Exercise 8A
Question 1.
Solution:
(i) 24 : 40
HCF of 24, 40 = 8
24 : 40 = 24 ÷ 8 : 40 ÷ 8 = 3 : 5 (Dividing by 8)
(ii) 13.5 : 15 or 135 : 150
HCF of 135 and 150 = 15
135 ÷ 15 : 150 ÷ 15 (Dividing by 15)
= 9 : 10
HCF of 25, 65, 80 = 5
Dividing by 5,
5 : 13 : 16
Question 2.
Solution:
(i) 75 paise : 3 rupees = 75 paise : 300 paise
(converting into same kind)
HCF of 75, 300 = 75
75 : 300 = 75 ÷ 75 : 300 ÷ 75 (Dividing by 75) = 1 : 4
(ii) 1 m 5 cm : 63 cm = 105 cm : 63 cm
(converting into same kind)
HCF of 105 and 63 = 21
105 ÷ 21 : 63 ÷ 21 (Dividing by 21)
= 5 : 3
(iii) 1 hour 5 minutes : 45 minutes = 65 minutes : 45 minutes
(converting into minutes)
13 : 9 (dividing by 5)
= 13 : 9
(iv) 8 months : 1 year = 8 months : 12 months
(converting into the same kind)
HCF of 8 and 12 = 4
Dividing by 4
8 ÷ 4 : 12 ÷ 4
= 2 : 3
(v) 2 kg 250 g : 3 kg = 2250 g : 3000 g (converting into the same kind)
HCF of 2250 and 3000 = 750
Dividing by 750,
2250 ÷ 750 : 3000 ÷ 750 = 3 : 4
(vi) 1 km : 750 m = 1000 m : 750 m
(converting into metre)
= 4 : 3 (dividing by 250)
= 4 : 3
Question 3.
Solution:
Question 4.
Solution:
A : B = 5 : 8, B : C = 16 : 25
Question 5.
Solution:
A : B = 3 : 5, B : C = 10 : 13
A : B : C = 6 : 10 : 13
Question 6.
Solution:
A : B = 5 : 6 and B : C = 4 : 7
Question 7.
Solution:
Total amount = Rs. 360
Sum of ratios = 7 + 8 = 15
Question 8.
Solution:
Total amount = Rs. 880
Question 9.
Solution:
Total amount = Rs. 5600
Ratio in A : B : C = 1 : 3 : 4
Question 10.
Solution:
Let x be added to each term Then
9 + x : 16 + x = 2 : 3
Question 11.
Solution:
Let x be subtracted from each term Then
(17 – x) : (33 – x) = 7 : 15
Question 12.
Solution:
Ratio in two numbers = 7 : 11
Let first number = 7x
Then second number = 11x
Then adding 7 to each number, the ratio is 2 : 3
7x+711x+7 = 23
By cross multiplying:
3 (7x + 7) = 2 (11x + 7)
⇒ 21x + 21 = 22x + 14
⇒ 21 – 14 = 22x – 21x
⇒ x = 7
First number = 7x = 7 x 7 = 49
and second number = 11x = 11 x 7 = 77
Hence numbers are 49, 77
Question 13.
Solution:
The ratio in two numbers = 5 : 9
Let the first number = 5x
Then second number = 9x
By subtracting 3 from each number the ratio is 1 : 2
5x–39x–3 = 12
By cross multiplication,
2 (5x – 3) = 1 (9x – 3)
⇒ 10x – 6 = 9x – 3
⇒ 10x – 9x = -3 + 6
⇒ x = 3
First number = 5x = 5 x 3 = 15
and second .number = 9x = 9 x 3 = 27
Hence numbers are 15, 27
Question 14.
Solution:
Ratio in two numbers = 3 : 4
LCM = 180
Let first number = 3x
Then second number = 4x
Now LCM = 3 x 4 x x = 12x
12x = 180
⇒ x = 15
Numbers will be 3 x 15 = 45 and 4 x 15 = 60
Question 15.
Solution:
Ratio in present ages of A and B = 8 : 3
Let A’s age = 8x
Then B’s age = 3x
6 years hence,
A’s age will be = 8x + 6
and B’s will be = 3x + 6
8x+63x+6 = 94
(By cross multiplication)
4 (8x + 6) = 9 (3x + 6)
⇒ 32x + 24 = 27x + 54
⇒ 32x – 27x = 54 – 24
⇒ 5x = 30
⇒ x = 6
A’s present age = 8x = 8 x 6 = 48 years
and B’s age = 3x = 3 x 6 = 18 years
Question 16.
Solution:
Ratio in copper and zinc = 9 : 5
Let alloy = x gm
Question 17.
Solution:
Ratio in boys and girls = 8 : 3
and total number of girls = 375
Let number of boys = 8x
Then number of girls = 3x
3x = 375
⇒ x = 125
Number of boys = 8x = 8 x 125 = 1000
Question 18.
Solution:
Ratio in income and savings = 11 : 2
Let income = 11x
Then savings = 2x
But savings = Rs. 2500
2x = 2500
⇒ x = 1250
Then income = 1250 x 11 = Rs. 13750
and expenditure = Total income – savings = 13750 – 2500 = Rs. 11250
Question 19.
Solution:
Total amount = Rs. 750
Ratio in rupee, 50 P and 25 P coins =5 : 8 : 4
Let number of rupees = 5x
Number of 50 P coins = 8x
and number of 25 coins = 4x
According to the condition,
Number of 1 Re coins = 5x = 5 x 75 = 375
Number of 50 P coins = 8x = 8 x 75 = 600
and number of 25 P coins = 4x = 4 x 75 = 300
Question 20.
Solution:
(4x + 5) : (3x + 11) = 13 : 17
4x+53x+11 = 1317
By cross multiplication,
68x + 85 = 39x + 143
⇒ 68x – 39x = 143 – 85
⇒ 29x = 58
x = 2
Hence x = 2
Question 21.
Solution:
x : y = 3 : 4
Question 22.
Solution:
x : y = 6 : 11
xy = 611
Now (8x – 3y) : (3x + 2y)
Question 23.
Solution:
Sum of two numbers = 720
Ratio of two numbers = 5 : 7
Let first number = 5x
Then second number = 7x
5x + 7x = 720
⇒ 12x = 720
⇒ x = 60
First number = 5x = 5 x 60 = 300
and second number = 7x = 7 x 60 = 420
Question 24.
Solution:
(i) (5 : 6) or (7 : 9)
Question 25.
Solution:
(i) (5 : 6), (8 : 9), (11 : 18)
Exercise 8B
Question 1.
Solution:
We know that a, b, c, d are in proportion if ad = bc
Now 30, 40, 45, 60 are in proportion
if 30 x 60 = 40 x 45
if 1800= 1800
which is true
30, 40, 45, 60 are in proportion.
Question 2.
Solution:
We know that if a, b, c, d are in proportion if ad = bc
Now 36, 49, 6, 7 are in proportion
if 36 x 7 = 49 x 6
if 252 = 294
But 252 ≠ 294
36, 49, 6, 7 are not in proportion
Question 3.
Solution:
2 : 9 : : x : 27
9 x x = 2 x 27
x = 2×279 = 2 x 3 = 6
Question 4.
Solution:
8 : x : : 16 : 35
x x 16 = 8 x 35
x = 8×356 = 352 = 17.5
Question 5.
Solution:
x : 35 : : 48 : 60
x x 60 = 35 x 48
x = 7 x 4 = 28
Question 6.
Solution:
Let x be the fourth proportional, then
x = 352 = 17.5
Fourth proportional = 17.5
Question 7.
Solution:
36, 54, x are in continued proportion
36 : 54 : : 54 : x
⇒ 36 x x = 54 x 54
Question 8.
Solution:
27, 36, x are in continued proportion
27 : 36 :: 36 : x
27 x x = 36 x 36
Question 9.
Solution:
Let x be the third proportional, then
(i) 8 : 12 : : 12 : x
Question 10.
Solution:
Third proportional = 28 then
7 : x :: x : 28
⇒ 7 x 28 = x x x
⇒ x2 = 28 x 7 = 196
⇒ x = √196 = 14
x = 14
Question 11.
Solution:
Let x be the mean proportional, then
(i) 6 : x :: x : 24
⇒ x2 = 6 x 24 = 144
x = √144 = 12
Mean proportional = 12
(ii) 3 : x : : x : 27
⇒ x2 = 3 x 27 = 81
x = √81 = 9
Mean proportional = 9
(iii) 0.4 : x :: x : 0.9
⇒ x2 = 0.4 x 0.9
x = √o.36 = 0.6
Mean proportional = 0.6
Question 12.
Solution:
Let x be added to each of the given numbers then
5 + x, 9 + x, 7 + x, 12 + x are in proportion
5+x9+x = 7+x12+x
By cross multiplication :
(5 + x) (12 + x) = (7 + x) (9 + x)
⇒ 60 + 5x + 12x + x2 = 63 + 7x + 9x + x2
⇒ 60 + 17x + x2 = 63 + 16x + x2
⇒ 17x + x2 – 16x – x2 = 63 – 60
⇒ x = 3
Required number = 3
Question 13.
Solution:
Let x be subtracted from each of the given number, then
10 – x, 12 – x, 19 – x and 24 – x are in proportion
10–x12–x = 19–x24–x
By cross multiplication :
(10 – x) (24 – x) = (19 – x) (12 – x)
⇒ 240 – 10x – 24x + x2 = 228 – 19x – 12x + x2
⇒ 240 – 34x + x2 = 228 – 31x + x2
⇒ -34x + x2 + 31x – x2 = 228 – 240
⇒ -3x = -2
⇒ 3x = 12
⇒ x = 4
Required number = 4
Question 14.
Solution:
Scale of map = 1 : 5000000
Distance between two town on the map = 4 cm
Question 15.
Solution:
Height of a tree = 6 cm
and its shadow at same time = 8 m
Shadow of a pole = 20 m
Let height of pole = x m
6 : 8 = x : 20
⇒ x= 6×208 = 15 m
Height of pole = 15 m
Exercise 8C
Objective questions :
Mark (✓) against the correct answers in each of the following :
Question 1.
Solution:
(d) a : b = 3 : 4, b : c = 8 : 9
Question 2
Solution:
(a) A : B = 2 : 3, B : C = 4 : 5
Question 3.
Solution:
(d)
Question 4.
Solution:
(b) 15% of A = 20% of B
Question 5.
Solution:
(a)
Question 6.
Solution:
(b) A : B = 5 : 7, B : C = 6 : 11
LCM of 7, 6 = 42
Question 7.
Solution:
(c) 2A = 3B = 4C = x
Question 8.
Solution:
(a)
A3 = B4 = C5 = 1(suppose)
A = 3, B = 4, C = 5
A : B : C = 3 : 4 : 5
Question 9.
Solution:
(b)
Question 10.
Solution:
(c)
Question 11.
Solution:
(c) (3a + 5b) : (3a – 5b) = 5 : 1
Question 12.
Solution:
(c) 7 : x :: 35 : 45
x = 9
Question 13.
Solution:
(b) Let x to be added to each term of 3 : 5
Then 3+x5+x = 56
By cross multiplication
18 + 6x = 25 + 5x
6x – 5x = 25 – 18
x = 7
7 is to be added
Question 14.
Solution:
(d) Ratio in two numbers = 3 : 5
Let first number = 3x
Then second number = 5x
According to the condition,
3x+105x+10 = 57
(By cross multiplication)
25x + 50 = 21x + 70
25x – 21x = 70 – 50
4x = 20
x = 5
First number = 3 x 5 = 15
and second number = 5 x 5 = 25
Sum of numbers = 15 + 25 = 40
Question 15.
Solution:
(a)
Let x be subtracted from each of the term
15–x19–x = 34
⇒ 4 (15 – x) = 3 (19 – x)
⇒ 60 – 4x = 57 – 3x
⇒ -4x + 3x = 57 – 60
⇒ -x = -3
x = 3
Required number = 3
Question 16.
Solution:
(a)
Amount = Rs. 420
and ratio = 3 : 4
Sum of ratios = 3 + 4 = 7
A’s share = 420×37 = Rs. 60 x 3 = Rs. 180
Question 17.
Solution:
(d)
Let number of boys = x, then
x : 160 : : 8 : 5
⇒ x x 5 = 160 x 8
x = 160×85 = 32 x 8 = 256
Number of total students of the school = 256 + 160 = 416
Question 18.
Solution:
(a)
Question 19.
Solution:
(c)
Let x be the third proportional to 9 and 12 then
9 : 12 :: x : 12
⇒ 9 x x = 12 x 12
⇒ x = 12×129 = 1449 = 16
Third proportional = 16
Question 20.
Solution:
Answer = (b)
Mean proportional of 9 and 16 = √(9 x 16) = √144 = 12
Question 21.
Solution:
(a)
Let age of A = 3x
and age of B = 8x
6 years hence, their ages will be 3x + 6 and 8x + 6
3x+68x+6 = 49
⇒ 9 (3x + 6) = 4 (8x + 6)
⇒ 27x + 54 = 32x + 24
⇒ 32x – 27x = 54 – 24
⇒ 5x = 30
⇒ x = 6
A’s age = 3x = 3 x 6 = 18 years
Discover more from EduGrown School
Subscribe to get the latest posts sent to your email.