In This Post we are  providing Chapter-10 Vector Algebra NCERT MCQ for Class 12 Math which will be beneficial for students. These solutions are updated according to 2021-22 syllabus. These MCQS  can be really helpful in the preparation of Board exams and will provide you with a brief knowledge of the chapter.

NCERT MCQ ON VECTOR ALGEBRA

Question 1.
In ΔABC, which of the following is not true?

MCQ Questions for Class 12 Maths Chapter 10 Vector Algebra with Answers 1


(a) AB→ + BC→ + CA→ = 0⃗ 
(b) AB→ + BC→ – AC→ = 0⃗ 
(c) AB→ + BC→ – CA→ = 0⃗ 
(d) AB→ – CB→ + CA→ = 0⃗ 

Answer: (c) AB→ + BC→ – CA→ = 0⃗ 

Question 2.
If a⃗  and b⃗  are two collinear vectors, then which of the following are incorrect:

(a) b⃗  = λa⃗  tor some scalar λ.
(b) a⃗  = ±b⃗ 
(c) the respective components of a⃗  and b⃗  are proportional
(d) both the vectors a⃗  and b⃗  have the same direction, but different magnitudes.

Answer: (d) both the vectors a⃗  and b⃗  have the same direction, but different magnitudes.

Question 3.
If a is a non-zero vector of magnitude ‘a’ and λa non-zero scalar, then λa⃗  is unit vector if:

(a) λ = 1
(b) λ = -1
(c) a = |λ|
(d) a = 1|λ|

Answer: (d) a = 1|λ|

Question 4.
Let λ be any non-zero scalar. Then for what possible values of x, y and z given below, the vectors 2i^ – 3j^ + 4k^ and xi^ – yj^ + zk^ are perpendicular:

(a) x = 2λ. y = λ, z = λ
(b) x = λ, y = 2λ, z = -λ
(c) x = -λ, y = 2λ, z = λ
(d) x = -λ, y = -2λ, z = λ.

Answer: (c) x = -λ, y = 2λ, z = λ

Question 5.
Let the vectors a⃗  and b⃗  be such that |a⃗ | = 3 and |b⃗ | = √23, then a⃗  × b⃗  is a unit vector if the angle between a⃗  an
b⃗  is:
(a) π6
(b) π4
(c) π3
(d) π2

Answer: (b) π4

Question 6.
Area of a rectangle having vertices
A(-i^ + 12 j^ + 4k^),
B(i^ + 12 j^ + 4k^),
C(i^ – 12 j^ + 4k^),
D(-i^ – 12 j^ + 4k^) is

(a) 12 square unit
(b) 1 square unit
(c) 2 square units
(d) 4 square units.

Answer: (c) 2 square units

Question 7.
If θ is the angle between two vectors a⃗ , b⃗ , then a⃗ .b⃗  ≥ 0 only when

(a) 0 < θ < π2
(b) 0 ≤ θ ≤ π2
(c) 0 < θ < π
(d) 0 ≤ θ ≤ π

Answer: (b) 0 ≤ θ ≤ π2

Question 8.
Let a⃗  and b⃗  be two unit vectors and 6 is the angle between them. Then a⃗  + b⃗  is a unit vector if:

(a) θ = π4
(b) θ = π3
(c) θ = π2
(d) θ = 2π3

Answer: (d) θ = 2π3

Question 9.
If {i^, j^, k^} are the usual three perpendicular unit vectors, then the value of:
i^.(j^ × k^) + j^.(i^ × k^) + k^.(i^ × j^) is

(a) 0
(b) -1
(c) 1
(d) 3

Answer: (d) 3

Question 10.
If θ is the angle between two vectors a⃗  and b⃗ , then |a⃗ .b⃗ | = |a⃗  × b⃗ | when θ is equal to:

(a) 0
(b) π4
(c) π2
(d) π

Answer: (b) π4

Question 11.
The area of the triangle whose adjacent sides are
a⃗  = 3i^ + j^ + 4k^ and b⃗  = i^ – j^ + k^ is

(a) 1/2 42√
(b) 42
(c) 42√
(d) 21√

Answer: (a) 1/2 42√

Question 12.
The magnitude of the vector 6i^ + 2j^ + 3k^ is

(a) 5
(b) 7
(c) 12
(d) 1.

Answer: (b) 7

Question 13.
The vector with initial point P (2, -3, 5) and terminal point Q (3, -4, 7) is

(a) i^ – j^ + 2k^
(b) 5i^ – 7j^ + 12k^
(c) –i^ + j^ – 2k^
(d) None of these.

Answer: (a) i^ – j^ + 2k^

Question 14.
The angle between the vectors i^ – j^ and j^ – k^ is

(a) π3
(b) 2π3
(c) –π3
(d) 5π6

Answer: (b) 2π3

Question 15.
The value of ‘λ’ for which the two vectors:
2i^ – j^ + 2k^ and 3i^ + λj^ + k^ are perpendicular is

(a) 2
(b) 4
(c) 6
(d) 8.

Answer: (d) 8.



Discover more from EduGrown School

Subscribe to get the latest posts sent to your email.