Chapter 6 Squares and Square Roots mcqs & important questions mathematics | class 8th

MCQ Questions for Class 8 Maths: Ch 6 Squares and Square Roots

1. Find the least number that must be subtracted from 5607 so as to get a perfect square.

(a) 130

(b) 135

(c) 131

(d) none of these

► (c) 131

2. Which of the following would end with digit 1?

(a) 1232

(b) 1612

(c) 772

(d) 822
► (b) 1612

3. Find the square of 39.
(a) 1500
(b) 78
(c) 1521
(d) none of these
► (c) 1521

4. The square of 23 is :
(a) 529
(b) 526
(c) 461
(d) 429
► (a) 529

5. Sum of squares of two numbers is 145. If square root of one number is 3, find the other number.
(a) 136
(b) 8
(c) 9
(d) 64
► (b) 8

6. If a number has 1 or 9 in the unit’s place, then it’s square ends in ________.
(a) 3
(b) 9
(c) 1
(d) none of these
► (c) 1

7. The largest perfect square between 4 and 50 is
(a) 25
(b) 36
(c) 49
(d) 45
► (c) 49

8. What will be the number of digits in the square root of 1296?
(a) 2 
(b) 3
(c) 1
(d) 4
► (a) 2 

9. How many natural numbers lie between 92 and 102?
(a) 15
(b) 19
(c) 18
(d) 17
► (c) 18

10. Without adding,find the sum of 1+3+5+7+9+11+13+15+17+19
(a) 100
(b) 64
(c) 49
(d) 81
► (a) 100

11. Which is the greatest three-digit perfect square?
(a) 999
(b) 961
(c) 962
(d) 970
► (b) 961

12. Find the perfect square numbers between 30 and 40.
(a) 936
(b) 49
(c) 25
(d) none of these
► (a) 936

13. How many numbers lie between square of 12 and 13
(a) 22
(b) 23
(c) 24
(d) 25
► (c) 24

14. Without doing any calculation, find the numbers which are surely perfect squares.

(a) 441

(b) 408

(c) 153

(d) 257

► (a) 441

15. The square root of 1.21 is

(a) 1.1

(b) 11

(c) 21

(d) 2.1

► (a) 1.1

16. Find the greatest 4-digit number which is a perfect square.

(a) 9990

(b) 9801

(c) 9999

(d) none of these

► (b) 9801

17. Sum of squares of two numbers is 145. If square root of one number is 3, find the other number. 

(a) 136

(b) 9

(c) 64

(d) 8

► (d) 8

18. Which of the following are the factors of ac+ ab + bc + ca  

(a) (a – c)(a – b)

(b) (a + c)(a + b)

(c) (a – c)(a + b)

(d) (a + c)(a – b)

► (b) (a + c)(a + b)

19. What could be the possible “one’s digit” of the square root of 625?

(a) 5        

(b) 0

(c) 4

(d) 8

► (a) 5        

20. What is the length of the side of a square whose area is 441 cm2 ?

(a) 21

(b) 22

(c) 20

(d) 12

► (a) 21

21. The square root of 169 is
(a) 13
(b) 1.3
(c) -1.3 
(d) 13/10
► (a) 13

22. What is smallest number with which 5400 may be multiplied so that the product is perfect cube?
(a) 5
(b) 3
(c) 4
(d) 6
► (a) 5

Squares and Square Roots Class 8 Extra Questions Very Short Answer Type

Question 1.
Find the perfect square numbers between 40 and 50.
Solution:
Perfect square numbers between 40 and 50 = 49.

Question 2.
Which of the following 242, 492, 772, 1312 or 1892 end with digit 1?
Solution:
Only 492, 1312 and 1892 end with digit 1.

Question 3.
Find the value of each of the following without calculating squares.
(i) 272 – 262
(ii) 1182 – 1172
Solution:
(i) 272 – 262 = 27 + 26 = 53
(ii) 1182 – 1172 = 118 + 117 = 235

Question 4.
Write each of the following numbers as difference of the square of two consecutive natural numbers.
(i) 49
(ii) 75
(iii) 125
Solution:
(i) 49 = 2 × 24 + 1
49 = 252 – 242
(ii) 75 = 2 × 37 + 1
75 = 382 – 372
(iii) 125 = 2 × 62 + 1
125 = 632 – 622

Question 5.
Write down the following as sum of odd numbers.
(i) 72
(ii) 92
Solution:
(i) 72 = Sum of first 7 odd numbers = 1 + 3 + 5 + 7 + 9 + 11 + 13
(ii) 92 = Sum of first 9 odd numbers = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17

Question 6.
Express the following as the sum of two consecutive integers.
(i) 152
(ii) 192
Solution:
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q6

Question 7.
Find the product of the following:
(i) 23 × 25
(ii) 41 × 43
Solution:
(i) 23 × 25 = (24 – 1) (24 + 1) = 242 – 1 = 576 – 1 = 575
(ii) 41 × 43 = (42 – 1) (42 + 1) = 422 – 1 = 1764 – 1 = 1763

Question 8.
Find the squares of:
(i) −37
(ii) −917
Solution:
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q8

Question 9.
Check whether (6, 8, 10) is a Pythagorean triplet.
Solution:
2m, m2 – 1 and m2 + 1 represent the Pythagorean triplet.
Let 2m = 6 ⇒ m = 3
m2 – 1 = (3)2 – 1 = 9 – 1 = 8
and m2 + 1 = (3)2 + 1 = 9 + 1 = 10
Hence (6, 8, 10) is a Pythagorean triplet.
Alternative Method:
(6)2 + (8)2 = 36 + 64 = 100 = (10)2
⇒ (6, 8, 10) is a Pythagorean triplet.

https

Question 10.
Using property, find the value of the following:
(i) 192 – 182
(ii) 232 – 222
Solution:
(i) 192 – 182 = 19 + 18 = 37
(ii) 232 – 222 = 23 + 22 = 45

Squares and Square Roots Class 8 Extra Questions Short Answer Type

Question 11.
Using the prime factorisation method, find which of the following numbers are not perfect squares.
(i) 768
(ii) 1296
Solution:
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q11
768 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 3
Here, 3 is not in pair.
768 is not a perfect square.
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q11.1
1296 = 2 × 2 × 2 × 2 × 3 × 3 × 3 × 3
Here, there is no number left to make a pair.
1296 is a perfect square.

Question 12.
Which of the following triplets are Pythagorean?
(i) (14, 48, 50)
(ii) (18, 79, 82)
Solution:
We know that 2m, m2 – 1 and m2 + 1 make Pythagorean triplets.
(i) For (14, 48, 50),
Put 2m =14 ⇒ m = 7
m2 – 1 = (7)2 – 1 = 49 – 1 = 48
m2 + 1 = (7)2 + 1 = 49 + 1 = 50
Hence (14, 48, 50) is a Pythagorean triplet.
(ii) For (18, 79, 82)
Put 2m = 18 ⇒ m = 9
m2 – 1 = (9)2 – 1 = 81 – 1 = 80
m+ 1 = (9)2 + 1 = 81 + 1 = 82
Hence (18, 79, 82) is not a Pythagorean triplet.

Question 13.
Find the square root of the following using successive subtraction of odd numbers starting from 1.
(i) 169
(ii) 81
(iii) 225
Solution:
(i) 169 – 1 = 168, 168 – 3 = 165, 165 – 5 = 160, 160 – 7 = 153, 153 – 9 = 144, 144 – 11 = 133, 133 – 13 = 120, 120 – 15 = 105, 105 – 17 = 88, 88 – 19 = 69,
69 – 21 = 48, 48 – 23 = 25, 25 – 25 = 0
We have subtracted odd numbers 13 times to get 0.
√169 = 13
(ii) 81 – 1 = 80, 80 – 3 = 77, 77 – 5 = 72, 72 – 7 = 65, 65 – 9 = 56, 56 – 11 = 45, 45 – 13 = 32, 32 – 15 = 17, 17 – 17 = 0
We have subtracted 9 times to get 0.
√81 = 9
(iii) 225 – 1 = 224, 224 – 3 = 221, 221 – 5 = 216, 216 – 7 = 209, 209 – 9 = 200, 200 – 11 = 189, 189 – 13 = 176, 176 – 15 = 161, 161 – 17 = 144, 144 – 19 = 125,
125 – 21 = 104, 104 – 23 = 81, 81 – 25 = 56, 56 – 27 = 29, 29 – 29 = 0
We have subtracted 15 times to get 0.
√225 = 15

Question 14.
Find the square rootofthe following using prime factorisation
(i) 441
(ii) 2025
(iii) 7056
(iv) 4096
Solution:
(i) 441 = 3 × 3 × 7 × 7
√441 = 3 × 7 = 21
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q14
(ii) 2025 = 3 × 3 × 3 × 3 × 5 × 5
√2025 = 3 × 3 × 5 = 45
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q14.1
(iii) 7056 = 2 × 2 × 2 × 2 × 3 × 3 × 7 × 7
√7056 = 2 × 2 × 3 × 7 = 84
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q14.2
(iv) 4096 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2
√4096 = 2 × 2 × 2 × 2 × 2 × 2 = 64
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q14.3

Question 15.
Find the least square number which is divisible by each of the number 4, 8 and 12.
Solution:
LCM of 4, 8, 12 is the least number divisible by each of them.
LCM of 4, 8 and 12 = 24
24 = 2 × 2 × 2 × 3
To make it perfect square multiply 24 by the product of unpaired numbers, i.e., 2 × 3 = 6
Required number = 24 × 6 = 144
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q15

Question 16.
Find the square roots of the following decimal numbers
(i) 1056.25
(ii) 10020.01
Solution:
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q16
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q16.1

Question 17.
What is the least number that must be subtracted from 3793 so as to get a perfect square? Also, find the square root of the number so obtained.
Solution:
First, we find the square root of 3793 by division method.
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q17
Here, we get a remainder 72
612 < 3793
Required perfect square number = 3793 – 72 = 3721 and √3721 = 61

Question 18.
Fill in the blanks:
(а) The perfect square number between 60 and 70 is …………
(b) The square root of 361 ends with digit …………..
(c) The sum of first n odd numbers is …………
(d) The number of digits in the square root of 4096 is ………..
(e) If (-3)2 = 9, then the square root of 9 is ……….
(f) Number of digits in the square root of 1002001 is …………
(g) Square root of 36625 is ………..
(h) The value of √(63 × 28) = …………
Solution:
(a) 64
(b) 9
(c) n2
(d) 2
(e) ±3
(f) 4
(g) 625
(h) 42

Question 19.
Simplify: √900 + √0.09 + √0.000009
Solution:
We know that √(ab) = √a × √b
√900 = √(9 × 100) = √9 × √100 = 3 × 10 = 30
√0.09 = √(0.3 × 0.3) = 0.3
√0.000009 = √(0.003 × 0.003) = 0.003
√900 + √0.09 + √0.000009 = 30 + 0.3 + 0.003 = 30.303

Squares and Square Roots Class 8 Extra Questions Higher Order Thinking Skills (HOTS)

Question 20.
Find the value of x if
1369−−−−√+0.0615+x−−−−−−−−−√=37.25
Solution:
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q20

Question 21.
Simplify:
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q21
Solution:
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q21.1

Question 22.
A ladder 10 m long rests against a vertical wall. If the foot of the ladder is 6 m away from the wall and the ladder just reaches the top of the wall, how high is the wall? (NCERT Exemplar)
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q22
Solution:
Let AC be the ladder.
Therefore, AC = 10 m
Let BC be the distance between the foot of the ladder and the wall.
Therefore, BC = 6 m
∆ABC forms a right-angled triangle, right angled at B.
By Pythagoras theorem,
AC2 = AB2 + BC2
10= AB2 + 62
or AB2 = 102 – 62 = 100 – 36 = 64
or AB = √64 = 8m
Hence, the wall is 8 m high.

Question 23.
Find the length of a diagonal of a rectangle with dimensions 20 m by 15 m. (NCERT Exemplar)
Solution:
Using Pythagoras theorem, we have Length of diagonal of the rectangle = l2+b2−−−−−√ units
Squares and Square Roots NCERT Extra Questions for Class 8 Maths Q23
Hence, the length of the diagonal is 25 m.

Question 24.
The area of a rectangular field whose length is twice its breadth is 2450 m2. Find the perimeter of the field.
Solution:
Let the breadth of the field be x metres. The length of the field 2x metres.
Therefore, area of the rectangular field = length × breadth = (2x)(x) = (2x2) m2
Given that area is 2450 m2.
Therefore, 2x2 = 2450
⇒ x2 = 1225
⇒ x = √1225 or x = 35 m
Hence, breadth = 35 m
and length = 35 × 2 = 70 m
Perimeter of the field = 2 (l + b ) = 2(70 + 35) m = 2 × 105 m = 210 m.

squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-01
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-02
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-03
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-04
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-05
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-06
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-07
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-08
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-09
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-10
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-11
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-12
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-13
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-14
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-15
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-16
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-17
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-18
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-19
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-20
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-21
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-22
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-23
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-24
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-25
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-26
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-27
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-28
squares-and-square-roots-ncert-extra-questions-for-class-8-maths-chapter-6-29
Read More

Chapter 5 Data Handling mcqs & important question mathematics |class 8th

MCQ Questions for Class 8 Maths: Ch 5 Data Handling

1. In the class- interval 70-80, 80 is the

(a) upper limit

(b) frequency

(c) range

(d) lower limit

► (a) upper limit

2. If a coin is flipped in the air, what is the probability of getting a tail?

(a) 0

(b) ½

(c) 1

(d) 2

► b) ½

3. The class mark of 95-100 is

(a) 95.5

(b) 97.5

(c) 95

(d) 100

► (b) 97.5

4. The number of times an observation occurs in a data is called its

(a) Range

(b) Interval

(c) Frequency

(d) Raw data

► (c) Frequency

5. The pie-chart is divided into

(a) circles

(b) squares

(c) sectors

(d) segments

► (c) sectors

6. Numbers 1 to 10 are written on ten separates slips (one number on one slip), kept in a box and mixed well. One slip is chosen from the box without looking in to it. What is the probability of getting a number less than 6?

(a) 1

(b) 0

(c) 1/10

(d) 1/2

► (d) 1/2

7. When a die is thrown, total number of possible outcomes is ______.

(a) 6

(b) 36

(c) 2

(d) None of these

► (a) 6

8. There are 2 Red, 3 Blue and 5 Black balls in a bag. A ball is drawn from the bag without looking in to the bag. What is the probability of getting a red ball?

(a) 2/5

(b) 3/5

(c) 1/5

(d) None of these

► (c) 1/5

9. 18 out of 36 people love reading, so reading in the pie chart will be represented by

(a) 36 degree sector

(b) quarter sector

(c) semi circular sector

(d) None of these

► (c) semi circular sector

10. Which of the following is the probability of an impossible event?

(a) 0

(b) 1

(c) 2

(d) None of these

► (a) 0

11. There are 2 Red, 3 Blue and 5 Black balls in a bag. A ball is drawn from the bag without looking in to the bag. What is the probability of getting a blue ball?

(a) 3/5

(b) 2/5

(c) 3/10

(d) None of these

► (c) 3/10

12. Two dice are thrown, find and number of outcomes.

(a) 36

(b) 6

(c) 12

(d) None of these

► (a) 36

13. The central total angle in a pie chart is

(a) 180°

(b) 210°

(c) 360°

(d) None of these

► (c) 360°

14. There are 2 Red, 3 Blue and 5 Black balls in a bag. A ball is drawn from the bag without looking in to the bag. What is the probability of getting a non-black ball?

(a) 3/5

(b) 2/5

(c) 1/2

(d) None of these

► (c) 1/2

15. There are 2 Red, 3 Blue and 5 Black balls in a bag. A ball is drawn from the bag without looking in to the bag. What is the probability of getting a non-red ball?

(a) 3/5

(b) 4/5

(c) 2/5

(d) None of these

► (b) 4/5

16. Numbers 1 to 10 are written on ten separates slips (one number on one slip), kept in a box and mixed well. One slip is chosen from the box without looking in to it .What is the probability of getting a number 6?

(a) 1

(b) 0

(c) 1/10

(d) 1/2

► (c) 1/10

17. A coin is tossed. Which of the following is the probability of getting a head or tail?

(a) 0

(b) 1

(c) 1/2

(d) None of these

► (b) 1

18. There are 2 Red, 3 Blue and 5 Black balls in a bag. A ball is drawn from the bag without looking in to the bag. What is the probability of getting a black ball?

(a) 3/5

(b) 2/5

(c) 1/2

(d) None of these

► (c) 1/2

19. There are 2 Red, 3 Blue and 5 Black balls in a bag. A ball is drawn from the bag without looking in to the bag. What is the probability of getting a non-blue ball?

(a) 7/10

(b) 3/5

(c) 2/5

(d) None of these

► (a) 7/10

20. Numbers 1 to 10 are written on ten separates slips (one number on one slip), kept in a box and mixed well. One slip is chosen from the box without looking in to it. What is the probability of getting a 1-digit number ?

(a) 1

(b) 0

(c) 1/10

(d) 9/10

► (d) 9/10

21. Numbers 1 to 10 are written on ten separates slips (one number on one slip), kept in a box and mixed well. One slip is chosen from the box without looking in to it. What is the probability of getting a number greater than 6?

(a) 1

(b) 0

(c) 1/2

(d) 1/10

► (d) 1/10

22. When a coin is thrown, total number of possible outcomes is ______.

(a) 2

(b) 5

(c) 6

(d) None of these

► (a) 2

Read More

Chapter 4 Practical Geometry mcqs & important questions mathematics | class8th

MCQ Questions for Class 8 Maths: Ch 4 Practical Geometry

1. A parallelogram whose all sides are equal is called ________.

(a) triangle

(b) trapezium

(c) square

(d) rectangle

► (c) square

2. What do we require to construct a quadrilateral if lengths of four sides are given?

(a) One of the angle

(b) Length of a diagonal

(c) Length of two diagonals

(d) None of these

► (b) Length of a diagonal

3. The quadrilateral whose diagonals are equal and bisect each other at right angle is ________. 

(a) Triangle

(b) Square

(c) Rhombus

(d) None of these

► (b) Square

4. A polygon with minimum number of sides is  

(a) Pentagon

(b) Square

(c) triangle 

(d) angle

► (c) triangle 

5. The diagonals of a square bisect each other at  _________  angle.

(a) acute

(b) right

(c) obtuse

(d) reflex

► (b) right

6. What do we require to construct a square?

(a) Length of one side

(b) Lengths of three sides

(c) Lengths of two sides

(d) None of these

► (a) Length of one side

7. All the angles of a regular polygon are of ________________.

(a) 90°

(b) 60°

(c) equal length

(d) equal measure

► (d) equal measure

8. What do we require to construct a quadrilateral if measures of two adjacent angles are given?

(a) Lengths of three sides

(b) Length of one side

(c) Lengths of two sides

(d) None of these

► (a) Lengths of three sides

9. To construct a quadrilateral uniquely, it is necessary to know at least_________ of its parts.

(a) 5

(b) 4

(c) 3

(d) 2

► (a) 5

10. A quadrilateral can be constructed uniquely if the lengths of its four sides and ____ diagonal are given.

(a) 3

(b) 2

(c) 1

(d) none of these

► (c) 1

11.A simple closed curve made up of only _____________ is called  a polygon .

(a) lines

(b) curves

(c) closed curves

(d) line segments

► (d) line segments

12. A quadrilateral can be constructed uniquely if the lengths of its ______ sides and a diagonal are given.

(a) 3

(b) 1

(c) 2

(d) 4

► (d) 4

13. Diagonals of a rectangle:

(a) equal to each other

(b) not equal

(c) one is double of the other

(d) none of these

► (a) equal to each other

14. The measure of each interior angle of a regular polygon is 140o, then number of sides that regular polygon has ___

(a) 15

(b) 12

(c) 9

(d) 10

► (c) 9

15. A parallelogram must be a rectangle if its diagonals 

(a) bisect the angles to which they are drawn

(b) are perpendicular to each other

(c) bisect each other

(d) are congruent

► (d) are congruent

16. A parallelogram each of whose angles measures 90o is _____________.

(a) rectangle

(b) rhombus

(c) kite

(d) trapezium

► (a) rectangle

17. What is the number of sides in Hexagon ?

(a) 4      

(b) 7    

(c) 6    

(d) 5

► (c) 6    

18. What do we require to construct a quadrilateral if measures of three angles are given?

(a) Length of one side

(b) Two adjacent sides

(c) Length of one diagonal

(d) None of these

► (b) Two adjacent sides

19. Polygons that have no portions of their diagonals in their exteriors are called 

(a) triangles

(b) convex

(c) concave

(d) squares

► (b) convex

20. The ratio of two adjacent sides of a parallelogram is 4:5. If its perimeter is 72 cm, find its adjacent sides. 

(a) 18 cm and 25 cm

(b) 16 cm and 25 cm

(c) 18 cm and 20 cm

(d) 16 cm and 20 cm

►(d)16 cm and 20 cm

21. Sum of all interior angles of a polygon with (n) sides is given by

(a) (n – 2) x 180°

(b) n – 2 x 180°

(c) (n + 2) x 180°

(d) n + 2 x 180°

► (a) (n – 2) x 180°

22. A quadrilateral can be constructed uniquely if its _____ sides and two included angles are given.

(a) 1

(b) 2

(c) 3

(d) none of these

► (c) 3

Practical Geometry Class 8 Extra Questions Maths Chapter 4

Extra Questions for Class 8 Maths Chapter 4 Practical Geometry

Question 1.
Construct a quadrilateral PQRS, given that QR = 4.5 cm, PS = 5.5 cm, RS = 5 cm and the diagonal PR = 5.5 cm and diagonal SQ = 7 cm.
Practical Geometry NCERT Extra Questions for Class 8 Maths Q1
Solution:
Construction:
Step I: Draw QR = 4.5 cm.
Step II: Draw an arc with centre R and radius 5 cm.
Step III: Draw another arc with centre Q and radius 7 cm to meet the previous arc at S.
Step IV: Join RS and QS.
Step V: Draw two arcs with centre S and R and radius 5.5 cm each to meet each other at P.
Step VI: Join RP, SP and PQ.
Thus PQRS is the required quadrilateral.

Question 2.
Construct a quadrilateral ABCD in which AB = 4 cm, BC = 3.5 cm, CD = 5 cm, AD = 5.5 cm and ∠B = 75°.
Practical Geometry NCERT Extra Questions for Class 8 Maths Q2
Solution:
Construction:
Step I: Draw AB = 4 cm.
Step II: Draw an angle of 75° at B and cut BC = 3.5 cm.
Step III: Draw an arc with centre C and radius 5 cm.
Step IV: Draw another arc with centre A and radius 5.5 cm to meet the previous arc at D.
Step V: Join CD and AD.
Thus ABCD is the required quadrilateral.

Question 3.
Construct a square whose side is 5 cm.
Practical Geometry NCERT Extra Questions for Class 8 Maths Q3
Solution:
Construction:
Step I: Draw AB = 5 cm.
Step II: Draw an angle of 90° at B and cut BC = 5 cm.
Step III: Draw two arcs with centre A and C and same radii of 5 cm which meet each other at D.
Step IV: Join AD and CD.
Thus, ABCD is the required square.

Question 4.
Construct a rhombus ABCD in which AB = 5.8 cm and AC = 7.5 cm.
Practical Geometry NCERT Extra Questions for Class 8 Maths Q4
Solution:
Construction:
Step I: Draw AB = 5.8 cm.
Step II: Draw an arc with centre B and radius 5.8 cm.
Step III: Draw another arc with centre A and radius 7.5 cm to meet the previous arc at C.
Step IV: Draw two arcs with centres A and C and of the same radius 5.8 cm to meet each other at D.
Step V: Join BC, AC, CD and AD.
Thus ABCD is the required rhombus.

Question 5.
Construct a rhombus whose diagonals are 6 cm and 8 cm.
Practical Geometry NCERT Extra Questions for Class 8 Maths Q5
Solution:
Construction:
Step I: Draw SQ = 8 cm.
Step II: Draw a right bisector of SQ at O.
Step III: Draw two arcs with centre O and radius 3 cm each to cut the right bisector at P and R.
Step TV: Join PQ, QR, RS and SP.
Thus PQRS is the required rhombus.

Question 6.
Construct a rectangle whose diagonal is 5 cm and the angle between the diagonal is 50°.
Practical Geometry NCERT Extra Questions for Class 8 Maths Q6
Practical Geometry NCERT Extra Questions for Class 8 Maths Q6.1
Solution:
Construction:
Step I: Draw AC = 5 cm.
Step II: Draw the right bisector of AC at O.
Step III: Draw an angle of 50° at O and product both sides.
Step IV: Draw two arcs with centre O and of the same radius 2.5 cm to cut at B and D.
Step V: Join AB, BC, CD and DA.
Thus, ABCD is the required rectangle.

Question 7.
Construct a quadrilateral ABCD in which BC = 4 cm, ∠B = 60°, ∠C = 135°, AB = 5 cm and ∠A = 90°.
Practical Geometry NCERT Extra Questions for Class 8 Maths Q7
Solution:
Construction:
Step I: Draw AB = 5 cm.
Step II: Draw the angle of 60° at B and cut BC = 4 cm.
Step III: Draw an angle of 135° at C and angle of 90° at A which meet each other at D.
Thus, ABCD is the required quadrilateral.

Question 8.
Construct a parallelogram ABCD in which AB = 5.5 cm, AC = 7 cm and BD = 8 cm.
Practical Geometry NCERT Extra Questions for Class 8 Maths Q8
Solution:
Construction:
Step I: Draw AB = 5.5 cm.
Step II: Draw an arc with centre B and radius 82 cm = 4 cm.
Step III: Draw another arc with centre A and radius 72 cm = 3.5 cm which cuts the previous arc at O.
Step IV: Join AO and produce to C such that AO = OC.
Step V: Join BO and produce to D such that BO = OD.
Step VI: Join BC, CD and AD.
Thus ABCD is the required parallelogram.

Question 9.
Construct a rhombus PAIR, given that PA = 6 cm and angle ∠A = 110°.
Solution:
Since in a rhombus, all sides are equal, so PA = AI = IR = RP = 6 cm
Also, rhombus is a parallelogram
so, adjacent angle, ∠I = 180° – 110° = 70°
Practical Geometry NCERT Extra Questions for Class 8 Maths Q9
Steps of construction
Step I. Draw AI = 6 cm
Step II. Draw ray AX¯ such that ∠IAX = 110° and draw IY¯ such that ∠AIY = 70°.
Step III. With A and I as centres and radius 6 cm draw arcs intersecting AX and IY at P and R respectively.
Step IV. Join PR.
Thus, PAIR is the required rhombus.

practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-01
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-02
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-03
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-04
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-05
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-06
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-07
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-08
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-09
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-10
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-11
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-12
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-13
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-14
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-15
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-16
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-17
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-18
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-19
practical-geometry-ncert-extra-questions-for-class-8-maths-chapter-4-20
Read More

Chapter 3 Understanding Quadrilaterals mcqs and important question mathematics |class 8th

MCQ Questions for Class 8th Maths: Ch 3 Quadrilaterals

1. The sum of all the angles of a quadrilateral is equal to:

(a) 180°

(b) 270°

(c) 360°

(d) 90°

► (c) 360°

2. A diagonal of a parallelogram divides it into two congruent:

(a) Square

(b) Parallelogram

(c) Triangles

(d) Rectangle

► (c) Triangles

3. The diagonals of a parallelogram:

(a) Equal

(b) Unequal

(c) Bisect each other

(d) Have no relation

► (c) Bisect each other

4. Each angle of rectangle is:

(a) More than 90°

(b) Less than 90°

(c) Equal to 90°

(d) Equal to 45°

► (c) Equal to 90°

5. If ABCD is a trapezium in which AB || CD and AD = BC, then:

(a) ∠A = ∠B

(b) ∠A > ∠B

(c) ∠A < ∠B

(d) None of the above

► (a) ∠A = ∠B

6. The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If ∠DAC = 32°, ∠AOB = 70°, then ∠DBC is equal to:

(a) 32°

(b) 88°

(c) 24°

(d) 38°

► (d) 38°

7. In parallelogram ABCD, if ∠A = 2x + 15°, ∠B = 3x – 25°, then value of x is:

(a) 91°

(b) 89°

(c) 34°

(d) 38°

► (d) 38°

8. The opposite angles of a parallelogram are (3x – 2)° and (50 – x)° the measure of these angles is ______.​

(a) 140°, 140°

(b) 20°, 160°

(c) 37°, 143°

(d) 37°, 37°

► (d) 37°, 37°

9. In quadrilateral PQRS, if ∠P = 60° and ∠Q : ∠R : ∠S = 2 : 3 : 7, then ∠S =

(a) 175°

(b) 210°

(c) 150°

(d) 135°

► (a) 175°

10. Two angles of a quadrilateral are 50° and 80° and other two angles are in the ratio 8 : 15. Find the measure of the remaining two angles.​

(a) 100°, 130°

(b) 140°, 90°

(c) 80°, 150°

(d) 70°, 160°

► (c) 80°, 150°

11. The diagonals of rhombus are 12 cm and 16 cm. The length of the side of rhombus is:

(a) 12 cm

(b) 16 cm

(c) 8 cm

(d) 10 cm

► (d) 10 cm

12. In a parallelogram the sum of two consecutive angles is

(a) 360°

(b) 100°

(c) 180°

(d) 90°

► (c) 180°

13. The angles of a quadrilateral are (5x)°, (3x + 10)°, (6x – 20)° and (x + 25)°. Now, the measure of each angle of the quadrilateral will be

(a) 115°, 79°, 118°, 48°

(b) 100° 79°, 118°, 63°

(c) 110°, 84°, 106°, 60°

(d) 75°, 89°, 128°, 68°

► (a) 115°, 79°, 118°, 48°

14. Which of the following is not a parallelogram?

(a) Rectangle

(b) Rhombus

(c) Square

(d) Trapezium

► (d) Trapezium

15. In a Quadrilateral ABCD, AB = BC and CD = DA, then the quadrilateral is a

(a) Triangle

(b) Kite

(c) Rhombus

(d) Rectangle

► (b) Kite

16. If ABCD is a Parallelogram with 2 Adjacent angles ∠A =∠B, then the parallelogram is a

(a) Rhombus

(b) Triangle

(c) Rectangle

(d) Square

► (c) Rectangle

17. All the angles of a convex quadrilateral are congruent. However, not all its sides are congruent. What type of quadrilateral is it?

(a) Parallelogram

(b) Square

(c) Rectangle

(d) Trapezium

► (c) Rectangle

18. Perimeter of a parallelogram is 22 cm. If the longer side, measures 6.5 cm, the measure of the shorter side will be

(a) 4.5 cm

(b) 6.5 cm

(c) 2.5 cm

(d) 3.0 cm

► (a) 4.5 cm

19. If angles A, B, C and D of the quadrilateral ABCD, taken in order, are in the ratio 3:7:6:4, then ABCD is 

(a) rhombus

(b) parallelogram

(c) trapezium

(d) kite

► (c) trapezium

20. Angles of a quadrilateral are in the ratio 3 : 6 : 8: 13. The largest angle is :

(a) 178°

(b) 156°

(c) 90°​

(d) 36°​

► (b) 156°

21. The diagonals of a rectangle PQRS intersects at O. If ∠QOR = 44°, ∠OPS =?

(a) 82°

(b) 52°

(c) 68°

(d) 75°

► (c) 68°

22. In a parallelogram ABCD, if ∠A = 75°, then ∠B = ?

(a) 95°

(b) 80°

(c) 105°

(d) 15°

► (c) 105°

23. A diagonal of a Rectangle is inclines to one side of the rectangle at an angle of 25∘. The Acute Angle between the diagonals is :

(a) 115°

(b) 50°

(c) 40°

(d) 25°

► (b) 50°

24. If an angle of a parallelogram is two-third of its adjacent angle, the smallest angle of the parallelogram is:

(a) 81°

(b) 54°

(c) 108°

(d) 72°

► (d) 72°

Understanding Quadrilaterals Class 8 Extra Questions Very Short Answer Type

Question 1.
In the given figure, ABCD is a parallelogram. Find x.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q1
Solution:
AB = DC [Opposite sides of a parallelogram]
3x + 5 = 5x – 1
⇒ 3x – 5x = -1 – 5
⇒ -2x = -6
⇒ x = 3

Question 2.
In the given figure find x + y + z.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q2
Solution:
We know that the sum of all the exterior angles of a polygon = 360°
x + y + z = 360°

Question 3.
In the given figure, find x.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q3
Solution:
∠A + ∠B + ∠C = 180° [Angle sum property]
(x + 10)° + (3x + 5)° + (2x + 15)° = 180°
⇒ x + 10 + 3x + 5 + 2x + 15 = 180
⇒ 6x + 30 = 180
⇒ 6x = 180 – 30
⇒ 6x = 150
⇒ x = 25

Question 4.
The angles of a quadrilateral are in the ratio of 2 : 3 : 5 : 8. Find the measure of each angle.
Solution:
Sum of all interior angles of a quadrilateral = 360°
Let the angles of the quadrilateral be 2x°, 3x°, 5x° and 8x°.
2x + 3x + 5x + 8x = 360°
⇒ 18x = 360°
⇒ x = 20°
Hence the angles are
2 × 20 = 40°,
3 × 20 = 60°,
5 × 20 = 100°
and 8 × 20 = 160°.

Question 5.
Find the measure of an interior angle of a regular polygon of 9 sides.
Solution:
Measure of an interior angle of a regular polygon
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q5

Question 6.
Length and breadth of a rectangular wire are 9 cm and 7 cm respectively. If the wire is bent into a square, find the length of its side.
Solution:
Perimeter of the rectangle = 2 [length + breadth]
= 2[9 + 7] = 2 × 16 = 32 cm.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q6
Now perimeter of the square = Perimeter of rectangle = 32 cm.
Side of the square = 324 = 8 cm.
Hence, the length of the side of square = 8 cm.

Question 7.
In the given figure ABCD, find the value of x.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q7
Solution:
Sum of all the exterior angles of a polygon = 360°
x + 70° + 80° + 70° = 360°
⇒ x + 220° = 360°
⇒ x = 360° – 220° = 140°

Question 8.
In the parallelogram given alongside if m∠Q = 110°, find all the other angles.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q8
Solution:
Given m∠Q = 110°
Then m∠S = 110° (Opposite angles are equal)
Since ∠P and ∠Q are supplementary.
Then m∠P + m∠Q = 180°
⇒ m∠P + 110° = 180°
⇒ m∠P = 180° – 110° = 70°
⇒ m∠P = m∠R = 70° (Opposite angles)
Hence m∠P = 70, m∠R = 70°
and m∠S = 110°

Question 9.
In the given figure, ABCD is a rhombus. Find the values of x, y and z.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q9
Solution:
AB = BC (Sides of a rhombus)
x = 13 cm.
Since the diagonals of a rhombus bisect each other
z = 5 and y = 12
Hence, x = 13 cm, y = 12 cm and z = 5 cm.

Question 10.
In the given figure, ABCD is a parallelogram. Find x, y and z.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q10
Solution:
∠A + ∠D = 180° (Adjacent angles)
⇒ 125° + ∠D = 180°
⇒ ∠D = 180° – 125°
x = 55°
∠A = ∠C [Opposite angles of a parallelogram]
⇒ 125° = y + 56°
⇒ y = 125° – 56°
⇒ y = 69°
∠z + ∠y = 180° (Adjacent angles)
⇒ ∠z + 69° = 180°
⇒ ∠z = 180° – 69° = 111°
Hence the angles x = 55°, y = 69° and z = 111°

Question 11.
Find x in the following figure. (NCERT Exemplar)
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q11
Solution:
In the given figure ∠1 + 90° = 180° (linear pair)
∠1 = 90°
Now, sum of exterior angles of a polygon is 360°, therefore,
x + 60° + 90° + 90° + 40° = 360°
⇒ x + 280° = 360°
⇒ x = 80°

Understanding Quadrilaterals Class 8 Extra Questions Short Answer Type

Question 12.
In the given parallelogram ABCD, find the value of x andy.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q12
Solution:
∠A + ∠B = 180°
3y + 2y – 5 = 180°
⇒ 5y – 5 = 180°
⇒ 5y = 180 + 5°
⇒ 5y = 185°
⇒ y = 37°
Now ∠A = ∠C [Opposite angles of a parallelogram]
3y = 3x + 3
⇒ 3 × 37 = 3x + 3
⇒ 111 = 3x + 3
⇒ 111 – 3 = 3x
⇒ 108 = 3x
⇒ x = 36°
Hence, x = 36° and y – 37°.

Question 13.
ABCD is a rhombus with ∠ABC = 126°, find the measure of ∠ACD.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q13
Solution:
∠ABC = ∠ADC (Opposite angles of a rhombus)
∠ADC = 126°
∠ODC = 12 × ∠ADC (Diagonal of rhombus bisects the respective angles)
⇒ ∠ODC = 12 × 126° = 63°
⇒ ∠DOC = 90° (Diagonals of a rhombus bisect each other at 90°)
In ΔOCD,
∠OCD + ∠ODC + ∠DOC = 180° (Angle sum property)
⇒ ∠OCD + 63° + 90° = 180°
⇒ ∠OCD + 153° = 180°
⇒ ∠OCD = 180° – 153° = 27°
Hence ∠OCD or ∠ACD = 27°

Question 14.
Find the values of x and y in the following parallelogram.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q14
Solution:
Since, the diagonals of a parallelogram bisect each other.
OA = OC
x + 8 = 16 – x
⇒ x + x = 16 – 8
⇒ 2x = 8
x = 4
Similarly, OB = OD
5y + 4 = 2y + 13
⇒ 3y = 9
⇒ y = 3
Hence, x = 4 and y = 3

Question 15.
Write true and false against each of the given statements.
(a) Diagonals of a rhombus are equal.
(b) Diagonals of rectangles are equal.
(c) Kite is a parallelogram.
(d) Sum of the interior angles of a triangle is 180°.
(e) A trapezium is a parallelogram.
(f) Sum of all the exterior angles of a polygon is 360°.
(g) Diagonals of a rectangle are perpendicular to each other.
(h) Triangle is possible with angles 60°, 80° and 100°.
(i) In a parallelogram, the opposite sides are equal.
Solution:
(a) False
(b) True
(c) False
(d) True
(e) False
(f) True
(g) False
(h) False
(i) True

Question 16.
The sides AB and CD of a quadrilateral ABCD are extended to points P and Q respectively. Is ∠ADQ + ∠CBP = ∠A + ∠C? Give reason.
(NCERT Exemplar)
Solution:
Join AC, then
∠CBP = ∠BCA + ∠BAC and ∠ADQ = ∠ACD + ∠DAC (Exterior angles of triangles)
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q16
Therefore,
∠CBP + ∠ADQ = ∠BCA + ∠BAC + ∠ACD + ∠DAC
= (∠BCA + ∠ACD) + (∠BAC + ∠DAC)
= ∠C + ∠A

Understanding Quadrilaterals Class 8 Extra Questions Higher Order Thinking Skills (HOTS)

Question 17.
The diagonal of a rectangle is thrice its smaller side. Find the ratio of its sides.
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q17
Solution:
Let AD = x cm
diagonal BD = 3x cm
In right-angled triangle DAB,
AD2 + AB2 = BD2 (Using Pythagoras Theorem)
x2 + AB2 = (3x)2
⇒ x2 + AB2 = 9x2
⇒ AB2 = 9x2 – x2
⇒ AB2 = 8x2
⇒ AB = √8x = 2√2x
Required ratio of AB : AD = 2√2x : x = 2√2 : 1

Question 18.
If AM and CN are perpendiculars on the diagonal BD of a parallelogram ABCD, Is ∆AMD = ∆CNB? Give reason. (NCERT Exemplar)
Solution:
Understanding Quadrilaterals NCERT Extra Questions for Class 8 Maths Q18
In triangles AMD and CNB,
AD = BC (opposite sides of parallelogram)
∠AMB = ∠CNB = 90°
∠ADM = ∠NBC (AD || BC and BD is transversal.)
So, ∆AMD = ∆CNB (AAS)

Read More

Chapter 2 Linear Equations in One Variable mcqs and important questions | mathematics class 8th

MCQ Questions for Class 8 Maths: Ch 2 Linear Equations in One Variable

 

1. David cuts a bread into two equal pieces and cuts one half into smaller pieces of equal size. Each of the small pieces is twenty grams in weight. If he has seven pieces of the bread all with him, how heavy is the original cake.

(a) 120 gm

(b) 180 gm

(c) 300 gm

(d) 240 gm

► (d) 240 gm

2. Mary was counting down from 34 and Thomas was counting upwards simultaneously, the number starting from 1 and he was calling out only the odd numbers. Which common number will they call out at the same time if they were calling out at the same speed?

(a) 20

(b) 21

(c) 22

(d) 23

► (d) 23

3. Find the solution of 2x – 3 = 7 

(a) 3

(b) 4

(c) 5

(d) none of these

► (c) 5

4. The numerator of a fraction is 4 less than the denominator. If the numerator is decreased by 2 and denominator is increased by 1, then the denominator is eight times the numerator. Find the fraction.   

(a) 4/12       

(b) 3/13       

(c) 3/7   

(d) 11/7

► (c) 3/7   

5. Solve 2x − 3 = x + 2

(a) 4

(b) 5

(c) 3

(d) 0

► (b) 5

6. In the following number sequence, how many such even numbers are there which are exactly divisible by its immediate preceding number but not exactly divisible by its immediate following number?

3  8  4  1  5  7  2  8  3  4  8  9  3  9  4  2  1  5  8  2

(a) One

(b) Two

(c) Three

(d) Four

► (b) Two

7. Amina thinks of a number and subtracts 5/2 from it. She multiplies the result by 8. The result now obtained is 3 times the same number she thought of. What is the number?

(a) 2

(b) 3

(c) 4

(d) none of these

► (c) 4

8. The sum of three consecutive multiples of 7 is 357. Find the smallest multiple.

(a) 112

(b) 126

(c) 119

(d) 116

► (a) 112

9. Solve: 5x−2(2x−7)=(3x−1)+7/2

(a) 2

(b) 3

(c) 1/2

(d) 23/4

► (d) 23/4

10. The distance between two mile stones is 230 km and two cars start simultaneously from the milestones in opposite directions and the distance between them after three hours is 20 km. If the speed of one car is less than that of other by 10 km/h, find the speed of each car.

(a) 25 km/h, 40 km/h

(b) 40 km/h, 50 km/h

(c) 20 km/h, 40 km/h

(d) 30 km/h, 40 km/h

► (d) 30 km/h, 40 km/h

11. The difference between two whole numbers is 66. The ratio of the two numbers is 2 : 5. What are the two numbers?

(a) 22 and 88

(b) 44 and 66

(c) 44 and 110

(d) 33 and 99

► (c) 44 and 110

12. In an equation the values of the expressions on the LHS and RHS are _______.

(a) different

(b) not equal

(c) equal

(d) none of these

► (c) equal

13. The digits of a two-digit number differ by 3. If the digits are interchanged, and the resulting number is added to the original number, we get 143. What can be the original number?

(a) 85

(b) 58

(c) 36

(d) 76

► (a) 85

14. Solve 2y + 9 = 4.

(a) -5/2

(b) 1/2

(c) 2

(d) none of these

► (a) -5/2

15. Solve: 7x = 21

(a) 3

(b) 2

(c) 14

(d) none of these

► (a) 3

16. An MNC company employed 25 men to do the official work in 32 days. After 16 days, it employed 5 more men and work was finished one day earlier. If it had not employed additional men, it would have been behind by how many days?

(a) 1 day

(b) 2 days

(c) 3 days

(d) 2.5 days

► (b) 2 days

17. The sum of two digit number and the number formed by interchanging its digit is 110. If ten is subtracted from the first number, the new number is 4 more than 5 times of the sum of the digits in the first number. Find the first number.       

(a) 46       

(b) 48       

(c) 64  

(d) 84

► (c) 64

18. Aruna cut a cake into two halves and cuts one half into smaller pieces of equal size. Each of the small pieces is twenty grams in weight. If she has seven pieces of the cake in all with her, how heavy was the original cake ?

(a) 120 gm

(b) 180 gm

(c) 300 gm

(d) 240 gm

► (d) 240 gm

19. Sum of two numbers is 95. If one exceeds the other by 15, find the numbers.

(a) 40 and 60

(b) 50 and 55

(c) 50 and 60

(d) 40 and 55

► (d) 40 and 55

20. Solve: y + 3 = 10

(a) 13

(b) 7

(c) -7

(d) none of these

► (b) 7

21. Solve: 3x = 12

(a) 15

(b) 4

(c) 9

(d) 3

► (b) 4

22. What will be the solution of these equations ax+by = a-b, bx-ay = a+b       

(a) x = 1, y = 2

(b) x = 2,y = -1

(c) x = -2, y = -2

(d) x = 1, y = -1

► (d) x = 1, y = -1

Linear Equations in One Variable Class 8 Extra important Questions Very Short Answer Type

Question 1.
Identify the algebraic linear equations from the given expressions.

(a) x2 + x = 2
(b) 3x + 5 = 11
(c) 5 + 7 = 12
(d) x + y2 = 3
Solution:
(a) x2 + x = 2 is not a linear equation.
(b) 3x + 5 = 11 is a linear equation.
(c) 5 + 7 = 12 is not a linear equation as it does not contain variable.
(d) x + y2 = 3 is not a linear equation.

Question 2.
Check whether the linear equation 3x + 5 = 11 is true for x = 2.

Solution:
Given that 3x + 5 = 11
For x = 2, we get
LHS = 3 × 2 + 5 = 6 + 5 = 11
LHS = RHS = 11
Hence, the given equation is true for x = 2

Question 3.
Form a linear equation from the given statement: ‘When 5 is added to twice a number, it gives 11.’

Solution:
As per the given statement we have
2x + 5 = 11 which is the required linear equation.

Question 4.
If x = a, then which of the following is not always true for an integer k. (NCERT Exemplar)

(a) kx = ak
(b) xk = ak
(c) x – k = a – k
(d) x + k = a + k
Solution:
Correct answer is (b).

h

Question 5.
Solve the following linear equations:

(a) 4x + 5 = 9
(b) x + 32 = 2x
Solution:
(a) We have 4x + 5 = 9
⇒ 4x = 9 – 5 (Transposing 5 to RHS)
⇒ 4x = 4
⇒ x = 1 (Transposing 4 to RHS)
(b) We have x + 32 = 2x
⇒ 32 = 2x – x
⇒ x = 321

Question 6.
Solve the given equation 31x × 514 = 1712

Solution:
We have 31x × 514 = 1712
Extra Questions for Class 8 Maths Linear Equations in One Variable Q63

Question 7.
Verify that x = 2 is the solution of the equation 4.4x – 3.8 = 5.

Solution:
We have 4.4x – 3.8 = 5
Putting x = 2, we have
4.4 × 2 – 3.8 = 5
⇒ 8.8 – 3.8 = 5
⇒ 5 = 5
L.H.S. = R.H.S.
Hence verified.

Question 8.
Extra Questions for Class 8 Maths Linear Equations in One Variable Q8
Solution:
Extra Questions for Class 8 Maths Linear Equations in One Variable Q8.1
⇒ 3x × 3 – (2x + 5) × 4 = 5 × 6
⇒ 9x – 8x – 20 = 30 (Solving the bracket)
⇒ x – 20 = 30
⇒ x = 30 + 20 (Transposing 20 to RHS)
⇒ x = 50
Hence x = 50 is the required solution.

Question 9.
The angles of a triangle are in the ratio 2 : 3 : 4. Find the angles of the triangle.

Solution:
Let the angles of a given triangle be 2x°, 3x° and 4x°.
2x + 3x + 4x = 180 (∵ Sum of the angles of a triangle is 180°)
⇒ 9x = 180
⇒ x = 20 (Transposing 9 to RHS)
Angles of the given triangles are
2 × 20 = 40°
3 × 20 = 60°
4 × 20 = 80°

Question 10.
The sum of two numbers is 11 and their difference is 5. Find the numbers.

Solution:
Let one of the two numbers be x.
Other number = 11 – x.
As per the conditions, we have
x – (11 – x) = 5
⇒ x – 11 + x = 5 (Solving the bracket)
⇒ 2x – 11 = 5
⇒ 2x = 5 + 11 (Transposing 11 to RHS)
⇒ 2x = 16
⇒ x = 8
Hence the required numbers are 8 and 11 – 8 = 3.

Question 11.
If the sum of two consecutive numbers is 11, find the numbers.

Solution:
Let the two consecutive numbers be x and x + 1.
As per the conditions, we have
x + x + 1 = 11
⇒ 2x + 1 = 11
⇒ 2x = 11 – 1 (Transposing 1 to RHS)
⇒ 2x = 10
x = 5
Hence, the required numbers are 5 and 5 + 1 = 6.

Linear Equations in One Variable Class 8 Extra Questions Short Answer Type

Question 12.
The breadth of a rectangular garden is 23 of its length. If its perimeter is 40 m, find its dimensions.

Solution:
Let the length of the garden be x m
its breadth = 23 × m.
Perimeter = 2 [length + breadth]
Extra Questions for Class 8 Maths Linear Equations in One Variable Q12

Question 13.
The difference between two positive numbers is 40 and the ratio of these integers is 1 : 3. Find the integers
.
Solution:
Let one integer be x.
Other integer = x – 40
As per the conditions, we have
x−40x = 13
⇒ 3(x – 40) = x
⇒ 3x – 120 = x
⇒ 3x – x = 120
⇒ 2x = 120
⇒ x = 2
Hence the integers are 60 and 60 – 40 = 20.

Question 14.
Solve for x:
Extra Questions for Class 8 Maths Linear Equations in One Variable Q14

Solution:
Extra Questions for Class 8 Maths Linear Equations in One Variable Q14.1
Extra Questions for Class 8 Maths Linear Equations in One Variable Q14.2

Question 15.
The sum of a two-digit number and the number obtained by reversing its digits is 121. Find the number if it’s unit place digit is 5.

Solution:
Unit place digit is given as 5
Let x be the tens place digit
Number formed = 5 + 10x
Number obtained by reversing the digits = 5 × 10 + x = 50 + x
As per the conditions, we have
5 + 10x + 50 + x = 121
⇒ 11x + 55 = 121
⇒ 11x = 121 – 55 (Transposing 55 to RHS)
⇒ 11x = 66
⇒ x = 6
Thus, the tens place digit = 6
Hence the required number = 5 + 6 × 10 = 5 + 60 = 65

Read More

Chapter 1 Rational Numbers mcqs and important question mathematics | class 8th  

MCQ Questions for Class 8 Maths: Ch 1 Rational Numbers

1. The value of ½ x ⅗ is equal to:

(a) ½

(b) 3/10

(c) ⅗

(d) ⅖

► b) 3/10

2. Find the reciprocal of -2.

(a) 2

(b) -2

(c) -1/2

(d) None of these

► c) -1/2

3. How is -28/84 expressed as a rational number with numerator 4?

(a) 4/7

(b) -4/12

(c) 4/12

(d) 4/-7

► (b) -4/12

4. Which of the following statements is true?

(a) Every fraction is a rational number.

(b) Every rational number is a fraction.

(c) Every integer is a rational number.

(d) Both (a) and (c).

► (d) Both (a) and (c).

5. Which of the following is the reciprocal of the reciprocal of a rational number?

(a) -1

(b) 1

(c) 0

(d) The number itself

► (d) The number itself

6. What is the sum of the additive inverse and multiplicative inverse of 2?

(a) 3/2

(b) -3/2

(c) 1/2

(d) -1/2

► (b) -3/2

7. Which among the following is a rational number equivalent to -5/-3 ?

(a) -25/15

(b) 25/-15

(c) 25/15

(d) -25/30

► (c) 25/15

8. Which of the following is the reciprocal of a rational number?

(a) -1

(b) 1

(c) 2

(d) Both a and b

► (d) Both a and b

9. Write the additive inverse of 4/5.

(a) 1

(b) -4/5

(c) 4/5

(d) 0

► (b) -4/5

10. Find the multiplicative inverse of 1/4.

(a) 4

(b) -1/4

(c) -4

(d) 1/4

► (a) 4

11. What is the additive inverse of -2/3?

(a) 0

(b) 1

(c) 2/3

(d) -2/3

► (c) 2/3

12. The value of ½ + ¼ is equal to:

(a) ¾

(b) 3/2

(c) ⅔

(d) 1

► (a) ¾

13. Which of the following is the identity element under addition?

(a) 1

(b) -1

(c) 0

(d) None of these

► (c) 0

14. A number which can be written in the form, p/q where p and q are integers and _____ is called a rational number.

(a) q = 0

(b) q ≠ 0

(c) q = 1

(d) none of these

► (b) q ≠ 0

15. Which of the following statements is true?

(a) Every fraction is a rational number.

(b) Every rational number is a fraction.

(c) Every integer is a rational number.

(d) Both (a) and (c).

► (d) Both (a) and (c).

16. Which of the following is the Multiplicative identity for rational numbers?

(a) 1

(b) -1

(c) 0

(d) None of these

► (a) 1

17. Find the multiplicative inverse of -13.

(a) 13

(b) -13

(c) -1/13

(d) 12

► (c) -1/13

18. ________ is not associative for rational numbers.

(a) Subtraction or Division

(b) Addition or Multiplication

(c) Addition or Division

(d) Multiplication or Division

► (a) Subtraction or Division

19. Which number is in the middle if -1/6, 4/9, 6/-7, 2/5 and -3/4 arranged in descending order?

(a) 2/5

(b) 4/9

(c) -1/6

(d) -6/7

► (c) -1/6

20. Which of the following is the Multiplicative identity for rational numbers?

(a) 1

(b) -1

(c) 0

(d) None of these

► (a) 1

21. Which of the following forms a pair of equivalent rational numbers? 

(a) 24/40 and 35/50

(b) -25/35 and 55/-77

(c) -8/15 and -24/48 

(d) 9/72 and -3/21

► (b) -25/35 and 55/-77

22. What should be subtracted from -7/11 to get −2?

(a) 15/11

(b) -15/11

(c) 29/11

(d) -29/11

► (a) 15/11

Rational Numbers Class 8 Extra Questions Maths Chapter 1

Question 1.
Pick up the rational numbers from the following numbers.
67, −12, 0, 10, 1000
Solution:
Since rational numbers are in the form of ab where b ≠ 0.
Only 67, −12 and 0 are the rational numbers.

Question 2.
Find the reciprocal of the following rational numbers:
(a) −34
(b) 0
(c) 611
(d) 5−9
Solution:
(a) Reciprocal of −34 is −43
(b) Reciprocal of 0, i.e. 10 is not defined.
(c) Reciprocal of 611 is 116
(d) Reciprocal of 5−9 = −95

Question 3.
Write two such rational numbers whose multiplicative inverse is same as they are.
Solution:
Reciprocal of 1 = 11 = 1
Reciprocal of -1 = 1−1 = -1
Hence, the required rational numbers are -1 and 1.

Question 4.
What properties, the following expressions show?
(i) 23+45=45+23
(ii) 13×23=23×13
Solution:
(i) 23+45=45+23 shows the commutative property of addition of rational numbers.
(ii) 13×23=23×13 shows the commutative property of multiplication of rational numbers.

Question 5.
What is the multiplicative identity of rational numbers?
Solution:
1 is the multiplicating identity of rational numbers.

Question 6.
What is the additive identity of rational numbers?
Solution:
0 is the additive identity of rational numbers.

Question 7.
If a = 12, b = 34, verify the following:
(i) a × b = b × a
(ii) a + b = b + a
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q7
Extra Questions for Class 8 Maths Rational Numbers Q7.1

Question 8.
Multiply 58 by the reciprocal of −38
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q8

Question 9.
Find a rational number between 12 and 13.
Solution:
Rational number between
Extra Questions for Class 8 Maths Rational Numbers Q9

Question 10.
Write the additive inverse of the following:
(a) −67
(b) 101213
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q10

Question 11.
Write any 5 rational numbers between −56 and 78. (NCERT Exemplar)
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q11

Question 12.
Identify the rational number which is different from the other three : 23, −45, 12, 13. Explain your reasoning.
Solution:
−45 is the rational number which is different from the other three, as it lies on the left side of zero while others lie on the right side of zero on the number line.

Rational Numbers Class 8 Extra Questions Short Answer Type

Question 13.
Calculate the following:
Extra Questions for Class 8 Maths Rational Numbers Q13
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q13.1
Extra Questions for Class 8 Maths Rational Numbers Q13.2

Question 14.
Represent the following rational numbers on number lines.
(a) −23
(b) 34
(c) 32
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q14

Question 15.
Find 7 rational numbers between 13 and 12.
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q15

Question 16.
Show that:
Extra Questions for Class 8 Maths Rational Numbers Q16
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q16.1

Question 17.
If x = 12, y = −23 and z = 14, verify that x × (y × z) = (x × y) × z.
Solution:
We have x = 12, y = −23 and z = 14
LHS = x × (y × z)
Extra Questions for Class 8 Maths Rational Numbers Q17

Question 18.
If the cost of 412 litres of milk is ₹8912, find the cost of 1 litre of milk.
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q18

Question 19.
The product of two rational numbers is 1556. If one of the numbers is −548, find the other.
Solution:
Product of two rational numbers = 1556
One number = −548
Other number = Product ÷ First number
Extra Questions for Class 8 Maths Rational Numbers Q19
Hence, the other number = −187

Question 20.
Let O, P and Z represent the numbers 0, 3 and -5 respectively on the number line. Points Q, R and S are between O and P such that OQ = QR = RS = SP. (NCERT Exemplar)
What are the rational numbers represented by the points Q, R and S. Next choose a point T between Z and 0 so that ZT = TO. Which rational number does T represent?
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q20
As OQ = QR = RS = SP and OQ + QR + RS + SP = OP
therefore Q, R and S divide OP into four equal parts.
Extra Questions for Class 8 Maths Rational Numbers Q20.1

Question 21.
Let a, b, c be the three rational numbers where a = 23, b = 45 and c = −56 (NCERT Exemplar)
Verify:
(i) a + (b + c) = (a + b) + c (Associative property of addition)
(ii) a × (b × c) – (a × b) × c (Associative property of multiplication)
Solution:
Extra Questions for Class 8 Maths Rational Numbers Q21
Extra Questions for Class 8 Maths Rational Numbers Q21.1

Rational Numbers Class 8 Extra Questions Higher Order Thinking Skills (HOTS)

Question 22.
Rajni had a certain amount of money in her purse. She spent ₹ 1014 in the school canteen, bought a gift worth ₹ 2534 and gave ₹ 1612 to her friend. How much she have to begin with?
Solution:
Amount given to school canteen = ₹ 1014
Amount given to buy gift = ₹ 2534
Amount given to her friend = ₹ 1612
To begin with Rajni had
Extra Questions for Class 8 Maths Rational Numbers Q22

Question 23.
One-third of a group of people are men. If the number of women is 200 more than the men, find the total number of people.
Solution:
Number of men in the group = 13 of the group
Number of women = 1 – 13 = 23
Difference between the number of men and women = 23 – 13 = 13
If difference is 13, then total number of people = 1
If difference is 200, then total number of people
= 200 ÷ 13
= 200 × 3 = 600
Hence, the total number of people = 600

Question 24.
Fill in the blanks:
(a) Numbers of rational numbers between two rational numbers is ……….
Extra Questions for Class 8 Maths Rational Numbers Q24
Solution:
(a) Countless
(b) 611
(c) −32
(d) 35
(e) Commutative
(f) associative
(g) equivalent
(h) 311

Extra Questions for Class 8 Maths Rational Numbers 01
Maths Extra Questions for Class 8 Rationa Numbers
NCERT Solutions for Class 8 Maths Rational Numbers Extra Questions
Rational Numbers Extra Questions for Class 8 Maths 1
Extra Questions for Class 8 Maths Rational Numbers 05
Extra Questions for Class 8 Maths Rational Numbers 06
Extra Questions for Class 8 Maths Rational Numbers 07
Extra Questions for Class 8 Maths Rational Numbers 08
Extra Questions for Class 8 Maths Rational Numbers 09
Extra Questions for Class 8 Maths Rational Numbers 10
Maths Extra Questions for Class 8 Rationa Numbers 2
Maths Extra Questions for Class 8 Rationa Numbers 3
Maths Extra Questions for Class 8 Rationa Numbers 4
Extra Questions for Class 8 Maths Rational Numbers 09
Extra Questions for Class 8 Maths Rational Numbers 10
Maths Extra Questions for Class 8 Rationa Numbers 5
Maths Extra Questions for Class 8 Rationa Numbers 6
Maths Extra Questions for Class 8 Rationa Numbers 7
Extra Questions for Class 8 Maths Rational Numbers Q 19
Read More

Chapter 5 महापरिनिर्वाण ncert solution | hindi | class 8th

NCERT Solutions Class 8 Hindi chapter 5 महापरिनिर्वाण

Question & Answer

Q.1: मार ने बुद्ध को क्या याद दिलाया? उत्तर में बुद्ध ने क्या कहा?
Ans : मार ने बुद्ध को यह याद दिलाया की नैरंजना नदी के तट पर जब बुद्ध ने बुद्धत्व प्राप्त किया था तब मार ने उनसे निर्वाण प्राप्त करने को कहा था, परंतु बुद्ध ने तब मना कर दिया था क्योंकि वह पापियों और पीड़ितों का उद्धार करने से पहले निर्वाण प्राप्त करना नहीं चाहते थे| उत्तर में बुद्ध ने मार को आश्वासन दिया कि उनकी प्रतिज्ञा पूरी हो चुकी है और उन्हें अपना वचन याद है| वह आज से तीन माह बाद निर्वाण को प्राप्त करेंगे, जिसे सुनकर मार बहुत प्रसन्न हुआ| 
Q.2: आनंद कौन था? उसे क्या जानकर आघात लगा?
Ans : आनंद भगवान बुद्ध का शिष्य था| भगवान बुद्ध आनंद के सब कुछ थे| भगवान बुद्ध ने जब यह बताया कि अब उनका धरती पर समय काल खत्म हो चुका है, और अब वह केवल तीन माह के लिए इस धरती पर रहेंगे, यह सुन कर आनंद को बहुत आघात लगा, उसकी आंखों से आँसू आने लगे| 
Q.3: तथागत ने परिनिर्वाण से पूर्व मल्लों को क्या समझाया?
Ans : तथागत ने परिनिर्वाण से पूर्व मल्लों को यह समझाया कि यह समय दुख का नहीं बल्कि आनंद का है, वह सभी दुखों का जड़ 'अपने शरीर' का आज़ त्याग  करने वाले है| उन्हें आज अपना दुर्लभ लक्ष्य प्राप्त होने वाला है, उन्होंने यह भी कहा कि सिर्फ उनके दर्शन से निर्वाण प्राप्त नहीं किया जा सकता है| जो उनके धर्म के मार्ग पर चलेगा वही निर्वाण और मोक्ष को प्राप्त कर सकता है| 
Q.4: मल्लों और पड़ोसी राजाओं के बीच युद्ध की संभावना क्यों उत्पन्न हो गई? यह संघर्ष कैसे टल गया?
Ans : भगवान बुद्ध के मरणोपरांत उनकी अस्थियों को लेकर मल्लों और पड़ोसी राजाओं के बीच युद्ध की संभावना उत्पन्न हो गई| दोनों ही भगवान बुद्ध के उपदेशों को मानते थे और उनकी अस्थियों पर अपना अधिकार चाहते थे| द्रोण नाम के ब्राह्मण ने राजाओं और मल्लों दोनों पक्ष से बात की, उन्होंने दोनों पक्ष को समझाया कि भगवान बुद्ध का परम ज्ञान था शांति का मार्ग और इस तरह युद्ध करके हम उनके इस उपदेश का पालन नहीं करेंगे, इसलिए इसका उपाय शांत मन से करें| ब्राह्मण द्रोण की यह बात सुनकर मल्लों और राजाओं दोनों पक्ष के लोगों का क्रोध शांत हो गया| 
Q.5: भगवान बुद्ध के उपदेशों को संग्रह करने का भार किसे सौंपा गया और क्यों?
Ans : भगवान बुद्ध के उपदेशों का संग्रह करने का भार आनंद को दिया गया, क्योंकि आनंद हमेशा बुद्ध के साथ रहे थे|उन्होंने सर्वाधिक समय बुद्ध के साथ बिताया था और बुद्ध के मुख से सारे धर्मोपदेश बड़े ध्यान से सुने थे| 
Read More

Chapter 4 धर्मचक्र प्रवर्तन ncert solution | hindi | class 8th

NCERT Solutions for Class 8 Hindi chapter 4 धर्म चक्र प्रवर्तन

Question & Answer

Q.1: बुद्धत्व प्राप्त करने के बाद सिद्धार्थ ने  प्रथम उपदेश कहाँ और किन्हें दिया?
Ans : बुद्धत्व प्राप्त करने के बाद सिद्धार्थ ने अपना प्रथम उपदेश मृगदाव वन के उन पाँच भिक्षुओं को दिया जिन्होंने शाक्यमुनि को तप-भ्रष्ट भिक्षु मानकर उनका साथ छोड़ दिया था| 
Q.2: अष्टांग योग की प्रमुख बातों का उल्लेख कीजिए?
Ans : शरीर को कष्ट देने के बजाय योग की युक्तियों से ज्ञान को प्राप्त करना, कष्टकर, तप  और आसक्तिमय भोग को त्याग कर बोध को प्राप्त करना,मध्य मार्ग कहलाता है और यही मध्य मार्ग तीनों लोकों में 'अष्टांग योग' के नाम से प्रसिद्ध हैं| अष्टांग योग के माध्यम से हम सांसारिक मोह- माया से खुद को मुक्त कर सकते हैं| 
Q.3: भगवान बुद्ध काशी से राजगृह क्यों आए?
Ans : भगवान बुद्ध को अपने शिष्यों को उपदेश देने के बाद आकास्मक याद आया कि उन्होंने मगध के राजा बिंबसार को यह वचन दिया था कि वह अपने ज्ञान प्राप्ति के बाद उन्हें धर्म की उपदेश और दीक्षा देंगे| अपने इसी वचन को पूरा करने के लिए भगवान बुद्ध काशी से राज गृह आए| 
Q.4: प्रसेनजित ने भगवान बुद्ध से क्या निवेदन किया?
Ans : भगवान बुद्ध के कोसल प्रदेश आने पर प्रसेनजित काफी प्रसन्न हुए, उन्होंने भगवान बुद्ध से कोसल प्रदेश में ही निवास करने का निवेदन किया| 
Q.5: तथागत ने कर्म के बारे में शुद्धोदन को क्या समझाया?
Ans : तथागत ने कर्म के बारे में शुद्धोदन को यह समझाया कि इस सारे संसार का मूल मंत्र कर्म है| कर्म ही है  जो मृत्यु के बाद भी आपके साथ होता है| इसलिए आप  कर्म का स्वभाव, कारण, फल और आश्रय इन चारों को समझने की कोशिश करें| आप शांति के पथ को अपनाएँ जिससे आप द्वेष,ईर्ष्या, मोह,माया सब पर काबू पा सकेंगे| 
Read More

Chapter 3 ज्ञान की प्राप्ति ncert solution | hindi | class 8th

NCERT Solutions Class 8 Hindi chapter 3 ज्ञान प्राप्ति

Question & Answer

Q.1: अराड मुनि ने अविद्या किसे कहा है?
Ans : अराड मुनि ने अविद्या निम्नलिखित अवस्थाओं को कहा है-
1.आलस्य
2.जन्म-मृत्यु मोह
3.काम
4.क्रोध
5.विषाद
अराड मुनि के अनुसार आलस्य,क्रोध, विषाद अंधकार हैं और जन्म-मृत्यु मोह एवं काम महामोह है| इन पाँचों अविद्याओं से अगर इंसान मुक्त हो गया तो उसका जीवन सार्थक कहलायेगा| 
Q.2: कठोर तपस्या में लगे सिद्धार्थ ने किस कारण भोजन करने का निर्णय लिया?
Ans : काफी दिनों से अन्न न ग्रहण करने की वजह से सिद्धार्थ काफी दुर्बल हो चुके थे| कुछ समय बाद उन्हें खुद ही ऐसा लगा कि यह दुर्बलता उनको मोक्ष नहीं दिलवा सकती| अस्वस्थ मन से कभी कोई समाधि नहीं पा सकता| समाधि पाने के लिए मानसिक शक्ति प्रबल होनी चाहिए और मानसिक शक्ति के लिए आहार ग्रहण करना बहुत जरूरी है| इन्हीं सब बातों को ध्यान में रखते हुए सिद्धार्थ ने भोजन करने का निर्णय लिया| 
Q.3: मार कौन था? वह बुद्ध को क्यों डरा रहा था?
Ans : मार सद्धर्म का शत्रु था जिसे कामदेव के नाम से भी जाना जाता है| मार को लगता था कि बुद्ध उसका राज्य जीतना चाहते हैं| वह बार-बार बुद्ध को डराने लगा ताकि उनका ध्यान भंग हो जाए और वो मोक्ष को प्राप्त करने की विद्या ना हासिल कर पाए| 
Q.4: सिद्धार्थ के बुद्धत्व प्राप्त करने पर प्रकृति में किस प्रकार की हलचल दिखाई पड़ी?
Ans : सिद्धार्थ के बुद्धत्व प्राप्त करने पर पूरी प्रकृति में हर्षोल्लास का माहौल छा गया, बिन मौसम बरसात होने लग गई| आसमान से फूलों की वर्षा होने लगी,मानो पूरी प्रकृति बुद्ध का स्वागत कर रही हो| चारों दिशाओं में ज्ञान प्रवाहित होने लग गए| सुंदर शिथिल पवन बहने लग गई, ऐसा लग रहा था मानो चारों और  सद्धर्म की दीप जल रही हो, स्वर्ग से भी देवतागण आकर बुद्ध को नमन करने लग गए| वातावरण में चारों ओर उमंग ही उमंग दिख रहा था| 
Read More

Chapter 2 अभिनिष्‍क्रमण ncert solution | hindi | class 8th

Class 8 Sankshipt Budhcharit Chapter 2 Abhinishkraman solution Answer

प्रश्न-1 सिद्धार्थ को निर्वाण के विषय में पहली प्रेरणा किस प्रकार मिली ? 

उत्तर- 
प्रस्तुत पाठ के अनुसार, वन भ्रमण के लिए जा रहे राजकुमार सिद्धार्थ ने जब रास्ते में जुते हुए खेत, खेतों में हल से उखड़ी हुई घास, अन्य खरपतवार और हल की जुताई से मरे हुए कीड़े-मकोड़े को देखा तो उसका हृदय द्रवित हो उठा. उसका मन शोक से भर गया. वह घोड़े की पीठ से उतर गया और ज़मीन पर इधर-उधर घुमने लगा. राजकुमार सिद्धार्थ का मन जन्म और मृत्यु के बारे में सोचते-सोचते बहुत ही व्याकुल हो गया. तत्पश्चात् जब सिद्धार्थ एक स्थान पर ध्यानमग्न थे तो उन्हें एक भिक्षुक दिखाई दिया। उस भिक्षुक की बातों को सुनकर सिद्धार्थ को निर्वाण के विषय में पहली प्रेरणा मिली | 

प्रश्न-2 राजकुमार ने तपोवन न जाने के लिए राजा के समक्ष क्या-क्या शर्तें रखीं ? 

उत्तर- 
राजकुमार ने तपोवन न जाने के लिए राजा के समक्ष निम्नलिखित शर्तें रखीं — 

• मेरी मृत्यु न हो | 
• मैं सदा रोगमुक्त रहूँ | 
• मुझे कभी बुढ़ापा न आए | 
• मेरी संपत्ति सदा बनी रहे | 

प्रश्न-3 छंदक कौन था ? सिद्धार्थ ने उसे नींद से क्यों जगाया ?

उत्तर: प्रस्तुत पाठ के अनुसार, छंदक अस्तबल में घोड़ों की देखभाल किया करता था | सिद्धार्थ को एक उत्तम घोड़े की जरूरत थी, जिसके बारे में छंदक को ही पता था | इसलिए सिद्धार्थ जब सबकुछ त्याग कर महल से जाना चाहते थे तो उसने छंदक को जगाया | 

प्रश्न-4 सिद्धार्थ से अलग होने पर छंदक और कंथक की दशा का वर्णन अपने शब्दों में कीजिए।

उत्तर- प्रस्तुत पाठ के अनुसार, सिद्धार्थ से अलग होने पर छंदक और कंथक की दशा अत्यंत दयनीय हो गई थी | दोनों अपने स्वामी की पीड़ा महसूस करते हुए निरन्तर रोए जा रहे थे | दोनों की आँखों से आँसू की धार जारी थी | आते समय जिस दूरी को तय करने में उन्हें एक ही रात का समय लगा था, वापस जाते समय उसी दूरी को तय करने में उन्हें लगभग आठ दिन का समय लग गया था | 

प्रश्न-5 तपोवन में सिद्धार्थ ने तपस्वियों को क्या करने के लिए कहा ? 

उत्तर: 
प्रस्तुत पाठ के अनुसार, तपोवन में सिद्धार्थ ने तपस्वियों से कहा कि स्वर्ग में सुख की चाह में इस लोक में अपने आप को अत्यधिक कष्ट देना धर्म का सही या उचित मार्ग नहीं हो सकता है | अत: सिद्धार्थ ने तपस्वियों को संबोधित करते हुए कहा कि धर्म का लक्ष्य स्वर्ग न होकर मोक्ष होना चाहिए | 

प्रश्न-6 वन से लौटने के संबंध में राजमंत्री के तर्क सुनकर सिद्धार्थ ने क्या कहा ? 

उत्तर- वन से लौटने के संबंध में राजमंत्री के तर्क सुनकर सिद्धार्थ ने कहा कि उन्हें अपने पिता को दुःख पहुँचाने का अफसोस तो है, परन्तु अब वे अपने मार्ग पर पूरी दृढ़ता से अडिग हैं और आगे बढ़ने की चाह रखते हैं | मोह और माया किसी स्वप्न की तरह क्षणभंगुर होते हैं | इसलिए वह मोक्ष की तलाश में घर से निकल हैं | 

प्रश्न-7 बिंबसार ने सिद्धार्थ की सहायता के लिए क्या प्रस्ताव रखा ? 

उत्तर- प्रस्तुत पाठ के अनुसार, महाराज बिंबसार ने सिद्धार्थ की सहायता के लिए पूरा राज संसाधन देने का प्रस्ताव रखा ताकि सिद्धार्थ अपने पुरुषार्थ को ज़िंदा रखते हुए राजधर्म के मार्ग पर चल सके | राजकुमार सिद्धार्थ के पिता बिंबसार का मानना था कि हर आश्रम के लिए निर्धारित आयु बनी होती है, इसलिए राजकुमार सिद्धार्थ को भी अपनी आयु के अनुसार पहले गृहस्थाश्रम का पालन करना चाहिए, तत्पश्चात् उचित समय आने पर सन्यास लेना चाहिए | 

Read More