Table of Contents
Exercise 23.1
Question: 1
Ashish studies for 4 hours, 5 hours and 3 hours on three consecutive days. How many hours does he study daily on an average?
Solution:
Average number of study hours = (4 + 5 + 3) ÷ 3
= 12 ÷ 3
= 4 hours
Thus, Ashish studies for 4 hours on an average.
Question: 2
A cricketer scores the following runs in 8 innings: 58, 76, 40, 35, 48, 45, 0, 100.
Find the mean score.
Solution:
We have:
The mean score = (58 + 76 + 40 + 35 + 48 + 45 + 0 + 100) ÷ 8
= 402 ÷ 8
= 50.25 runs.
Question: 3
The marks (out of 100) obtained by a group of students in science test are 85, 76, 90, 84, 39, 48, 56, 95, 81 and 75. Find the
(i) Highest and the lowest marks obtained by the students.
(ii) Range of marks obtained.
(iii) Mean marks obtained by the group.
Solution:
In order to find the highest and lowest marks, let us arrange the marks in ascending order as follows:
39, 48, 56, 75, 76, 81, 84, 85, 90, 95
(i) Clearly, the highest mark is 95 and the lowest is 39.
(ii) The range of the marks obtained is: (95 – 39) = 56.
(iii) We have:
Mean marks = Sum of the marks ÷ Total number of students
→ Mean marks = (39 + 48 + 56 + 75 + 76 + 81 + 84 + 85 + 90 + 95) ÷ 10
= 729 ÷ 10
= 72.9.
Hence, the mean mark of the students is 72.9.
Question: 4
The enrolment of a school during six consecutive years was as follows:
1555, 1670, 1750, 2019, 2540, 2820
Find the mean enrollment of the school for this period.
Solution:
The mean enrolment = Sum of the enrolments in each year ÷ Total number of years
The mean enrolment = (1555 + 1670 + 1750 + 2019 + 2540 + 2820) ÷ 6
= 12354 ÷ 6
= 2059.
Thus, the mean enrolment of the school for the given period is 2059.
Question: 5
The rainfall (in mm) in a city on 7 days of a certain week was recorded as follows:
Day | Mon | Tue | Wed | Thu | Fri | Sat | Sun |
Rainfall (in mm) | 0.0 | 12.2 | 2.1 | 0.0 | 20.5 | 5.3 | 1.0 |
(i) Find the range of the rainfall from the above data.
(ii) Find the mean rainfall for the week.
(iii) On how many days was the rainfall less than the mean rainfall.
Solution:
(i) The range of the rainfall = Maximum rainfall – Minimum rainfall
= 20.5 – 0.0
= 20.5 mm.
(ii) The mean rainfall = (0.0 + 12.2 + 2.1 + 0.0 + 20.5 + 5.3 + 1.0) ÷ 7
= 41.1 ÷ 7
= 5.87 mm.
(iii) Clearly, there are 5 days (Mon, Wed, Thu, Sat and Sun), when the rainfall was less than the mean, i.e., 5.87 mm.
Question: 6
If the heights of 5 persons are 140 cm, 150 cm, 152 cm, 158 cm and 161 cm respectively, find the mean height.
Solution:
The mean height = Sum of the heights ÷ Total number of persons
= (140 + 150 + 152 + 158 + 161) ÷ 5
= 761 ÷ 5
= 152.2 cm.
Question: 7
Find the mean of 994, 996, 998, 1002 and 1000.
Solution:
Mean = Sum of the observations ÷ Total number of observations
Mean = (994 + 996 + 998 + 1002 + 1000) ÷ 5
= 4990 ÷ 5
= 998.
Question: 8
Find the mean of first five natural numbers.
Solution:
The first five natural numbers are 1, 2, 3, 4 and 5.
Question: 9
Find the mean of all factors of 10.
Solution:
Question: 10
Find the mean of first 10 even natural numbers.
Solution:
Question: 11
Find the mean of x, x + 2, x + 4, x + 6, x + 8
Solution:
Mean = Sum of observations ÷ Number of observations
→ Mean = (x + x + 2 + x + 4 + x + 6 + x + 8) ÷ 5
→ Mean = (5x + 20) ÷ 5
→ Mean = 5(x + 4)5
→ Mean = x + 4
Question: 12
Find the mean of first five multiples of 3.
Solution:
The first five multiples of 3 are 3, 6, 9, 12 and 15.
Question: 13
Following are the weights (in kg) of 10 new born babies in a hospital on a particular day: 3.4, 3.6, 4.2, 4.5, 3.9, 4.1, 3.8, 4.5, 4.4, 3.6 Find the mean
Solution:
We Have
Question: 14
The percentage of marks obtained by students of a class in mathematics are:
64, 36, 47, 23, 0, 19, 81, 93, 72, 35, 3, 1 Find their mean.
Solution:
We have.
Question: 15
The numbers of children in 10 families of a locality are:
2, 4, 3, 4, 2, 3, 5, 1, 1, 5 Find the mean number of children per family.
Solution:
= 3.
Thus, on an average there are 3 children per family in the locality.
Question: 16
The mean of marks scored by 100 students was found to be 40. Later on it was discovered that a score of 53 was misread as 83. Find the correct mean.
Solution:
We have:
n = The number of observations = 100, Mean = 40
→ Sum of the observations = 40 x 100
Thus, the incorrect sum of the observations = 40 x 100 = 4000.
Now,
The correct sum of the observations = Incorrect sum of the observations – Incorrect observation + Correct observation
→ The correct sum of the observations = 4000 – 83 + 53
→ The correct sum of the observations = 4000 – 30 = 3970
Question: 17
The mean of five numbers is 27. If one number is excluded, their mean is 25. Find the excluded number.
Solution:
We have:
So, sum of the five numbers = 5 x 27 = 135.
Now,
So, sum of the four numbers = 4 x 25 = 100.
Therefore, the excluded number = Sum of the five number – Sum of the four numbers
→ The excluded number = 135 – 100 = 35.
Question: 18
The mean weight per student in a group of 7 students is 55 kg. The individual weights of 6 of them (in kg) are 52, 54, 55, 53, 56 and 54. Find the weight of the seventh student.
Solution:
We have:
Let the weight of the seventh student be x kg.
Thus, the weight of the seventh student is 61 kg.
Question: 19
The mean weight of 8 numbers is 15 kg. If each number is multiplied by 2, what will be the new mean?
Solution:
Let x1, x2, x3…x8 be the eight numbers whose mean is 15 kg. Then,
x1 + x2 + x3 + …+ x8 = 15 × 8
→x1 + x2 + x3 +…+ x8 = 120.
Let the new numbers be 2x1, 2x2, 2x3 …2x8. Let M be the arithmetic mean of the new numbers.
Then,
Question: 20
The mean of 5 numbers is 18. If one number is excluded, their mean is 16. Find the excluded number.
Solution:
Let x1, x2, x3, x4 and x5 be five numbers whose mean is 18. Then,
18 = Sum of five numbers ÷ 5
∴ Sum of five numbers = 18 × 5 = 90
Now, if one number is excluded, then their mean is 16.
So,
16 = Sum of four numbers ÷ 4
∴ Sum of four numbers = 16 × 4 = 64.
The excluded number = Sum of five observations – Sum of four observations
∴ The excluded number = 90 – 64
∴ The excluded number = 26.
Question: 21
The mean of 200 items was 50. Later on, it was discovered that the two items were misread as 92 and 8 instead of 192 and 88. Find the correct mean.
Solution:
n = Number of observations = 200
→ Sum of the observations = 50 x 200 = 10,000.
Thus, the incorrect sum of the observations = 50 x 200
Now,
The correct sum of the observations = Incorrect sum of the observations – Incorrect observations + Correct observations
→ Correct sum of the observations = 10,000 – (92 + 8) + (192 + 88)
→ Correct sum of the observations = 10,000 – 100 + 280
→ Correct sum of the observations = 9900 + 280
→ Correct sum of the observations = 10,180.
Question: 22
The mean of 5 numbers is 27. If one more number is included, then the mean is 25. Find the included number.
Solution:
We have:
Mean = Sum of five numbers ÷ 5
→ Sum of the five numbers = 27 × 5 = 135.
Now, New mean = 25
25 = Sum of six numbers ÷ 6
→ Sum of the six numbers = 25 × 6 = 150.
The included number = Sum of the six numbers – Sum of the five numbers
→ The included number = 150 – 135
→ The included number = 15.
Question: 23
The mean of 75 numbers is 35. If each number is multiplied by 4, find the new mean.
Solution:
Let x1, x2, x3…x75 be 75 numbers with their mean equal to 35. Then,
x1 + x2 + x3 +…+x75 = 35 × 75
→ x1 + x2 + x3 +…+ x75 = 2625
The new numbers are 4 x 1, 4 x 2, 4 x 3…4 x 75
Let M be the arithmetic mean of the new numbers. Then,
→ M = 140.
Exercise 23.2
Question: 1
A die was thrown 20 times and the following scores were recorded:
5, 2, 1, 3, 4, 4, 5, 6, 2, 2, 4, 5, 5, 6, 2, 2, 4, 5, 5, 1
Prepare the frequency table of the scores on the upper face of the die and find the mean score.
Solution:
Question: 2
The daily wages (in Rs) of 15 workers in a factory are given below:
200, 180, 150, 150, 130, 180, 180, 200, 150, 130, 180, 180, 200, 150, 180
Prepare the frequency table and find the mean wage.
Solution:
Exercise 23.3
Question: 1
Data – 83, 37, 70, 29, 45, 63, 41, 70, 34, 54
Solution:
Question: 2
Data – 133, 73, 89, 108, 94,104, 94, 85, 100, 120
Solution:
Question: 3
Data – 31, 38, 27, 28, 36, 25, 35, 40
Solution:
Question: 4
Data – 15, 6, 16, 8, 22, 21, 9, 18, 25
Solution:
Question: 5
Data – 41, 43,127, 99, 71, 92, 71, 58, 57
Solution:
Question: 6
Data – 25, 34, 31, 23, 22, 26, 35, 29, 20, 32
Solution:
Question: 7
Data – 12, 17, 3, 14, 5, 8, 7, 15
Solution:
Question: 8
Data – 92, 35, 67, 85, 72, 81, 56, 51, 42, 69
Solution:
Question: 9
Numbers 50, 42, 35, 2x +10, 2x – 8, 12, 11, 8, 6 are written in descending order and their median is 25, find x.
Solution:
Question: 10
Find the median of the following observations: 46, 64, 87, 41, 58, 77, 35, 90, 55, 92, 33. If 92 is replaced by 99 and 41 by 43 in the above data, find the new median?
Solution:
Question: 11
Find the median of the following data: 41, 43, 127, 99, 61, 92, 71, 58, 57, If 58 is replaced by 85, what will be the new median?
Solution:
Question: 12
The weights (in kg) of 15 students are: 31, 35, 27, 29, 32, 43, 37, 41, 34, 28, 36, 44, 45, 42, 30. Find the median. If the weight 44 kg is replaced by 46 kg and 27 kg by 25 kg, find the new median.
Solution:
Question: 13
The following observations have been arranged in ascending order. If the median of the data is 63, find the value of x: 29, 32, 48, 50, x, x + 2, 72, 78, 84, 95
Solution:
Exercise 23.4
Question: 1
Find the mode and median of the data: 13, 16, 12, 14, 19, 12, 14, 13, 14
By using the empirical relation also find the mean.
Solution:
Arranging the data in ascending order such that same numbers are put together, we get:
12, 12, 13, 13, 14, 14, 14, 16, 19
Here, n = 9.
Here, 14 occurs the maximum number of times, i.e., three times. Therefore, 14 is the mode of the data.
Now,
Mode = 3 Median – 2 Mean
→ 14 = 3 x 14 – 2 Mean
→ 2 Mean = 42 – 14 = 28
→ Mean = 28 ÷ 2 = 14.
Question: 2
Find the median and mode of the data: 35, 32, 35, 42, 38, 32, 34
Solution:
Arranging the data in ascending order such that same numbers are put together, we get:
32, 32, 34, 35, 35, 38, 42
Here, n = 7
Here, 32 and 35, both occur twice. Therefore, 32 and 35 are the two modes.
Question: 3
Find the mode of the data: 2, 6, 5, 3, 0, 3, 4, 3, 2, 4, 5, 2, 4
Solution:
Arranging the data in ascending order such that same values are put together, we get:
0, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6
Here, 2, 3 and 4 occur three times each. Therefore, 2, 3 and 4 are the three modes.
Question: 4
The runs scored in a cricket match by 11 players are as follows:
6, 15, 120, 50, 100, 80, 10, 15, 8, 10, 10
Find the mean, mode and median of this data.
Solution:
Arranging the data in ascending order such that same values are put together, we get:
6, 8, 10, 10, 15, 15, 50, 80, 100, 120
Here, n = 11
Here, 10 occur three times. Therefore, 10 is the mode of the given data.
Now,
Mode = 3 Median – 2 Mean
→ 10 = 3 x 15 – 2 Mean
→ 2 Mean = 45 – 10 = 35
→ Mean = 35 ÷ 2 = 17.5
Question: 5
Find the mode of the following data:
12, 14, 16, 12, 14, 14, 16, 14, 10, 14, 18, 14
Solution:
Arranging the data in ascending order such that same values are put together, we get:
10, 12, 12, 14, 14, 14, 14, 14, 14, 16, 18
Here, clearly, 14 occurs the most number of times.
Therefore, 14 is the mode of the given data.
Discover more from EduGrown School
Subscribe to get the latest posts sent to your email.