenthesis straight k space plus space 6 right parenthesis straight x space plus space 2 left parenthesis 2 straight k space minus space 1 right parenthesis space equals space 0
open parentheses sum space of space roots close parentheses space equals space fraction numerator negative open curly brackets negative open parentheses straight k space plus space 6 close parentheses close curly brackets over denominator 1 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals straight k space plus space 6 space space space space space space space......... open parentheses 1 close parentheses
open parentheses product space of space roots close parentheses space equals space fraction numerator 2 open parentheses 2 straight k space minus space 1 close parentheses over denominator 1 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 2 open parentheses 2 straight k space minus space 1 close parentheses space space space space space space space space space space space space space space...... open parentheses 2 close parentheses
Given space that space the space sum space of space roots space of space equation space equals space 1 half open parentheses product space of space roots close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
straight k space plus space 6 space equals space 1 half open parentheses 2 open parentheses 2 straight k space minus space 1 close parentheses close parentheses
straight k space plus space 6 space equals space 2 straight k space minus space 1
box enclose 7 space equals space straight k end enclose
So comma space the space correct space option space is space left parenthesis straight b right parenthesis. end style

Question 25

If a and b are roots of the equation x2 + ax + b = 0, then a + b =

(a) 1

(b) 2

(c) -2

(d) -1Solution 25

If a and b are roots of the equation x+ ax + b = 0

Then, sum of roots = -a

a + b = -a

2a + b = 0          …….(1)

product of roots = b

ab = b

ab – b = 0

b(a – 1) = 0         ……..(2)

from (1) and (2)

-2a(a – 1) = 0…(From (1), we have b = -2a)

a(a – 1) = 0

a = 0 or a = 1

if a = 0 rightwards double arrow b = 0

if a = 1 rightwards double arrow b = -2

Now a and b can’t be zero at same time, so correct solution is

a = 1 and b = -2

a + b = -1

So, the correct option is (d).Question 26

A quadratic equation whose one root is 2 and the sum of whose roots is zero, is

(a) x+ 4 = 0

(b) x– 4 = 0

(c) 4x– 1 = 0

(d) x– 2 = 0Solution 26

Given sum of roots is zero and one root is 2.

So the other root must be -2

so any quadratic equation having root 2 and -2 is

(x – 2) (x – (-2)) = 0

(x – 2) (x + 2) = 0

x– 4 = 0

So, the correct option is (b).Question 27

If one root of the equation ax+ bx + c = 0 is three times the other, then b2 : ac =

(a) 3 : 1

(b) 3 : 16

(c) 16 : 3

(d) 16 : 1Solution 27

begin mathsize 12px style If space straight alpha comma space straight beta space are space roots space of space equation space ax squared space plus space bx space plus space straight c space equals space 0
Then comma space straight alpha space plus space straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction space space space space space space space space space...... open parentheses 1 close parentheses
and space αβ space equals space straight c over straight a space space space space space space...... open parentheses 2 close parentheses
It space is space given space that space one space root space is space three space times space the space other space one
Let space straight alpha space equals space 3 straight beta space space space space space space space space space....... open parentheses 3 close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 3 close parentheses
4 straight beta space equals space fraction numerator negative straight b over denominator straight a end fraction
straight beta space equals space fraction numerator negative straight b over denominator 4 straight a end fraction space space space space space space space space space space space...... open parentheses 4 close parentheses
from space open parentheses 2 close parentheses space & space open parentheses 3 close parentheses
3 straight beta squared space equals space straight c over straight a space space space space space space space space space.......... open parentheses 5 close parentheses
from space open parentheses 4 close parentheses space & space open parentheses 5 close parentheses
3 open parentheses fraction numerator negative straight b over denominator 4 straight a end fraction close parentheses squared space equals space straight c over straight a
fraction numerator 3 straight b squared over denominator 16 straight a squared end fraction equals straight c over straight a
straight b squared over ac equals space 16 over 3
So comma space the space correct space option space is space left parenthesis straight c right parenthesis. end style

Question 28

If one root of the equation 2x+ kx + 4 = 0 is 2, then the other root is

(a) 6

(b) -6

(c) -1

(d) 1Solution 28

begin mathsize 12px style We space know space that comma space for space straight a space quadratic space equation space ax squared space plus space bx space plus space straight c space equals space 0
product space of space roots space equals space straight c over straight a space space space space space space space space space space space space space........ open parentheses 1 close parentheses
According space to space the space question comma space equation space is space 2 straight x squared space plus space kx space plus space 4 space equals space 0
from space open parentheses 1 close parentheses comma
product space of space roots space equals 4 over 2
αβ space equals space 2 space space space space space space space space space space....... open parentheses 2 close parentheses
given space one space root space is space 2. space Hence space from space open parentheses 2 close parentheses space other space root space is space 1.
So comma space the space correct space option space is space left parenthesis straight d right parenthesis. end style

Question 29

If one root of the equation x2 + ax + 3 = 0 is 1, then its other root is

(a) 3

(b) -3

(c) 2

(d) -2Solution 29

x+ ax + 3 = 0

product of roots = 3

One root is 1. Hence other root is 3.

So, the correct option is (a).

Chapter 4 – Quadratic Equations Exercise 4.85

Question 30

If one root of the equation 4x– 2x + (λ – 4) = 0 is a reciprocal of the other, then λ =

(a) 8

(b) -8

(c) 4

(d) -4Solution 30

begin mathsize 12px style Let space apostrophe straight a apostrophe space be space straight a space space root space of space given space equation.
Then space according space to space the space question comma space other space root space is space 1 over straight a.
4 straight x squared space minus space 2 straight x space plus space open parentheses straight lambda space minus space 4 close parentheses space equals space 0
product space of space roots space equals space fraction numerator straight lambda space minus space 4 over denominator 4 end fraction
straight a space cross times space 1 over straight a space equals space fraction numerator straight lambda space minus space 4 over denominator 4 end fraction
1 space equals fraction numerator space straight lambda space minus space 4 over denominator 4 end fraction
straight lambda space minus space 4 space equals space 4
straight lambda space equals space 8
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 31

begin mathsize 12px style If space straight y space equals space 1 space is space straight a space common space root space of space the space equations space ay squared plus space ay space plus space 3 space equals space 0 space and space straight y squared space plus space straight y space plus straight b space equals space 0 comma space then space ab space equals
open parentheses straight a close parentheses space 3
open parentheses straight b close parentheses space fraction numerator negative 7 over denominator 2 end fraction
open parentheses straight c close parentheses space 6
open parentheses straight d close parentheses space minus 3 end style

Solution 31

begin mathsize 12px style If space straight y space equals space 1 space is space straight a space root space of space equation space ay squared space plus space ay space plus space 3 space equals space 0
Then comma
straight a open parentheses 1 close parentheses squared space plus space straight a open parentheses 1 close parentheses space plus space 3 space equals space 0
2 straight a space plus space 3 space equals space 0
straight a space equals space fraction numerator negative 3 over denominator 2 end fraction space space space space space space space space space space space space space........ open parentheses 1 close parentheses
Also space straight y space equals space 1 space is space straight a space root space of space equation space straight y squared space plus space straight y space plus space straight b space equals space 0
Then comma
open parentheses 1 close parentheses squared space plus space 1 space plus space straight b space equals space 0
box enclose straight b space equals space minus 2 end enclose space space space space space space space space space space space space space space space space...... open parentheses 2 close parentheses
from space open parentheses 1 close parentheses space & space open parentheses 2 close parentheses
ab space equals space open parentheses fraction numerator negative 3 over denominator 2 end fraction close parentheses open parentheses negative 2 close parentheses
space space space space space space equals space 3
So comma space the space correct space option space is space left parenthesis straight a right parenthesis. end style

Question 32

begin mathsize 12px style The space values space of space straight k space for space which space the space quadratic space equation space 16 straight x squared space plus space 4 kx space plus space 9 space equals space 0 space has space real space and space equal space root space are
open parentheses straight a close parentheses space 6 comma space fraction numerator negative 1 over denominator 6 end fraction
open parentheses straight b close parentheses space 36 comma space minus 36
left parenthesis straight c right parenthesis space 6 comma space minus 6
open parentheses straight d close parentheses space 3 over 4 comma space fraction numerator negative 3 over denominator 4 end fraction end style

Solution 32

Any quadratic equation, ax+ bx + c = 0 has real and equal roots if b– 4ac = 0

For the question, equation is 16x+ 4kx + 9 = 0,

(4k)– 4 × 16 × 9 = 0

16k– 36 × 16 = 0

k2 – 36 = 0

k= 36

k = ± 6

So, the correct option is (c).

Read More