Exercise 9.1 | Class 8th Mathematics

  1. Use a suitable identity to get each of the following products:
    (i) (x + 3) (x + 3)
    (ii) (2y + 5) (2y + 5)
    (iii) (2a – 7) (2a – 7)
    (iv) (3a – 12) (3a – 12)
    (v) (1.1m – 0.4) (1.1m + 0.4)
    (vi) (a2 + b2) (-a2 + b2)
    (vii) (6x – 7) (6x + 7)
    (viii) (-a + c) (-a + c)
    (ix) (x2 + 3y4) (x2 + 3y4)
    (x) (7a – 9b) (7a – 9b)
    Solution:
    NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q1.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q1.2
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q1.3


2. Use the identity (x + a)(x + b) = x2 + (a + b)x + ab to find the following products.
(i) (x + 3) (x + 7)
(ii) (4x + 5)(4x + 1)
(iii) (4x – 5) (4x – 1)
(iv) (4x + 5) (4x – 1)
(v) (2x + 5y) (2x + 3y)
(vi) (2a2 + 9) (2a2 + 5)
(vii) (xyz – 4) (xyz – 2)
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q2


3. Find the following squares by using the identities.
(i) (b – 7)2
(ii) (xy + 3z)2
(iii) (6x2 – 5y)2
(iv) (23 m + 32 n)2
(v) (0.4p – 0.5q)2
(vi) (2xy + 5y)2
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q3

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q3.1

4. Simplify:
(i) (a2 – b2)2
(ii) (2x + 5)2 – (2x – 5)2
(iii) (7m – 8n)2 + (7m + 8n)2
(iv) (4m + 5n)2 + (5m + 4n)2
(v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2
(vi) (ab + bc)2 – 2ab2c
(vii) (m2 – n2m)2 + 2m3n2
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q4

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q4.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q4.2

5. Show that:
(i) (3x + 7)2 – 84x = (3x – 7)2
(ii) (9p – 5q)2 + 180pq = (9p + 5q)2
(iii) (43 m – 34 n)2 + 2mn = 169 m2 + 916 n2
(iv) (4pq + 3q)2 – (4pq – 3q)2 = 48pq2
(v) (a – b)(a + b) + (b – c) (b + c) + (c – a) (c + a) = 0
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q5

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q5.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q5.2

6. Using identities, evaluate:
(i) 712
(ii) 992
(iii) 1022
(iv) 9982
(v) 5.22
(vi) 297 × 303
(vii) 78 × 82
(viii) 8.92
(ix) 1.05 × 9.5
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q6

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q6.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q6.2

7. Using a2 – b2 = (a + b) (a – b), find
(i) 512 – 492
(ii) (1.02)2 – (0.98)2
(iii) 1532 – 1472
(iv) 12.12 – 7.92
Solution:
(i) 512 – 492 = (51 + 49) (51 – 49) = 100 × 2 = 200
(ii) (1.02)2 – (0.98)2 = (1.02 + 0.98) (1.02 – 0.98) = 2.00 × 0.04 = 0.08
(iii) 1532 – 1472 = (153 + 147) (153 – 147) = 300 × 6 = 1800
(iv) 12.12 – 7.92 = (12.1 + 7.9) (12.1 – 7.9) = 20.0 × 4.2 = 84

8. Using (x + a) (x + b) = x2 + (a + b)x + ab, find
(i) 103 × 104
(ii) 5.1 × 5.2
(iii) 103 × 98
(iv) 9.7 × 9.8
Solution:
(i) 103 × 104 = (100 + 3)(100 + 4) = (100)2 + (3 + 4) (100) + 3 × 4 = 10000 + 700 + 12 = 10712
(ii) 5.1 × 5.2 = (5 + 0.1) (5 + 0.2) = (5)2 + (0.1 + 0.2) (5) + 0.1 × 0.2 = 25 + 1.5 + 0.02 = 26.5 + 0.02 = 26.52
(iii) 103 × 98 = (100 + 3) (100 – 2) = (100)2 + (3 – 2) (100) + 3 × (-2) = 10000 + 100 – 6 = 10100 – 6 = 10094
(iv) 9.7 × 9.8 = (10 – 0.3) (10 – 0.2) = (10)2 – (0.3 + 0.2) (10) + (-0.3) (-0.2) = 100 – 5 + 0.06 = 95 + 0.06 = 95.06

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-1.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-2
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-3
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-4
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-4.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-5
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-5.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-6
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-6.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-7
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-8

Exercise 9.2 | Class 8th Mathematics

  1. Find the product of the following pairs of monomials.
    (i) 4, 7p
    (ii) -4p, 7p
    (iii) -4p, 7pq
    (iv) 4p3, -3p
    (v) 4p, 0
    Solution:
    (i) 4 × 7p = (4 × 7) × p = 28p
    (ii) -4p × 7p = (-4 × 7) × p × p = -28p2
    (iii) -4p × 7pq = (-4 × 7) × p × pq = -28p2q
    (iv) 4p3 × -3p = (4 × -3) × p3 × p = -12p4
    (v) 4p x 0 = (4 × 0) × p = 0 × p = 0


2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
(p, q); (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)

Solution:
(i) Length = p units and breadth = q units
Area of the rectangle = length × breadth = p × q = pq sq units
(ii) Length = 10 m units, breadth = 5n units
Area of the rectangle = length × breadth = 10 m × 5 n = (10 × 5) × m × n = 50 mn sq units
(iii) Length = 20x2 units, breadth = 5y2 units
Area of the rectangle = length × breadth = 20x2 × 5y2 = (20 × 5) × x2 × y2 = 100x2y2 sq units
(iv) Length = 4x units, breadth = 3x2 units
Area of the rectangle = length × breadth = 4x × 3x2 = (4 × 3) × x × x2 = 12x3 sq units
(v) Length = 3mn units, breadth = 4np units
Area of the rectangle = length × breadth = 3mn × 4np = (3 × 4) × mn × np = 12mn2p sq units


3. Complete the table of Products.
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.2 Q3
Solution:
Completed Table
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.2 Q3.1


4. Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) 5a, 3a2, 7a4
(ii) 2p, 4q, 8r
(iii) xy, 2x2y, 2xy2
(iv) a, 2b, 3c
Solution:
(i) Here, length = 5a, breadth = 3a2, height = 7a4
Volume of the box = l × b × h = 5a × 3a2 × 7a4 = 105 a7 cu. units
(ii) Here, length = 2p, breadth = 4q, height = 8r
Volume of the box = l × b × h = 2p × 4q × 8r = 64pqr cu. units
(iii) Here, length = xy, breadth = 2x2y, height = 2xy2
Volume of the box = l × b × h = xy × 2x2y × 2xy2 = (1 × 2 × 2) × xy × x2y × xy2 = 4x4y4 cu. units
(iv) Here, length = a, breadth = 2b, height = 3c
Volume of the box = length × breadth × height = a × 2b × 3c = (1 × 2 × 3)abc = 6 abc cu. units

5. Obtain the product of
(i) xy, yz, zx
(ii) a, -a2, a3
(iii) 2, 4y, 8y2, 16y3
(iv) a, 2b, 3c, 6abc
(v) m, -mn, mnp
Solution:
(i) xy × yz × zx = x2y2z2
(ii) a × (-a2) × a3 = -a6
(iii) 2 × 4y × 8y2 × 16y3 = (2 × 4 × 8 × 16) × y × y2 × y3 = 1024y6
(iv) a × 2b × 3c × 6abc = (1 × 2 × 3 × 6) × a × b × c × abc = 36 a2b2c2
(v) m × (-mn) × mnp = [1 × (-1) × 1 ]m × mn × mnp = -m3n2p

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.2 q-1, q-2
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.2 q-3
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.2 q-4

Exercise 9.3 | Class 8th Mathematics

  1. Carry out the multiplication of the expressions in each of the following pairs:
    (i) 4p, q + r
    (ii) ab, a – b
    (iii) a + b, 7a2b2
    (iv) a2 – 9, 4a
    (v) pq + qr + rp, 0
    Solution:
    (i) 4p × (q + r) = (4p × q) + (4p × r) = 4pq + 4pr
    (ii) ab, a – b = ab × (a – b) = (ab × a) – (ab × b) = a2b – ab2
    (iii) (a + b) × 7a2b2 = (a × 7a2b2) + (b × 7a2b2) = 7a3b2 + 7a2b3
    (iv) (a2 – 9) × 4a = (a2 × 4a) – (9 × 4a) = 4a3 – 36a
    (v) (pq + qr + rp) × 0 = 0
    [∵ Any number multiplied by 0 is = 0]

2. Complete the table.

S.No.First ExpressionSecond
Expression
Product
(i)ab + c + d
(ii)x + y – 55xy
(iii)p6p2 – 7p + 5
(iv)4p2q2p2 – q2
(v)a + b + cabc

Solution:
(i) a × (b + c + d) = (a × b) + (a × c) + (a × d) = ab + ac + ad
(ii) (x + y – 5) (5xy) = (x × 5xy) + (y × 5xy) – (5 × 5xy) = 5x2y + 5xy2 – 25xy
(iii) p × (6p2 – 7p + 5) = (p × 6p2) – (p × 7p) + (p × 5) = 6p3 – 7p2 + 5p
(iv) 4p2q2 × (p2 – q2) = 4p2q2 × p2 – 4p2q2 × q2 = 4p4q2 – 4p2q4
(v) (a + b + c) × (abc) = (a × abc) + (b × abc) + (c × abc) = a2bc + ab2c + abc2

Completed Table:

S.No.First ExpressionSecond
Expression
Product
(i)ab + c + dab + ac + ad
(ii)x + y – 55xy5x2y + 5xy2 – 25xy
(iii)p6p2 – 7p + 56p3 – 7p2 + 5p
(iv)4p2q2p– q24p4q2 – 4p2q4
(v)a + b + cabca2bc + ab2c + abc2

3. Find the products.
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.3 Q3
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.3 Q3.1

4.
(a) Simplify: 3x(4x – 5) + 3 and find its values for (i) x = 3 (ii) x = 12.
(b) Simplify: a(a2 + a + 1) + 5 and find its value for (i) a = 0 (ii) a = 1 (iii) a = -1

Solution:
(a) We have 3x(4x – 5) + 3 = 4x × 3x – 5 × 3x + 3 = 12x2 – 15x + 3
(i) For x = 3, we have
12 × (3)2 – 15 × 3 + 3 = 12 × 9 – 45 + 3 = 108 – 42 = 66
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.3 Q4
(b) We have a(a2 + a + 1) + 5
= (a2 × a) + (a × a) + (1 × a) + 5
= a3 + a2 + a + 5
(i) For a = 0, we have
= (0)3 + (0)2 + (0) + 5 = 5
(ii) For a = 1, we have
= (1)3 + (1)2 + (1) + 5 = 1 + 1 + 1 + 5 = 8
(iii) For a = -1, we have
= (-1)3 + (-1)2 + (-1) + 5 = -1 + 1 – 1 + 5 = 4

5.
(a) Add: p(p – q), q(q – r) and r(r – p)
(b) Add: 2x(z – x – y) and 2y(z – y – x)
(c) Subtract: 3l(l – 4m + 5n) from 4l(10n – 3m + 2l)
(d) Subtract: 3a(a + b + c) – 2b(a – b + c) from 4c(-a + b + c)

Solution:
(a) p(p – q) + q(q – r) + r(r – p)
= (p × p) – (p × q) + (q × q) – (q × r) + (r × r) – (r × p)
= p2 – pq + q2 – qr + r2 – rp
= p2 + q2 + r2 – pq – qr – rp
(b) 2x(z – x – y) + 2y(z – y – x)
= (2x × z) – (2x × x) – (2x × y) + (2y × z) – (2y × y) – (2y × x)
= 2xz – 2x2 – 2xy + 2yz – 2y2 – 2xy
= -2x2 – 2y2 + 2xz + 2yz – 4xy
= -2x2 – 2y2 – 4xy + 2yz + 2xz
(c) 4l(10n – 3m + 2l) – 3l(l – 4m + 5n)
= (4l × 10n) – (4l × 3m) + (4l × 2l) – (3l × l) – (3l × -4m) – (3l × 5n)
= 40ln – 12lm + 8l2 – 3l2 + 12lm – 15ln
= (40ln – 15ln) + (-12lm + 12lm) + (8l2 – 3l2)
= 25ln + 0 + 5l2
= 25ln + 5l2
= 5l2 + 25ln
(d) [4c(-a + b + c)] – [3a(a + b + c) – 2b(a – b + c)]
= (-4ac + 4bc + 4c2) – (3a2 + 3ab + 3ac – 2ab + 2b2 – 2bc)
= -4ac + 4bc + 4c2 – 3a2 – 3ab – 3ac + 2ab – 2b2 + 2bc
= -3a2 – 2b2 + 4c2 – ab + 6bc – 7ac

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.3 q-1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.3 q-2, q-3
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.3 q-4
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.3 q-5
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.3 q-5.1

Exercise 9.4 | Class 8th Mathematics

  1. Multiply the binomials:
    (i) (2x + 5) and (4x – 3)
    (ii) (y – 8) and (3y – 4)
    (iii) (2.5l – 0.5m) and (2.5l + 0.5m)
    (iv) (a + 3b) and (x + 5)
    (v) (2pq + 3q2) and (3pq – 2q2)
    (vi) (34a2 + 3b2) and 4(a2 – 23 b2)
    Solution:
    (i) (2x + 5) × (4x – 3)
    = 2x × (4x – 3) + 5 × (4x – 3)
    = (2x × 4x) – (3 × 2x) + (5 × 4x) – (5 × 3)
    = 8x2 – 6x + 20x – 15
    = 8x2 + 14x – 15

(ii) (y – 8) × (3y – 4)
= y × (3y – 4) – 8 × (3y – 4)
= (y × 3y) – (y × 4) – (8 × 3y) + (-8 × -4)
= 3y2 – 4y – 24y + 32
= 3y2 – 28y + 32

(iii) (2.5l – 0.5m) × (2.5l + 0.5m)
= (2.5l × 2.5l) + (2.5l × 0.5m) – (0.5m × 2.5l) – (0.5m × 0.5m)
= 6.25l2 + 1.25ml – 1.25ml – 0.25m2
= 6.25l2 + 0 – 0.25m2
= 6.25l2 – 0.25m2

(iv) (a + 3b) × (x + 5)
= a × (x + 5) + 36 × (x + 5)
= (a × x) + (a × 5) + (36 × x) + (36 × 5)
= ax + 5a + 3bx + 15b

(v) (2pq + 3q2) × (3pq – 2q2)
= 2pq × (3pq – 2q2) + 3q2 (3pq – 2q2)
= (2pq × 3pq) – (2pq × 2q2) + (3q2 × 3pq) – (3q2 × 2q2)
= 6p2q2 – 4pq3 + 9pq3 – 6q4
= 6p2q2 + 5pq3 – 6q4

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.4 Q1

2. Find the product:
(i) (5 – 2x) (3 + x)
(ii) (x + 7y) (7x – y)
(iii) (a2 + b) (a + b2)
(iv) (p2 – q2)(2p + q)
Solution:
(i) (5 – 2x) (3 + x)
= 5(3 + x) – 2x(3 + x)
= (5 × 3) + (5 × x) – (2x × 3) – (2x × x)
= 15 + 5x – 6x – 2x2

(ii) (x + 7y) (7x – y)
= x(7x – y) + 7y(7x – y)
= (x × 7x) – (x × y) + (7y × 7x) – (7y × y)
= 7x2 – xy + 49xy – 7y2
= 7x2 + 48xy – 7y2

(iii) (a2 + b) (a + b2)
= a2 (a + b2) + b(a + b2)
= (a2 × a) + (a2 × b2) + (b × a) + (b × b2)
= a3 + a2b2 + ab + b3

(iv) (p2 – q2)(2p + q)
= p2(2p + q) – q2(2p + q)
= (p2 × 2p) + (p2 × q) – (q2 × 2p) – (q2 × q)
= 2p3 + p2q – 2pq2 – q3

3. Simplify:
(i) (x2 – 5) (x + 5) + 25
(ii) (a2 + 5)(b3 + 3) + 5
(iii) (t + s2) (t2 – s)
(iv) (a + b) (c – d) + (a – b) (c + d) + 2(ac + bd)
(v) (x + y) (2x + y) + (x + 2y) (x – y)
(vi) (x + y)(x2 – xy + y2)
(vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y
(viii) (a + b + c) (a + b – c)
Solution:
(i) (x2 – 5) (x + 5) + 25
= x2(x + 5) + 5(x + 5) + 25
= x3 + 5x2 – 5x – 25 + 25
= x3 + 5x2 – 5x + 0
= x3 + 5x2 – 5x

(ii) (a2 + 5)(b3 + 3) + 5
= a2(b3 + 3) + 5(b3 + 3) + 5
= a2b3 + 3a2 + 5b3 + 15 + 5
= a2b3 + 3a2 + 5b3 + 20

(iii) (t + s2) (t2 – s)
= t(t2 – s) + s2(t2 – s)
= t3 – st + s2t2 – s3
= t3 + s2t2 – st – s3

(iv) (a + b)(c – d) + (a – b) (c + d) + 2(ac + bd)
= a(c – d) + b(c – d) + a(c + d) – b(c + d) + 2ac + 2bd
= ac – ad + bc – bd + ac + ad – bc – bd + 2ac + 2bd
= ac + ac + 2ac + bc – bc – ad + ad – bd – bd + 2bd
= 4ac + 0 + 0 + 0
= 4ac

(v) (x + y) (2x + y) + (x + 2y) (x – y)
= x(2x + y) + y(2x + y) + x(x – y) + 2y(x – y)
= 2x2 + xy + 2xy + y2 + x2 – xy + 2xy – 2y2
= 2x2 + x2 + xy + 2xy – xy + 2xy + y2 – 2y2
= 3x2 + 4xy – y2

(vi) (x + y)(x2 – xy + y2)
= x(x2 – xy + y2) + y(x2 – xy + y2)
= x3 – x2y + x2y + xy2 – xy2 + y3
= x3 – 0 + 0 + y3
= x3 + y3

(vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x.+ 12y
= 1.5x (1.5x + 4y + 3) – 4y(1.5x + 4y + 3) – 4.5x + 12y
= 2.25x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y
= 2.25x2 + 6xy – 6xy + 4.5x – 4.5x + 12y – 12y – 16y2
= 2.25x2 + 0 + 0 + 0 – 16y2
= 2.25x2 – 16y2

(viii) (a + b + c) (a + b – c)
= a(a + b – c) + b(a + b – c) + c(a + b – c)
= a2 + ab – ac + ab + b2 – bc + ac + bc – c2
= a2 + ab + ab – bc + bc – ac + ac + b2 – c2
= a2 + 2ab + b2 – c2 + 0 + 0
= a2 + 2ab + b2 – c2

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.4 q-1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.4 q-1.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.4 q-2
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.4 q-3
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.4 q-3.1

Exercise 9.5 | Class 8th Mathematics

  1. Use a suitable identity to get each of the following products:
    (i) (x + 3) (x + 3)
    (ii) (2y + 5) (2y + 5)
    (iii) (2a – 7) (2a – 7)
    (iv) (3a – 12) (3a – 12)
    (v) (1.1m – 0.4) (1.1m + 0.4)
    (vi) (a2 + b2) (-a2 + b2)
    (vii) (6x – 7) (6x + 7)
    (viii) (-a + c) (-a + c)
    (ix) (x2 + 3y4) (x2 + 3y4)
    (x) (7a – 9b) (7a – 9b)
    Solution:
    NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q1.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q1.2
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q1.3

2. Use the identity (x + a)(x + b) = x2 + (a + b)x + ab to find the following products.
(i) (x + 3) (x + 7)
(ii) (4x + 5)(4x + 1)
(iii) (4x – 5) (4x – 1)
(iv) (4x + 5) (4x – 1)
(v) (2x + 5y) (2x + 3y)
(vi) (2a2 + 9) (2a2 + 5)
(vii) (xyz – 4) (xyz – 2)
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q2

3. Find the following squares by using the identities.
(i) (b – 7)2
(ii) (xy + 3z)2
(iii) (6x2 – 5y)2
(iv) (23 m + 32 n)2
(v) (0.4p – 0.5q)2
(vi) (2xy + 5y)2
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q3

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q3.1


4. Simplify:
(i) (a2 – b2)2
(ii) (2x + 5)2 – (2x – 5)2
(iii) (7m – 8n)2 + (7m + 8n)2
(iv) (4m + 5n)2 + (5m + 4n)2
(v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2
(vi) (ab + bc)2 – 2ab2c
(vii) (m2 – n2m)2 + 2m3n2
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q4

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q4.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q4.2

5. Show that:
(i) (3x + 7)2 – 84x = (3x – 7)2
(ii) (9p – 5q)2 + 180pq = (9p + 5q)2
(iii) (43 m – 34 n)2 + 2mn = 169 m2 + 916 n2
(iv) (4pq + 3q)2 – (4pq – 3q)2 = 48pq2
(v) (a – b)(a + b) + (b – c) (b + c) + (c – a) (c + a) = 0
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q5

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q5.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q5.2

6. Using identities, evaluate:
(i) 712
(ii) 992
(iii) 1022
(iv) 9982
(v) 5.22
(vi) 297 × 303
(vii) 78 × 82
(viii) 8.92
(ix) 1.05 × 9.5
Solution:
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q6

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q6.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 Q6.2

7. Using a2 – b2 = (a + b) (a – b), find
(i) 512 – 492
(ii) (1.02)2 – (0.98)2
(iii) 1532 – 1472
(iv) 12.12 – 7.92
Solution:
(i) 512 – 492 = (51 + 49) (51 – 49) = 100 × 2 = 200
(ii) (1.02)2 – (0.98)2 = (1.02 + 0.98) (1.02 – 0.98) = 2.00 × 0.04 = 0.08
(iii) 1532 – 1472 = (153 + 147) (153 – 147) = 300 × 6 = 1800
(iv) 12.12 – 7.92 = (12.1 + 7.9) (12.1 – 7.9) = 20.0 × 4.2 = 84

Ex 9.5 Class 8 Maths Question 8.
Using (x + a) (x + b) = x2 + (a + b)x + ab, find
(i) 103 × 104
(ii) 5.1 × 5.2
(iii) 103 × 98
(iv) 9.7 × 9.8
Solution:
(i) 103 × 104 = (100 + 3)(100 + 4) = (100)2 + (3 + 4) (100) + 3 × 4 = 10000 + 700 + 12 = 10712
(ii) 5.1 × 5.2 = (5 + 0.1) (5 + 0.2) = (5)2 + (0.1 + 0.2) (5) + 0.1 × 0.2 = 25 + 1.5 + 0.02 = 26.5 + 0.02 = 26.52
(iii) 103 × 98 = (100 + 3) (100 – 2) = (100)2 + (3 – 2) (100) + 3 × (-2) = 10000 + 100 – 6 = 10100 – 6 = 10094
(iv) 9.7 × 9.8 = (10 – 0.3) (10 – 0.2) = (10)2 – (0.3 + 0.2) (10) + (-0.3) (-0.2) = 100 – 5 + 0.06 = 95 + 0.06 = 95.06

NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-1.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-2
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-3
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-4
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-4.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-5
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-5.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-6
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-6.1
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-7
NCERT Solutions for Class 8 Maths Chapter 9 Algebraic Expressions and Identities Ex 9.5 q-8

Extra Questions | Class 8th Mathematics

Algebraic Expressions and Identities Class 8 Extra Questions Very Short Answer Type


1. Write two examples of each of
(i) Monomials
(ii) Binomials
(iii) Trinomials
Solution:
(i) Monomials:
(a) 3x
(b) 5xy2
(ii) Binomials:
(a) p + q
(b) -5a + 2b
(iii) Trinomials:
(a) a + b + c
(b) x2 + x + 2


2. Identify the like expressions.
5x, -14x, 3x2 + 1, x2, -9x2, xy, -3xy
Solution:
Like terms: 5x and -14x, x2 and -9x2, xy and -3xy

3. Identify the terms and their coefficients for each of the following expressions:
(i) 3x2y – 5x
(ii) xyz – 2y
(iii) -x – x2
Solution:
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q3

4.
Add: -3a2b2, –52 a2b2, 4a2b2, 23 a2b2

Solution:
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q4
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q4.1


5. Add: 8x2 + 7xy – 6y2, 4x2 – 3xy + 2y2 and -4x2 + xy – y2
Solution:
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q5


6. Subtract: (4x + 5) from (-3x + 7)
Solution:
(-3x + 7) – (4x + 5) = -3x + 7 – 4x – 5 = -3x – 4x + 7 – 5 = -7x + 2

7. Subtract: 3x2 – 5x + 7 from 5x2 – 7x + 9
Solution:
(5x2 – 7x + 9) – (3x2 – 5x + 7)
= 5x2 – 7x + 9 – 3x2 + 5x – 7
= 5x2 – 3x2 + 5x – 7x + 9 – 7
= 2x2 – 2x + 2

8. Multiply the following expressions:
(a) 3xy2 × (-5x2y)
(b) 12 x2yz × 23 xy2z × 15 x2yz
Solution:
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q8

9. Find the area of the rectangle whose length and breadths are 3x2y m and 5xy2 m respectively.
Solution:
Length = 3x2y m, breadth = 5xy2 m
Area of rectangle = Length × Breadth = (3x2y × 5xy2) sq m = (3 × 5) × x2y × xy2 sq m = 15x3y3 sq m

10. Multiply x2 + 7x – 8 by -2y.
Solution:
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q10

Algebraic Expressions and Identities Class 8 Extra Questions Short Answer Type


11. Simplify the following:
(i) a2 (b2 – c2) + b2 (c2 – a2) + c2 (a2 – b2)
(ii) x2(x – 3y2) – xy(y2 – 2xy) – x(y3 – 5x2)
Solution:
(i) a2 (b2 – c2) + b2 (c2 – a2) + c2 (a2 – b2)
= a2b2 – a2c2) + b2c2 – b2a2) + c2a2 – c2b2)
= 0
(ii) x2(x – 3y2) – xy(y2 – 2xy) – x(y3 – 5x2)
= x3 – 3x2y2 – xy3 + 2x2y2 – xy3 + 5x3
= x3 + 5x3 – 3x2y2 + 2x2y2 – xy3 – xy3
= 6x3 – x2y2 – 2xy3

12. Multiply (3x2 + 5y2) by (5x2 – 3y2)
Solution:
(3x2 + 5y2) × (5x2 – 3y2)
= 3x2(5x2 – 3y2) + 5y2(5x2 – 3y2)
= 15x4 – 9x2y2 + 25x2y2 – 15y4
= 15x4 + 16x2y2 – 15y4

13. Multiply (6x2 – 5x + 3) by (3x2 + 7x – 3)
Solution:
(6x2 – 5x + 3) × (3x2 + 7x – 3)
= 6x2(3x2 + 7x – 3) – 5x(3x2 + 7x – 3) + 3(3x2 + 7x – 3)
= 18x4 + 42x3 – 18x2 – 15x3 – 35x2 + 15x + 9x2 + 21x – 9
= 18x4 + 42x3 – 15x3 – 18x2 – 35x2 + 9x2 + 15x + 21x – 9
= 18x4 + 27x3 – 44x2 + 36x – 9

14. Simplify:
2x2(x + 2) – 3x (x2 – 3) – 5x(x + 5)
Solution:
2x2(x + 2) – 3x(x2 – 3) – 5x(x + 5)
= 2x3 + 4x2 – 3x3 + 9x – 5x2 – 25x
= 2x3 – 3x3 – 5x2 + 4x2 + 9x – 25x
= -x3 – x2 – 16x

15. Multiply x2 + 2y by x3 – 2xy + y3 and find the value of the product for x = 1 and y = -1.
Solution:
(x2 + 2y) × (x3 – 2xy + y3)
= x2(x3 – 2xy + y3) + 2y(x3 – 2xy + y3)
= x5 – 2x3y + x2y3 + 2x3y – 4xy2 + 2y4
= x5 + x2y3 – 4xy2 + 2y4
Put x = 1 and y = -1
= (1)5 + (1)2 (-1)3 – 4(1)(-1)2 + 2(-1)4
= 1 + (1) (-1) – 4(1)(1) + 2(1)
= 1 – 1 – 4 + 2
= -2


16. Using suitable identity find:
(i) 482 (NCERT Exemplar)
(ii) 962
(iii) 2312 – 1312
(iv) 97 × 103
(v) 1812 – 192 = 162 × 200 (NCERT Exemplar)
Solution:
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q16

17.
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q17
Solution:
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q17.1
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q17.2

18. Verify that (11pq + 4q)2 – (11pq – 4q)2 = 176pq2 (NCERT Exemplar)
Solution:
LHS = (11pq + 4q)2 – (11pq – 4q)2 = (11pq + 4q + 11pq – 4q) × (11pq + 4q – 11pq + 4q)
[using a2 -b2 = (a – b) (a + b), here a = 11pq + 4q and b = 11 pq – 4q]
= (22pq) (8q)
= 176 pq2
= RHS.
Hence Verified.

19. Find the value of 382−22216, using a suitable identity. (NCERT Exemplar)
Solution:
Algebraic Expressions and Identities NCERT Extra Questions for Class 8 Maths Q19

20. Find the value of x, if 10000x = (9982)2 – (18)2 (NCERT Exemplar)
Solution:
RHS = (9982)2 – (18)2 = (9982 + 18)(9982 – 18)
[Since a2 -b2 = (a + b) (a – b)]
= (10000) × (9964)
LHS = (10000) × x
Comparing L.H.S. and RHS, we get
10000x = 10000 × 9964
x = 9964

algebraic-expressions-and-identities-ncert-extra-questions-for-class-8-maths-chapter-9-01
algebraic-expressions-and-identities-ncert-extra-questions-for-class-8-maths-chapter-9-02
algebraic-expressions-and-identities-ncert-extra-questions-for-class-8-maths-chapter-9-03
algebraic-expressions-and-identities-ncert-extra-questions-for-class-8-maths-chapter-9-04
algebraic-expressions-and-identities-ncert-extra-questions-for-class-8-maths-chapter-9-05
algebraic-expressions-and-identities-ncert-extra-questions-for-class-8-maths-chapter-9-06
algebraic-expressions-and-identities-ncert-extra-questions-for-class-8-maths-chapter-9-07
algebraic-expressions-and-identities-ncert-extra-questions-for-class-8-maths-chapter-9-08
algebraic-expressions-and-identities-ncert-extra-questions-for-class-8-maths-chapter-9-09
algebraic-expressions-and-identities-ncert-extra-questions-for-class-8-maths-chapter-9-10

Discover more from EduGrown School

Subscribe to get the latest posts sent to your email.