Chapter 11 Perimeter  Area quick revision notes |Class 7th |mathematics

Perimeter

 It refers to the length of the outline of the enclosed figure.

Area

 It refers to the surface of the enclosed figure.

Perimeter and Area

Area and Perimeter of Square

Square is a quadrilateral, with four equal sides.

Area = Side × Side

Perimeter = 4 × Side

Example

Find the area and perimeter of a square-shaped cardboard whose length is 5 cm.

Perimeter

Solution

Area of square = (side)2

= (5)2

= 25 cm2

Perimeter of square = 4 × side

= 4 × 5

= 20 cm

Area and Perimeter of Rectangle

The rectangle is a quadrilateral, with equal opposite sides.

Area = Length × Breadth

Perimeter = 2(Length + Breadth)

Example

What is the length of a rectangular field if its width is 20 ft and Area is 500 ft2?

Rectangular field

Solution

Area of rectangular field = length × width

500 = l × 20

l = 500/20

l = 25 ft

Note: Perimeter of a regular polygon = Number of sides × length of one side

Triangles as Parts of Rectangles

If we draw a diagonal of a rectangle then we get two equal sizes of triangles. So the area of these triangles will be half of the area of a rectangle.

Rectangles

The area of each triangle = 1/2 (Area of the rectangle)

Likewise, if we draw two diagonals of a square then we get four equal sizes of triangles .so the area of each triangle will be one-fourth of the area of the square.

Area of the rectangle

The area of each triangle = 1/4 (Area of the square)

Example

What will be the area of each triangle if we draw two diagonals of a square with side 7 cm?

Solution

Area of square = 7 × 7

= 49 cm2

The area of each triangle = 1/4 (Area of the square)

= 1/4 × 49

= 12.25 cm2

Congruent Parts of Rectangles

Two parts of a rectangle are congruent to each other if the area of the first part is equal to the area of the second part.

Example

Congruent Parts of Rectangles

The area of each congruent part = 1/2 (Area of the rectangle)

= 1/2 (l × b) cm2

=1/2 (4 × 3) cm2

= 1/2 (12) cm2

= 6 cm2

Parallelogram

It is a simple quadrilateral with two pairs of parallel sides.

Also denoted as ∥ gm

Area of parallelogram = base × height

 Or b × h (bh)

We can take any of the sides as the base of the parallelogram. And the perpendicular drawn on that side from the opposite vertex is the height of the parallelogram.

Example

Find the area of the figure given below:

Parallelogram

Solution

Base of ∥ gm = 8 cm

Height of ∥ gm = 6 cm

Area of ∥ gm = b × h

= 8 × 6

= 48 cm

Area of Triangle

Triangle is a three-sided closed polygon.

 If we join two congruent triangles together then we get a parallelogram. So the area of the triangle will be half of the area of the parallelogram.

Area of Triangle = 1/2 (Area of  gm)

= 1/2 (base × height)

Example

Find the area of the figure given below:

Triangle

Solution

Area of triangle = 1/2 (base × height)

= 1/2 (12 × 5)

= 1/2 × 60

= 30 cm2

Note: All the congruent triangles are equal in area but the triangles equal in the area need not be congruent.

Circles

It is a round, closed shape.

The circumference of a Circle

The circumference of a circle refers to the distance around the circle.

  • Radius: A straight line from the Circumference till the centre of the circle.
  • Diameter: It refers to the line from one point of the Circumference to the other point of the Circumference.
  • π (pi): It refers to the ratio of a circle’s circumference to its diameter.

Circumference(c) = π × diameter

C = πd

= π × 2r

Circumference

Note: diameter (d) = twice the radius (r)

 d = 2r

Example

What is the circumference of a circle of diameter 12 cm (Take π = 3.14)?

Solution

C = πd

C = 3.14 × 12

= 37.68 cm

Area of Circle

Area of the circle = (Half of the circumference) × radius

= πr2

Area of Circle

Example

Find the area of a circle of radius 23 cm (use π = 3.14).

Solution

R = 23 cm

π = 3.14

Area of circle = 3.14 × 232

= 1,661 cm2

Conversion of Units

Sometimes we need to convert the unit of the given measurements to make it similar to the other given units.

UnitConversion
1 cm10 mm
1 m100 cm
1 km1000 m
1 hectare(ha)100 × 100 m
UnitConversion
1 cm2100 mm2
1 m210000 cm2
1 km21000000 m(1e + 6)
1 ha10000 m2

Example: 1

Convert 70 cmin mm2

Solution:

1 cm = 10 mm

1 cm= 10 × 10

1 cm= 100 mm2

70 cm= 700 mm2

Example: 2

Convert 3.5 ha in m2

Solution:

1 ha = 10000 m2

3.5 ha = 10000 × 3.5

ha = 35000 m2

Applications

We can use these concepts of area and perimeter of plane figures in our day to day life.

  • If we have a rectangular field and want to calculate that how long will be the length of the fence required to cover that field, then we will use the perimeter.
  • If a child has to decorate a circular card with the lace then he can calculate the length of the lace required by calculating the circumference of the card, etc.

Example:

A rectangular park is 35 m long and 20 m wide. A path 1.5 m wide is constructed outside the park. Find the area of the path.

Rectangular Park

Solution

Area of rectangle ABCD – Area of rectangle STUV

AB = 35 + 2.5 + 2.5

= 40 m

AD = 20 + 2.5 + 2.5

= 25 m

Area of ABCD = 40 × 25

= 1000 m2

Area of STUV = 35 × 20

= 700 m2

Area of path = Area of rectangle ABCD – Area of rectangle STUV

= 1000 – 700

= 300 m2

Read More

 Chapter 10 Practical Geometry quick revision notes | class7th |mathematics

Line segment

A line segment is a part of a line with two endpoints.

Practical Geometry

A line perpendicular to a line segment

Any line which is perpendicular to a line segment makes an angle of 90°.

Practical Geometry

Construction of a line parallel to a given line, through a point not on the line

We need to construct it using ruler and compass only.

Step 1: Draw a line PQ and take a point R outside it.

Step 2: Take a point J on the line PQ and join it with R.

Step 3: Take J as a centre and draw an arc with any radius which cuts PQ at C and JR at B.

Step 4: Now with the same radius, draw an arc taking R as a centre.

Step 5: Take the measurement of BC with compass and mark an arc of the same measurement from R to cut the arc at S.

Step 6: Now join RS to make a line parallel to PR.

Practical Geometry

∠ARS = ∠BJC, hence RS ∥ PQ because of equal corresponding angles.

This concept is based on the fact that a transversal between two parallel lines creates a pair of equal corresponding angles.

Remark: This can be done by taking alternate interior angles instead of corresponding angles.

Construction of triangles

The construction of triangles is based on the rules of congruent triangles. A triangle can be drawn if-

  • Three sides are given (SSS criterion).
  • Two sides and an included angle are given (SAS criterion).
  • Two angles and an included side are given. (ASA criterion).
  • A hypotenuse and a side are given for right angle triangle (RHS criterion).

Construction of a triangle with three given sides (SSS criterion)

Example

Draw a triangle ABC with the sides AB = 6 cm, BC = 5 cm and AC = 9 cm.

Solution

Step 1: First of all draw a rough sketch of a triangle, so that we can understand how to go ahead.

Practical Geometry

Step 2: Draw a line segment AB = 6 cm.

Practical Geometry

Step 3: From point A, C is 9 cm away so take A as a centre and draw an arc of 9 cm.

Practical Geometry

Step 4: From point B, C is 5 cm away so take B as centre and draw an arc of 5 cm in such a way that both the arcs intersect with each other.

Practical Geometry

Step 5: This point of intersection of arcs is the required point C. Now join AC and BC.

Practical Geometry

ABC is the required triangle.

Construction of a triangle if two sides and one included angle is given (SAS criterion)

Example

Construct a triangle LMN with LM = 8 am, LN = 5 cm and ∠NLM = 60°.

Solution

Step 1: Draw a rough sketch of the triangle according to the given information.

Practical Geometry

Step 2: Draw a line segment LM = 8 cm.

Practical Geometry

Step 3: draw an angle of 60° at L and make a line LO.

Practical Geometry

Step 4: Take L as a centre and draw an arc of 5 cm on LO.

Practical Geometry

Step 5: Now join NM to make a required triangle LMN.

Practical Geometry

Construction of a triangle if two angles and one included side is given (ASA criterion)

Example

Draw a triangle ABC if BC = 8 cm, ∠B = 60°and ∠C = 70°.

Solution

Step 1: Draw a rough sketch of the triangle.

Practical Geometry

Step 2: Draw a line segment BC = 8 cm.

Practical Geometry

Step 3: Take B as a centre and make an angle of 60° with BC and join BP.

Practical Geometry

Step 4: Now take C as a centre and draw an angle of 70° using a protractor and join CQ. The point where BP and QC intersects is the required vertex A of the triangle ABC.

Practical Geometry

ABC is the required triangle ABC.

Construction of a right angle triangle if the length of the hypotenuse and one side is given (RHScriterion)

Example

Draw a triangle PQR which is right angled at P, with QR =7 cm and PQ = 4.5 cm.

Solution

Step 1: Draw a rough sketch of the triangle.

Practical Geometry

Step 2: Draw a line segment PQ = 4.5 cm.

Draw a line segment PQ = 4.5 cm.

Step 3: At P, draw PS ⊥ PQ. This shows that R must be somewhere on this perpendicular.

Practical Geometry

Step 4: Take Q as a centre and draw an arc of 7 cm which intersects PS at R.

Practical Geometry

Revision Notes on Practical Geometry

Line segment

A line segment is a part of a line with two endpoints.

Practical Geometry

A line perpendicular to a line segment

Any line which is perpendicular to a line segment makes an angle of 90°.

Practical Geometry

Construction of a line parallel to a given line, through a point not on the line

We need to construct it using ruler and compass only.

Step 1: Draw a line PQ and take a point R outside it.

Step 2: Take a point J on the line PQ and join it with R.

Step 3: Take J as a centre and draw an arc with any radius which cuts PQ at C and JR at B.

Step 4: Now with the same radius, draw an arc taking R as a centre.

Step 5: Take the measurement of BC with compass and mark an arc of the same measurement from R to cut the arc at S.

Step 6: Now join RS to make a line parallel to PR.

Practical Geometry

∠ARS = ∠BJC, hence RS ∥ PQ because of equal corresponding angles.

This concept is based on the fact that a transversal between two parallel lines creates a pair of equal corresponding angles.

Remark: This can be done by taking alternate interior angles instead of corresponding angles.

Construction of triangles

The construction of triangles is based on the rules of congruent triangles. A triangle can be drawn if-

  • Three sides are given (SSS criterion).
  • Two sides and an included angle are given (SAS criterion).
  • Two angles and an included side are given. (ASA criterion).
  • A hypotenuse and a side are given for right angle triangle (RHS criterion).

Construction of a triangle with three given sides (SSS criterion)

Example

Draw a triangle ABC with the sides AB = 6 cm, BC = 5 cm and AC = 9 cm.

Solution

Step 1: First of all draw a rough sketch of a triangle, so that we can understand how to go ahead.

Practical Geometry

Step 2: Draw a line segment AB = 6 cm.

Practical Geometry

Step 3: From point A, C is 9 cm away so take A as a centre and draw an arc of 9 cm.

Practical Geometry

Step 4: From point B, C is 5 cm away so take B as centre and draw an arc of 5 cm in such a way that both the arcs intersect with each other.

Practical Geometry

Step 5: This point of intersection of arcs is the required point C. Now join AC and BC.

Practical Geometry

ABC is the required triangle.

Construction of a triangle if two sides and one included angle is given (SAS criterion)

Example

Construct a triangle LMN with LM = 8 am, LN = 5 cm and ∠NLM = 60°.

Solution

Step 1: Draw a rough sketch of the triangle according to the given information.

Practical Geometry

Step 2: Draw a line segment LM = 8 cm.

Practical Geometry

Step 3: draw an angle of 60° at L and make a line LO.

Practical Geometry

Step 4: Take L as a centre and draw an arc of 5 cm on LO.

Practical Geometry

Step 5: Now join NM to make a required triangle LMN.

Practical Geometry

Construction of a triangle if two angles and one included side is given (ASA criterion)

Example

Draw a triangle ABC if BC = 8 cm, ∠B = 60°and ∠C = 70°.

Solution

Step 1: Draw a rough sketch of the triangle.

Practical Geometry

Step 2: Draw a line segment BC = 8 cm.

Practical Geometry

Step 3: Take B as a centre and make an angle of 60° with BC and join BP.

Practical Geometry

Step 4: Now take C as a centre and draw an angle of 70° using a protractor and join CQ. The point where BP and QC intersects is the required vertex A of the triangle ABC.

Practical Geometry

ABC is the required triangle ABC.

Construction of a right angle triangle if the length of the hypotenuse and one side is given (RHScriterion)

Example

Draw a triangle PQR which is right angled at P, with QR =7 cm and PQ = 4.5 cm.

Solution

Step 1: Draw a rough sketch of the triangle.

Practical Geometry

Step 2: Draw a line segment PQ = 4.5 cm.

Draw a line segment PQ = 4.5 cm.

Step 3: At P, draw PS ⊥ PQ. This shows that R must be somewhere on this perpendicular.

Practical Geometry

Step 4: Take Q as a centre and draw an arc of 7 cm which intersects PS at R.

Practical Geometry
Read More

Chapter 9 Rational Numbers quick revision Notes | class 7th | mathematics

Rational Numbers are the numbers that can be expressed in the form p/q where p and q are integers (q ≠ 0). It includes all natural, whole numbers, fractions and integers.

Rational Numbers

Equivalent Rational Numbers

By multiplying or dividing the numerator and denominator of a rational number by the same integer, we can obtain another rational number equivalent to the given rational number.

Numbers are said to be equivalent if they are proportionate to each other.

Example

Therefore 1/2, 2/4, 4/8 are equivalent to each other as they are equal to each other.

Positive and Negative Rational Numbers

1. Positive Rational Numbers are the numbers whose both the numerator and denominator are positive.

Example: 3/4, 12/24 etc.

2. Negative Rational Numbers are the numbers whose one of the numerator or denominator is negative.

Example: (-2)/6, 36/(-3) etc.

Remark: The number 0 is neither a positive nor a negative rational number.

Rational Numbers on the Number Line

Representation of whole numbers, natural numbers and integers on a number line is done as follows

Integers

Rational Numbers can also be represented on a number line like integers i.e. positive rational numbers are on the right to 0 and negative rational numbers are on the left of 0.

Representation of rational numbers can be done on a number line as follows

Rational Numbers represented on a number line

Rational Numbers in Standard Form

A rational number is in the standard form if its denominator is a positive integer and there is no common factor between the numerator and denominator other than 1.

If any given rational number is not in the standard form then we can reduce it to its standard form or the lowest form by dividing its numerator and denominator by their HCF ignoring its negative sign.

Example

Find the standard form of 12/18

Solution

2/3 is the standard or simplest form of 12/18

Comparison of Rational Numbers

1. To compare the two positive rational numbers we need to make their denominator same, then we can easily compare them.

Example

Compare 4/5 and 3/8 and tell which one is greater.

Solution

To make their denominator same, we need to take the LCM of the denominator of both the numbers.

LCM of 5 and 8 is 40.

2. To compare two negative rational numbers, we compare them ignoring their negative signs and then reverse the order.

Example

Compare – (2/5) and – (3/7) and tell which one is greater.

Solution

To compare, we need to compare them as normal numbers.

LCM of 5 and 7 is 35.

by reversing the order of the numbers.

3. If we have to compare one negative and one positive rational number then it is clear that the positive rational number will always be greater as the positive rational number is on the right to 0 and the negative rational numbers are on the left of 0.

Example

Compare 2/5 and – (2/5) and tell which one is greater.

Solution

It is simply that 2/5 > – (2/5)

Rational Numbers between Rational Numbers

To find the rational numbers between two rational numbers, we have to make their denominator same then we can find the rational numbers.

Example

Find the rational numbers between 3/5 and 3/7.

Solution

To find the rational numbers between 3/5 and 3/7, we have to make their denominator same.

LCM of 5 and 7 is 35.

Hence the rational numbers between 3/5 and 3/7 are

These are not the only rational numbers between 3/5 and 3/7.

If we find the equivalent rational numbers of both 3/5 and 3/7 then we can find more rational numbers between them.

Hence we can find more rational numbers between 3/5 and 3/7.

Remark: There are “n” numbers of rational numbers between any two rational numbers.

Operations on Rational Numbers

1. Addition

a. Addition of two rational numbers with the same denominator

i. We can add it using a number line.

Example:

Add 1/5 and 2/5

Solution:

On the number line we have to move right from 0 to 1/5 units and then move 2/5 units more to the right.

Rational numbers with the same denominator

ii. If we have to add two rational numbers whose denominators are same then we simply add their numerators and the denominator remains the same.

Example

Add 3/11 and 7/11.

Solution

As the denominator is the same, we can simply add their numerator.

b. Addition of two Rational Numbers with different denominator

If we have to add two rational numbers with different denominators then we have to take the LCM of denominators and find their equivalent rational numbers with the LCM as the denominator, and then add them.

Example

Add 2/5 and 3/7.

Solution

To add the two rational numbers, first, we need to take the LCM of denominators the find the equivalent rational numbers.

LCM of 5 and 7 is 35.

c. Additive Inverse

Like integers, the additive inverse of rational numbers is also the same.

Additive Inverse

This shows that the additive inverse of 3/7 is – (3/7)
This shows that

2. Subtraction

If we have to subtract two rational numbers then we have to add the additive inverse of the rational number that is being subtracted to the other rational number.

a – b = a + (-b)

Example

Subtract 4/21 from 8/21.

Solution

i. In the first method, we will simply subtract the numerator and the denominator remains the same.

ii. In the second method, we will add the additive inverse of the second number to the first number.

3. Multiplication

a. Multiplication of a Rational Number with a Positive Integer.

To multiply a rational number with a positive integer we simply multiply the integer with the numerator and the denominator remains the same.

Example

b. Multiply of a Rational Number with a Negative Integer

To multiply a rational number with a negative integer we simply multiply the integer with the numerator and the denominator remains the same and the resultant rational number will be a negative rational number.

Example

c. Multiply of a Rational Number with another Rational Number

To multiply a rational number with another rational number we have to multiply the numerator of two rational numbers and multiply the denominator of the two rational numbers.

The Product of Two Rational Numbers

Example

Multiply 3/7 and 5/11.

Solution

4. Division

a. Reciprocal

Reciprocal is the multiplier of the given rational number which gives the product of 1.

Reciprocal of a/b is b/a

Reciprocal

Product of Reciprocal

If we multiply the reciprocal of the rational number with that rational number then the product will always be 1.

Example

b. Division of a Rational Number with another Rational Number

To divide a rational number with another rational number we have to multiply the reciprocal of the rational number with the other rational number.

Example

Divide

Solution

Rational Numbers

Rational Numbers are the numbers that can be expressed in the form p/q where p and q are integers (q ≠ 0). It includes all natural, whole numbers, fractions and integers.

Rational Numbers

Equivalent Rational Numbers

By multiplying or dividing the numerator and denominator of a rational number by the same integer, we can obtain another rational number equivalent to the given rational number.

Numbers are said to be equivalent if they are proportionate to each other.

Example

Therefore 1/2, 2/4, 4/8 are equivalent to each other as they are equal to each other.

Positive and Negative Rational Numbers

1. Positive Rational Numbers are the numbers whose both the numerator and denominator are positive.

Example: 3/4, 12/24 etc.

2. Negative Rational Numbers are the numbers whose one of the numerator or denominator is negative.

Example: (-2)/6, 36/(-3) etc.

Remark: The number 0 is neither a positive nor a negative rational number.

Rational Numbers on the Number Line

Representation of whole numbers, natural numbers and integers on a number line is done as follows

Integers

Rational Numbers can also be represented on a number line like integers i.e. positive rational numbers are on the right to 0 and negative rational numbers are on the left of 0.

Representation of rational numbers can be done on a number line as follows

Rational Numbers represented on a number line

Rational Numbers in Standard Form

A rational number is in the standard form if its denominator is a positive integer and there is no common factor between the numerator and denominator other than 1.

If any given rational number is not in the standard form then we can reduce it to its standard form or the lowest form by dividing its numerator and denominator by their HCF ignoring its negative sign.

Example

Find the standard form of 12/18

Solution

2/3 is the standard or simplest form of 12/18

Comparison of Rational Numbers

1. To compare the two positive rational numbers we need to make their denominator same, then we can easily compare them.

Example

Compare 4/5 and 3/8 and tell which one is greater.

Solution

To make their denominator same, we need to take the LCM of the denominator of both the numbers.

LCM of 5 and 8 is 40.

2. To compare two negative rational numbers, we compare them ignoring their negative signs and then reverse the order.

Example

Compare – (2/5) and – (3/7) and tell which one is greater.

Solution

To compare, we need to compare them as normal numbers.

LCM of 5 and 7 is 35.

by reversing the order of the numbers.

3. If we have to compare one negative and one positive rational number then it is clear that the positive rational number will always be greater as the positive rational number is on the right to 0 and the negative rational numbers are on the left of 0.

Example

Compare 2/5 and – (2/5) and tell which one is greater.

Solution

It is simply that 2/5 > – (2/5)

Rational Numbers between Rational Numbers

To find the rational numbers between two rational numbers, we have to make their denominator same then we can find the rational numbers.

Example

Find the rational numbers between 3/5 and 3/7.

Solution

To find the rational numbers between 3/5 and 3/7, we have to make their denominator same.

LCM of 5 and 7 is 35.

Hence the rational numbers between 3/5 and 3/7 are

These are not the only rational numbers between 3/5 and 3/7.

If we find the equivalent rational numbers of both 3/5 and 3/7 then we can find more rational numbers between them.

Hence we can find more rational numbers between 3/5 and 3/7.

Remark: There are “n” numbers of rational numbers between any two rational numbers.

Operations on Rational Numbers

1. Addition

a. Addition of two rational numbers with the same denominator

i. We can add it using a number line.

Example:

Add 1/5 and 2/5

Solution:

On the number line we have to move right from 0 to 1/5 units and then move 2/5 units more to the right.

Rational numbers with the same denominator

ii. If we have to add two rational numbers whose denominators are same then we simply add their numerators and the denominator remains the same.

Example

Add 3/11 and 7/11.

Solution

As the denominator is the same, we can simply add their numerator.

b. Addition of two Rational Numbers with different denominator

If we have to add two rational numbers with different denominators then we have to take the LCM of denominators and find their equivalent rational numbers with the LCM as the denominator, and then add them.

Example

Add 2/5 and 3/7.

Solution

To add the two rational numbers, first, we need to take the LCM of denominators the find the equivalent rational numbers.

LCM of 5 and 7 is 35.

c. Additive Inverse

Like integers, the additive inverse of rational numbers is also the same.

Additive Inverse

This shows that the additive inverse of 3/7 is – (3/7)
This shows that

2. Subtraction

If we have to subtract two rational numbers then we have to add the additive inverse of the rational number that is being subtracted to the other rational number.

a – b = a + (-b)

Example

Subtract 4/21 from 8/21.

Solution

i. In the first method, we will simply subtract the numerator and the denominator remains the same.

ii. In the second method, we will add the additive inverse of the second number to the first number.

3. Multiplication

a. Multiplication of a Rational Number with a Positive Integer.

To multiply a rational number with a positive integer we simply multiply the integer with the numerator and the denominator remains the same.

Example

b. Multiply of a Rational Number with a Negative Integer

To multiply a rational number with a negative integer we simply multiply the integer with the numerator and the denominator remains the same and the resultant rational number will be a negative rational number.

Example

c. Multiply of a Rational Number with another Rational Number

To multiply a rational number with another rational number we have to multiply the numerator of two rational numbers and multiply the denominator of the two rational numbers.

The Product of Two Rational Numbers

Example

Multiply 3/7 and 5/11.

Solution

4. Division

a. Reciprocal

Reciprocal is the multiplier of the given rational number which gives the product of 1.

Reciprocal of a/b is b/a

Reciprocal

Product of Reciprocal

If we multiply the reciprocal of the rational number with that rational number then the product will always be 1.

Example

b. Division of a Rational Number with another Rational Number

To divide a rational number with another rational number we have to multiply the reciprocal of the rational number with the other rational number.

Example

Divide

Solution

Read More

Chapter 8 Comparing Quantities Quick Revision notes | class7th | Mathematics

The ratio is used to compare two quantities. These quantities must have the same units.

The ratio is represented by “:”, which is read as “to”. We can write it in the form of “fraction”.

Revision Notes on Comparing Quantities

Example

Write the ratio of the height of Sam to John, where Sam’s height is 175 cm and john’s height is 125 cm.

Solution

The ratio of Sam’s height to John’s height is 175: 125 = 7: 5.

We can write it in fraction as 7/5.

Equivalent Ratios

The equivalent ratio is like the equivalent fractions so to find the equivalent ratio we need to write it in the form of a fraction. To find the equivalent ratio we need to multiply or divide the numerator and denominator with the same number.

Example

Find the two equivalent ratios of 5: 20.

Solution

First multiply it by 2.

Revision Notes on Comparing Quantities

So the two equivalent ratios are 10:40 and 1: 4.

To compare that the two ratios are equivalent or not we need to convert them in the form of like a fraction. Like fractions are the fractions with the same denominator.

Example

Check whether the ratios 2: 3 and 3: 4 are equivalent are not?

Solution

To check, first, we need to make their denominator same.

Revision Notes on Comparing Quantities

Hence the ratio 2:3 is not equivalent to 3:4.

Proportion

Proportion shows the equality between two ratios. If two ratios are in proportion then these must be equal.

Revision Notes on Comparing Quantities

How to solve proportion problems?

Example

If the cost of 8 strawberries is Rs. 64 then what will be the cost of 25 strawberries.

Revision Notes on Comparing Quantities

Solution

Using Unitary Method

Revision Notes on Comparing Quantities

Solution using proportion

Let the cost of 25 strawberries = Rs. x

Revision Notes on Comparing Quantities

Hence the cost of 25 strawberries is Rs. 200

Percentage

The percentage is another way of comparisons. In ratios we have to make the denominator same then only we can compare them but in percentage, we can compare by calculating the percentage of the given quantity.

The percentage is the numerator of the fraction with the 100 denominators.

Symbol of Percentage

Revision Notes on Comparing Quantities
Revision Notes on Comparing Quantities

Example

What is the percentage of boys and girls in the class of 100 students if the number of boys is 55 and the number of girls is 45?

Solution

Revision Notes on Comparing Quantities

Percentage if the total is not a hundred

If the total number of quantity is not hundred i.e. the denominator is not hundred then to find the percentage we need to make the denominator 100.

Example

Out of 4 bees, 2 are going right and 2 are going left. So what percentage of bees is going right?

Revision Notes on Comparing Quantities

Solution

Unitary Method

Out of 4 bees, the number of bees going right are 2. Hence, out of 100, the number of bees going right is

Revision Notes on Comparing Quantities

By making denominator 100

Out of 4 bees, the number of bees going right is 2.

Revision Notes on Comparing Quantities

Converting fractional numbers to percentage

Fractional numbers have different denominator and to convert them into percentage we have to multiply the fraction with the 100%.

Example

Out of 15 fishes, 5 are red. What is the percentage of the red fishes?

Revision Notes on Comparing Quantities

Solution

Revision Notes on Comparing Quantities

Converting decimals to percentage

To convert the decimal into a percentage, first, we need to convert the decimal into fraction then multiply it by 100%.

Example

Convert 0.65 into a percentage.

Solution

Multiply the decimal with the 100%.

Revision Notes on Comparing Quantities

Converting Percentage to fractions or Decimals

We can reverse the above process to convert the percentage into fraction or decimal.

Revision Notes on Comparing Quantities

Parts always add to give a whole

If we know the one part of a whole then we can find the other part because all the parts together form a whole or 100%.

Example

If there are 25 men in the office of 100 employees then the remaining 75 would be women.

This means that if 25% are men the (100% – 25%) = 75% are women.

Fun with estimation

With the help of percentage, we can estimate the parts of an area.

Example

What percent of the given figure is shaded?

Revision Notes on Comparing Quantities

Solution

First, we have to find the fraction of the shaded portion.

Revision Notes on Comparing Quantities

Use of Percentages

  • Interpreting percentages

To use the percentages in real life we must be able to interpret the percentage.

Example

 If we say that Seema is spending 20% of her income then it means that Seema is spending Rs. 25 out of every Rs. 100 she earns.

  • Converting percentages to “How many”.

Example

If 20% of students get a distinction out of 45 students in a class, then how many students got the distinction?

Solution

The number of students got distinction = [20/100] × 45 = 9.

Hence, 9 students out of 45 got the distinction.

  • Ratios to percent

Example

If the profit of Rs. 2500 is divided among three partners in such a way that A, B and C got the two parts, three parts and five parts of profit respectively. How much money will each get? What percent of the profit do they get?

Solution

The three partners are getting profit in the ratio of 2: 3: 5, so the total of the parts is

2 + 3 + 5 = 10

Revision Notes on Comparing Quantities
  • Increase or decrease as Percent
    • Sometimes we have to find the increase or decrease in certain quantities as a percentage. Like the increase in population, decrease in sale etc.
Revision Notes on Comparing Quantities

Example

The total marks of Charlie increased from 365 to 380 from last year’s result. Find the increase in percentage.

Solution

Original amount = Marks of Charlie last year = 365

Amount of change = increase in the number of marks = 380 – 365 = 15.

Therefore,

Revision Notes on Comparing Quantities

Buying and Selling

Cost Price

Cost price is the price at which you buy some product. It is written as CP.

Selling Price

Selling price is the price at which you sell something. It is written as SP.

These are the factors which tell us that the sale of some product is profitable or not.

CP < SPProfitProfit = SP – CP
CP = SPNo profit no loss
CP > SPLossLoss = CP – SP

Example

If the buying price (or CP) of a table is Rs 700 and the selling price (or SP) is Rs 820, then find the profit or loss.

Solution

As the SP is more than CP, so the seller earns the profit in the table.

 Profit made = SP – CP 

= Rs 820 – Rs 700

= Rs 80

Profit or loss percentage

The profit and loss can be converted into a percentage. It is always calculated on the cost price.

Revision Notes on Comparing Quantities

Example

If the cost price of a laptop is Rs.45000 and the selling price is Rs. 50000, then what is the profit or loss percentage?

Solution

Revision Notes on Comparing Quantities

How to find SP if CP and profit or loss % is given?

Revision Notes on Comparing Quantities

Example

If the cost of a TV is Rs.25000 and shopkeeper sells it at a loss % of 5% then what is the selling price of the TV?

Solution

Revision Notes on Comparing Quantities

Hence, the shopkeeper sells it at the price of Rs. 23750

How to find CP if SP and profit or loss % is given?

Revision Notes on Comparing Quantities

Example

If the Selling price of a bookshelf is Rs 750 and the profit made by the seller is 10% then what is the cost price of the bookshelf?

Solution

Revision Notes on Comparing Quantities

Hence the seller bought the bookshelf at the cost of Rs. 682.

Simple Interest

When we borrow some money from the bank then we have to pay some interest to the bank.

The money which we borrow is called the Principal.

The amount which we have to pay to the bank to use that money is called interest.

At the end of the year we return the money to the bank with interest, that money is called Amount.

Amount = Principal + interest

Revision Notes on Comparing Quantities

Where,

SI = Simple interest

P = Principal

R = Rate of Interest

T = time period

Example

Sunita borrows a loan of Rs 5,0000 at 15% per year as the rate of interest. Find the interest she has to pay at end of one year.

Solution

Revision Notes on Comparing Quantities

Total amount to be paid by Sunita at the end of one year = Rs.50000 + Rs. 7500 = Rs.57500.

Interest for multiple years

If we have to calculate the interest for more than one year then we have to change the time period only.

Example

In the above example if Sunita takes the loan for 3 years then what will be the total amount after 3 years?

Solution

Revision Notes on Comparing Quantities

Total amount to be paid by Sunita at the end of 3 years = Rs.50000 + Rs. 22500 = Rs.72500.

Read More

Chapter 7 Congruence of Triangles Notes Class 7th mathematics

Congruence

If we superpose one figure over other and they fit into each other then they must be congruent shapes. They must have the same shape and size.

Congruence

Symbol of Congruence

Symbol of Congruence

Congruence of 2-dimensional Shapes

In the case of 2D shapes, the two shapes will be congruent if they have the same shape and size. You cannot bend, stretch or twist the image.

Congruence of 2-dimensional Shapes

Congruence among Line Segments

To check whether the line segments are congruent or not, we can superpose one line segment over another and if they completely cover each other then they must be congruent.

Congruence among Line Segments

Two line segments are congruent if they have equal length and if two line segments have equal length then they must be congruent.

Congruence of Angles

Two angles of the same measurement are congruent and if two angles are congruent then their measurement must be the same.

Congruence of Angles

Here, ∠R ≅ ∠Q

Congruence of Triangle

If we superpose one triangle over other triangle and they cover each other properly, then they must be congruent triangles.

In case of congruent triangles-

  • All the sides of one triangle must be equal to the corresponding sides of another triangle.
  • All the angles of one triangle must be equal to the corresponding angles of another triangle.
  • All the vertices of one triangle must be corresponding to the vertices of another triangle.
Congruence of Triangle

In the above triangles,

If, ∆ABC ≅ ∆FDE then

  • Corresponding vertices are – ∠A ↔ ∠F, ∠B ↔ ∠D and ∠C ↔ ∠E
  • Corresponding angles are – ∠A ↔ ∠F, ∠B ↔ ∠D and ∠C ↔ ∠E
  • Corresponding sides are – AB ↔ FD, BC ↔ DE and AC ↔ FE

Remark: It is the order of the letters in the names of congruent triangles which tells the corresponding relationships between two triangles. If we change it from ∆ABC ≅ ∆FDE to ∆BCA ≅ ∆FDE, then it is not necessary that the two triangles are congruent as it is important that all the corresponding sides, angles and vertices are same.

The Criterion for Congruence of Triangles

1. SSS Criterion(Side-Side-Side)

This criterion says that the two triangles will be congruent if their corresponding sides are equal.

SSS Criterion(Side-Side-Side)

If Side AB = DE

Side BC = EF

Side AC = DF

Then, ∆ABC ≅ ∆DEF

Example

In the two given triangles, ∆ABC and ∆DEF AB = 7 cm, BC = 5 cm, AC = 9 cm, DE = 7 cm, DF = 9 cm and EF = 5 cm. Check whether the two triangles are congruent or not.

Triangles, ∆ABC and ∆DEF

Solution

In ∆ABC and ∆DEF,

 AB = DE = 7 cm,

BC = EF = 5 cm,

AC = DF = 9 cm

This show that all the three sides of ∆ABC are equal to the sides of ∆DEF.

Hence with the SSS criterion of congruence, the two triangles are congruent.

∆ABC ≅ ∆DEF

2. SAS Criterion(Side-Angle-Side)

This criterion says that the two triangles will be congruent if their corresponding two sides and one included angle are equal.

SAS Criterion(Side-Angle-Side)

If Side AB = DE

Angle ∠B = ∠E

Side BC = EF

Then, ∆ABC ≅ ∆DEF

Example

In ∆JKN, JK = KN and AK is the bisector of ∠JKN, then

1. Find the three pairs of equal parts in triangles JKA and AKN.

2. Is ΔJKA ≅ ΔNKA? Give reasons.

Is ∠J = ∠N? Give reasons.

Triangles JKA and AKN

Solution

1. The three pairs of equal parts are:

JK = KN (Given)

∠JKA = ∠NKA (KA bisects ∠JKN)

AK = AK (common)

2. Yes, ΔJKA ≅ ΔNKA (By SAS congruence rule)

3. ∠J = ∠N(Corresponding parts of congruent triangles)

3. ASA criterion(Angle-Side-Angle)

This criterion says that the two triangles are congruent if the two adjacent angles and one included side of one triangle are equal to the corresponding angles and one included side of another triangle.

ASA criterion(Angle-Side-Angle)

If Angle ∠B = ∠B’

Side BC = EF

Angle ∠C = ∠C’

Then, ∆ABC ≅ ∆A’B’C’

Example

In ∆LMN and ∆OPN, if  LMN = ∆NPO = 60°, LNM = 35° and LM = PO = 4 cm.Then check whether the triangle LMN is congruent to triangle PON or not.

∆LMN and ∆OPN

Solution

In the two triangles ∆LMN and ∆OPN,

Given,

LMN = NPO = 60°

LNM = ∠PNO = 35° (vertically opposite angles)

So, ∠L of ΔLMN = 180° – (60° + 35°)   = 85° (by angle sum property of a triangle) similarly,

∠O of ΔOPN =180° – (60° + 35°) = 85°

Thus, we have ∠L = ∠O, LM = PO and ∠M = ∠P

 Now, side LM is between ∠L and ∠M and side PO is between ∠P and ∠O.

Hence, by ASA congruence rule,

∆LMN ≅ ∆OPN.

4. RHS Criterion(Right angle-Hypotenuse –Side)

This criterion says that the two right-angled triangles will be congruent if the hypotenuse and one side of one triangle are equal to the corresponding hypotenuse and one side of another triangle.

RHS Criterion(Right angle-Hypotenuse –Side)

If Right angle ∠B = ∠E

Hypotenuse AC = DF

Side BC = EF

Then, ∆ABC ≅ ∆DEF

Example

Prove that ∆RSV ≅ ∆RKV, if RS = RK = 7 cm and RV = 5 cm and is perpendicular to SK.

Triangle ∆RSV ≅ ∆RKV

Solution

In ∆RSV and ∆RKV,

Given

RS = RK = 7 cm

RV = RV = 5 cm (common side)

If RV is perpendicular to SK then

 ∠RVS = ∠RVK = 90°.

Hence, ∆RSV ≅ ∆RKV

As in the two right-angled triangles, the length of the hypotenuse and one side of both the sides are equal.

Remark: AAA is not the criterion for the congruent triangles because if all the angles of two triangles are equal then it is not compulsory that their sides are also equal. One of the triangles could be greater in size than the other triangle.

Two triangles have equal angle

In the above figure, the two triangles have equal angles but their length of sides is not equal so they are not congruent triangles.

Read More

Chapter 6 The Triangle and its Properties Notes Class 7th mathematics

Triangle

Triangle is a closed curve made up of three line segments. It has three vertices, sides and angles.

Triangle

Here, in ∆ABC,

  • AB, BC and CA are the three sides.
  • A, B and C are three vertices.
  • ∠A, ∠B and ∠C are the three angles.

Types of Triangle on the basis of sides

Types of Triangle on the basis of sides

Types of Triangle on the basis of angles

Types of Triangle on the basis of angles

Medians of a Triangle

Median is the line segment which made by joining any vertex of the triangle with the midpoint of its opposite side. Median divides the side into two equal parts.

Medians of a Triangle

Every triangle has three medians like AE, CD and BF in the above triangle.

The point where all the three medians intersect each other is called Centroid.

Altitudes of a Triangle

Altitude is the line segment made by joining the vertex and the perpendicular to the opposite side. Altitude is the height if we take the opposite side as the base.

Altitudes of a Triangle
  • The altitude form angle of 90°.
  • There are three altitudes possible in a triangle.
  • The point of intersection of all the three altitudes is called Orthocenter.

The Exterior Angle of a Triangle

If we extend any side of the triangle then we get an exterior angle.

  • An exterior angle must form a linear pair with one of the interior angles of the triangle.
  • There are only two exterior angles possible at each of the vertices.

Here ∠4 and ∠5 are the exterior angles of the vertex but ∠6 is not the exterior angle as it is not adjacent to any of the interior angles of the triangle.

Exterior Angle Property of the Triangle

An Exterior angle of a triangle will always be equal to the sum of the two opposite interior angles of the triangle.

Exterior Angle Property of the Triangle

Here, ∠d = ∠a + ∠b

This is called the Exterior angle property of a triangle.

Example

Find the value of “x”.

Solution

x is the exterior angle of the triangle and the two given angles are the opposite interior angles.

Hence,

x = 64°+ 45°

x = 109°

Angle Sum Property of a Triangle

This property says that the sum of all the interior angles of a triangle is 180°.

Angle Sum Property of a Triangle

Example

Find the value of x and y in the given triangle.

Triangle

Solution

x + 58° = 180° (linear pair)

x = 180° – 58°

x = 122°

We can find the value of y by two properties-

1. Angle sum property

60° + 58° + y = 180°

y = 180°- (60° + 58)

y = 62°

2. Exterior angle property

x = 60°+ y

122° = 60° + y

y = 122° – 60°

y = 62°

Two Special Triangles

1. Equilateral Triangle

It is a triangle in which all the three sides and angles are equal.

Equilateral Triangle

2. Isosceles Triangle

It is a triangle in which two sides are equal and the base angles opposite to the equal sides are also equal.

 Isosceles Triangle

Sum of the length of the two sides of a triangle

Sum of the length of the two sides of a triangle will always be greater than the third side, whether it is an equilateral, isosceles or scalene triangle.

Sum of the length of the two sides of a triangle

Example

Check whether it is possible to make a triangle using these measurements or not?

1. 3 cm, 4 cm, 7 cm

We have to check whether the sum of two sides is greater than the third side or not.

4 + 7 = 11

3 + 7 = 10

3 + 4 =7

Here the sum of the two sides is equal to the third side so the triangle is not possible with these measurements.

2. 2 cm, 5 cm, 6 cm

2 + 5 = 7

6 + 5 =11

6 + 2 = 8

Here the sum of the two sides is greater than the third side so the triangle could be made with these measurements.

Right Angled Triangle

A right-angled triangle is a triangle which has one of its angles as 90° and the side opposite to that angle is the largest leg of the triangle which is known as Hypotenuse .the other two sides are called Legs.

Right Angled Triangle

Pythagoras theorem

In a right angle triangle,

(Hypotenuse)2 = (base)2 + (height)2

The reverse of Pythagoras theorem is also applicable, i.e. if the Pythagoras property holds in a triangle then it must be a right-angled triangle.

Example

Find the value of x in the given triangle if the hypotenuse is 5 cm and height is 4 cm.

Pythagoras theorem

Solution

Given:

Hypotenuse = 5 cm

Height = 4 cm

Base = x cm

(Hypotenuse)2 = (base)2 + (height)2

52 = x2 + 42

x2 = 5– 42

x2 = 25 – 16

x = 9

x = 3 cm

Read More

Chapter 5 Lines and Angles Notes Class 7th mathematics

Point

A point is a geometrical element which has no dimensions.

Point

Line

A line is a straight path which has no endpoints.

Line

Line Segment

A line segment is a straight path which has two endpoints.

Line Segment

Ray

A ray is a line which has one endpoint and endless from another side.

Ray

Angles

The corners made by the intersection of two lines or line segments are called Angles.

Angles

We write angle as ∠ABC in first figure and ∠XOY, ∠ZOW, ∠YOW and ∠XOZ are angles in the second figure.

Related Angles

1. Complementary Angles

If the sum of two angles is 90° then they are said to be complementary angles.

Complementary Angles

Or you can say that two angles which make up a right angle are called Complementary Angle.

2. Supplementary Angles

If the sum of two angles is 180° then they are said to be supplementary angles. If two angles are supplementary then they are the supplement to each other.

Supplementary Angles

3. Adjacent Angles

It is the pair of two angles which are placed next to each other.

Adjacent angles have-

  • A common vertex.
  • A common arm.
  • A non-common arm could be on either side of the common arm.
 Adjacent Angles

4. Linear Pair

A pair of adjacent angles whose non-common arm makes a single line i.e. they are the opposite rays.

A linear pair is also a pair of supplementary angles as their sum is 180°.

Linear Pair

The above pair of angles is –

  • Adjacent, as they have one common arm.
  • Supplementary, as the sum of two angles, is 180°.
  • The linear pair, as the sum is 180° and the non – common arms are opposite rays.

5. Vertically Opposite Angles

When two lines intersect each other then they form four angles. So that

  • ∠a and ∠b is pair of vertically opposite angles.
  • ∠n and ∠m is pair of vertically opposite angles.
Vertically Opposite Angles

Vertically opposite angles are equal.

Pairs of Lines

1. Intersecting Lines

If two lines touch each other in such a way that there is a point in common then these lines are called intersecting lines.

That common point is called a Point of Intersection.

Here, line l and m intersect each other at point C.

2. Transversal

If a line intersects two or more lines at different points then that line is called Transversal Line.

Transversal Line

3. Angles made by a transversal

When a transversal intersects two lines then they make 8 angles.

Angles made by a transversal

Some of the angles made by transversal-

Types of AnglesAngles shown in figure
Interior Angles∠6, ∠5, ∠4, ∠3
Exterior Angles∠7,∠8,∠1,∠2
Pairs of Corresponding Angles∠1 and ∠5,∠2 and ∠6, ∠3 and ∠7,∠4 and ∠8
Pairs of Alternate Interior Angles∠3 and ∠6,∠4 and ∠5
Pairs of Alternate Exterior Angles∠1 and ∠8,∠2 and ∠7
Pairs of Interior Angles on the same side of the transversal∠3 and ∠5,∠4 and ∠6

Transversal of Parallel Lines

The two lines which never meet with each other are called Parallel Lines. If we have a transversal on two parallel lines then-

Transversal of Parallel Linesa. All the pairs of corresponding angles are equal.

∠3 = ∠7

∠4 = ∠8

∠1 = ∠5

∠2 = ∠6

b. All the pairs of alternate interior angles are equal.

∠3 = ∠6

∠4 = ∠5

c. The two Interior angles which are on the same side of the transversal will always be supplementary.

∠3 + ∠5 = 180°

∠4 + ∠6 = 180°

Checking for Parallel Lines

This is the inverse of the above properties of the transversal of parallel lines.

  • If a transversal passes through two lines so that the pairs of corresponding angles are equal, then these two lines must be parallel.
  • If a transversal passes through two lines in so that the pairs of alternate interior angles are equal, then these two lines must be parallel.
  • If a transversal passes through two lines so that the pairs of interior angles on the same side of the transversal are supplementary, then these two lines must be parallel.

Example: 1

If AB ∥ PQ, Find ∠W.

CD parallel to AB and PQ

Solution:

CD parallel to AB and PQ passing through ∠WWe have to draw a line CD parallel to AB and PQ passing through ∠W.

∠QPW = ∠PWC = 50° (Alternate Interior Angles)

∠BAW =∠CWA = 46°(Alternate Interior Angles)

∠PWA = ∠PWC +∠CWA

= 50°+ 46°= 96°

Example: 2

If XY ∥ QR with ∠4 = 50° and ∠5 = 45°, then find all the three angles of the ∆PQR.

Angles

Solution:

Given:  XY ∥ QR

∠4 = 50° and ∠5 = 45°

To find: ∠1, ∠2 and ∠3

Calculation: ∠1 + ∠4 + ∠5 = 180° (sum of angles making a straight angle)

∠1 = 180°- 50°- 45°

∠1 = 85°

PQ is the transversal of XY and QR, so

∠4 = ∠2 (Alternate interior angles between parallel lines)

∠2 = 50°

Pr is also the transversal of XY and QR, so

∠5 = ∠3 (Alternate interior angles between parallel lines)

∠3 = 45°

Read More

Chapter 4 Simple Equations Notes class 7th mathematics

Algebraic Expressions

It is an expression involving constant, variable and some operations like addition, multiplication etc.

Variable

Variable is an unknown number which could have a different numerical value. It is called Variable as it can vary.

It is represented by different letters like x, y, a, b etc.

Equation

An equation is a condition on a variable. It says that two expressions are equal.

Equation

Important Points Related to the Equation

  • One of the expressions must have a variable.
  • LHS of the equation is equal to the RHS of the equation.
  • An expression does not have equality sign but an equation always has an equality sign.
  • If we interchange the position of the expression from LHS to RHS or vice versa, the equation remains the same.

5x + 7 = 2

2 = 5x + 7

Both the above equations are same.

How to form equations using statements?

1. The sum of four times of x and 12 is equal to 35.

4x + 12 = 35

2. Half of a number is 3 more than 8.

Balanced Equation

When the LHS = RHS of an equation, then it is said to be a balanced equation.

Balanced Equation

1. If we add the same number to both the sides.

We can add the same number on both the sides of a balanced equation, the equation will remain the same.

12 – 8 = 3 + 1

If we add 3 to both the sides,

12 – 8 + 3 = 7

3 + 1 + 3 = 7

LHS = RHS

2. If we subtract the same number from both sides.

We can subtract the same number from both the sides of a balanced equation, the equation will remain the same.

12 – 8 = 3 + 1

If we subtract 3 from both the sides,

12 – 8 – 3 = 1

3 + 1 -3 = 1

LHS = RHS

3. If we multiply the same number to both the sides.

We can multiply the same number on both the sides of a balanced equation, the equation will remain the same.

12 – 8 = 3 + 1

If we multiply 3 to both the sides,

(12 – 8) × 3 = 36 – 24 = 12

(3 + 1) × 3 = 9 + 3 = 12

LHS = RHS

4. If we divide the same number from both sides.

We can divide the same number from both the sides of a balanced equation, the equation will remain the same.

12 – 8 = 3 + 1

If we divide both the sides by 2,

(12 – 8) ÷ 2 = 4 ÷ 2 = 2

(3 + 1) ÷ 2 = 4 ÷ 2 = 2

LHS = RHS

The Solution of an Equation

Any value of the variable which satisfies the equation is the solution of the equation.

There are two methods to solve an equation

1. By adding or subtracting the same number to both the sides of the equation as we have above seen that the equation will remain the same.

Example: 1

x + 11 = 35

Solution:

Subtract 11 from both the sides.

x + 11 – 11 = 35 – 11

x = 24

Here, x = 24 is the solution of the given equation.

Example: 2

25y = 125

Solution:

Divide both the sides by 25.

y = 5

1. Transposing Method

In this method, we transpose the numbers from one side of the equation to the other side so that all the terms with variable come on one side and all the constants come on another side.

While transposing the numbers the sign of the terms will get changed. i.e. Negative will become positive and positive will become negative.

Example

x + 11 = 35

Solution

Now we will transfer 11 from LHS to RHS and its sign will get reversed.

x = 35 – 11

x = 24

From a Solution to the Equation

As we solve the equation to get the solution, we can get the equation also if we have the solution.

Any equation has only one solution but if we make an equation from a solution then there could be many equations.

Example

Given x = 7

3x = 21 (multiply both sides by 3)

3x + 8 = 29 (add 8 to both the sides)

This is not the only possible equation. There could be other equations also.

Applications of Simple Equations to Practical Situations

If we have statements related to a practical situation then first we have to convert it in the form of the equation then solve it to find the solution.

Example: 1

Radha’s Mother’s age is 5 years more than three times Shikha’s age. Find Shikha’s age, if her mother is 44 years old.

Solution:

Let Shikha’s age = y years

Her mother’s age is 3y + 5 which is 44.

 Hence, the equation for Shikha’s age is 3y + 5 =44

3y + 5  = 44

3y = 44 – 5 (by transposing 5)

3y = 39

y = 13 (by dividing both sides by 3)

 Hence, Shikha’s age = 13 years

Example: 2

A number consists of two digits. The digit in the tens place is twice the digit in the units place. If 18 be subtracted from the number, the digits are reversed. Find the number.

Solution:

Let the digit at units place = y

So, the digit in the tens place = 2y

So, the number is (2y) y.

As it is given that if 18 is subtracted from the number, the digits are reversed. 

So, we have

(2y) y – 18 = y(2y)

10 × (2y) + 1 × y – 18 = 10 × y + 1 × (2y)

Solve it

20y + y – 18 = 10y + 2y

21y – 18 = 12y

21y – 18 = 12y

9y = 18 (By dividing both sides by 9)

y = 2

The digit at the units place is y = 2.

And the digit at the tens place is 2y

= 2 × 2

= 4

Hence the required number is 42.

Read More

Chapter 3 Data Handling Notes class 7th Mathematics

Data

Any raw information which we collect to know about it and to compare certain things is called Data. This information is in the form of facts and figures and is collected for some specific purpose.

Example

  • Number of students in the class
  • The temperature in a state on daily basis.

Data Handling

We need to collect, organize and represent that data to draw inferences from it. This is called Data Handling.

Collecting Data

Collection of data depends upon the further requirement of the data. Before collecting any data we must know that what will be the use of data.

If we have to compare the marks of the toppers in different classes then we need the data of all the classes not only one class having any topper.

Organization of Data

Before using any data, first, we need to organize it in a systematic manner so that it could be understood easily. Generally, data is organized in tabular form as it is easy to read and understand.

Organization of Data

In this tabular form, we can easily understand that how many students get how much mark.

Representative Values

There must be a particular value which represents the complete data. This is the average of the data. The average lies between the smallest and the largest number of data so it is called Central tendency of the group of data.

There are three types of central tendency of data-

1. Arithmetic Mean

The mean is the average of the number of observations. To calculate mean we have to divide the sum of the values of the observations by the total number of observations.

Example

The score of 8 students in science is given. Find the average score of the students.

25, 28, 23, 24, 29, 35, 42, 48

Solution

Remark: This is not necessary that the value of mean will be from one of the observations.

Range

Arithmetic mean lies between the smallest and the largest observation. A range is a difference between the largest and the smallest observation.

Range = Largest Observation – Smallest Observation

Example

If the age of the students in a class is given then what will be the range of the given students?

Age of the students

2. Mode

For a different type of requirements different central tendencies are used.

Mode tells us the number of observation which occurs more frequently. The observation which occurs most of the time is called the Mode of that group.

Example

If we have the observation of average temperature in New Delhi for 12 months then find the month in which it has the maximum average temperature? What is the mode of the given observation?

MonthAverage Temperature
January18
February22
March24
April25
May25
June29
July27
August27
September27
October25
November21
December19

Solution

As you can see that the maximum average temperature is in the month of June.

Its mode will be 27 as it occurs more frequently i.e. three times.

Mode of a Large Number of Observations

If the number of observations is very large then we can convert the data in the tabular form using frequencies and tally marks. Then it will be easy to find the mode of the given data.

So you can check the number of observation which has a large number of frequency is the mode of that group.

Example

Find the mode of the data of scores obtained by students of class 7 in Sanskrit given below.

Solution

As you can see that the maximum average temperature is in the month of June.

Its mode will be 27 as it occurs more frequently i.e. three times.

Mode of a Large Number of observations

If the number of observations is very large then we can convert the data in the tabular form using frequencies and tally marks. Then it will be easy to find the mode of the given data.

So you can check the number of observation which has a large number of frequency is the mode of that group.

Example

Find the mode of the data of scores obtained by students of class 7 in Sanskrit given below.

ScoreNumber of Students
24
42
83
92
115
134
156
188

Solution

The mode is the 18 as the maximum number of students i.e. 8 students score 18.

3. Median

The middle value of the given number of the observations which divides it into exactly two parts is called Median.

To find the median, we have to arrange the data in ascending or descending order then find the middle value of the given number of observations that is the median of that group.

a. If the number of observation is odd

Number of observation is odd

b. If the number of observation is even

Number of observation is even

Example

Median

Use of Bar Graphs with a Different Purpose

 Bar graphs can be used for finding the measures of central tendency also, as we know the observation with the more frequency is the mode hence the bar with the tallest height must be the mode of the data.

Choosing a Scale

It is important to choose the scale according to the given data as the length of the bar depends upon the scale we choose.

Bar Graph

It is the representation of data with the use of bars of the same width and the length of bars depends upon the number of frequency.

Bar Graph

Here we can see that the highest number is 14 and the lowest number is 7 so we can take the scale of one.

By the graph, we can observe that jazz is the most preferred form of music by the students.

Double Bar Graph

This is the same as the bar graph just the two bars are joined off to represent two data on the same graph. This is used to compare certain information.

Example

Represent the number of wild animals found in two states given below in double bar graph.

Wild AnimalsKarnatakaTamil Nadu
Lion2018
Tiger1620
Elephant3025
Rhino 1522
Zebra2528

Solution

Double Bar Graph
  • Here we have chosen a scale of 5.
  • The x-axis represents the name of wild animals.
  • Y-axis represents the number of wild animals.
  • The blue bar represents the number of animals in Karnataka.
  • Pink bars represent the number of animals in Tamil Nadu.

This double bar graph is used to compare the number of animals in different states.

Chance and Probability

Chance

In our day to day life, there are so many situations when we say that this is impossible, or this is possible, or this may or may not possible. So the situations which may or may not happen have the chance to happen.

Chance
  • This shows that it is not possible to throw 14 in the combination of two dices.
  • It is certain that the sun will rise.
  • It may or may not happen that a head has come when we flip a coin. As both, the head and tail have an equal chance.

Probability

Probability is the study of uncertainty The uncertainty of any doubtful situation is measured by means of Probability.

This tells us the chance of happening some outcomes from the total possible outcomes.

Probability

Example

If we throw a dice then what is the probability that we will get a 5?

Dice

Solution

Probability

Favourable outcome = 1 (there is only one possibility of getting 5)

Total no. of possible outcomes = 6 (total six numbers are there on a dice)

Probability of getting 5 = 1/6

Read More

Chapter 15 Probability notes class 9th mathematics

Probability

Probability is the study of the uncertainty. The uncertainty of any doubtful situation is measured by means of Probability.

Uses of Probability

Probability is used in many fields like Mathematics, Physical Sciences, Commerce, Biological Sciences, Medical Sciences, Weather Forecasting, etc.

Basic terms related to Probability

1. Randomness

If we are doing an experiment and we don’t know the next outcome of the experiment to occur then it is called a Random Experiment.

2. Trial

TrialA trial is that action whose result is one or more outcomes. Like –

  • Throw of a dice
  • Toss of a coi

3. Independent trial

A trial will be independent if it does not affect the outcome of any other random trial. Like throwing a dice and tossing a coin are independent trials as they do not impact each other.

4. Event

While doing an experiment, an event will be the collection of some outcomes of that experiment.

Example

If we are throwing a dice then the possible outcome for even number will be three i.e. 2, 4, 6. So the event would consist of three outcomes.

Probability – An Experimental Approach

Experimental probability is the result of probability based on the actual experiments. It is also called the Empirical Probability.

In this probability, the results could be different, every time you do the same experiment. As the probability depends upon the number of trials and the number of times the required event happens.

If the total number of trials is ‘n’ then the probability of event D happening is

Probability of event D

Examples

1. If a coin is tossed 100 times out of which 49 times we get head and 51 times we get tail.

Coin is tossed 100 times a. Find the probability of getting head.

b. Find the probability of getting tail.

c. Check whether the sum of the two probabilities is equal to 1 or not.

Solution

a. Let the probability of getting head is P(H)

head

b. Let the probability of getting tail is P(T)

Tail

c. The sum of two probability is

= P(H) + P(T)

probability

Impossible Events

While doing a test if an event is not possible to occur then its probability will be zero. This is known as an Impossible Event.

Example

You cannot throw a dice with number seven on it.

Events

Sure or Certain Event

While doing a test if there is surety of an event to happen then it is said to be the sure probability. Here the probability is one.

Example: 1

It is certain to draw a blue ball from a bag contain a blue ball only.

This shows that the probability of an event could be

0 ≤ P (E) ≤ 1

Example: 2

There are 5 bags of seeds. If we select fifty seeds at random from each of 5 bags of seeds and sow them for germination. After 20 days, some of the seeds were germinated from each collection and were recorded as follows:

Bag12345
No. of seeds germinated4048423941

What is the probability of germination of

(i) more than 40 seeds in a bag?

(ii) 49 seeds in a bag?

(iii) more than 35 seeds in a bag?

Solution:

(i) The number of bags in which more than 40 seeds germinated out of 50 seeds is 3.

P (germination of more than 40 seeds in a bag) =3/5 = 0.6

(ii) The number of bags in which 49 seeds germinated = 0.

P (germination of 49 seeds in a bag) = 0/5 = 0.

(iii) The number of bags in which more than 35 seeds germinated = 5.

So, the required probability = 5/5 = 1.

Elementary Event

If there is only one possible outcome of an event to happen then it is called an Elementary Event.

Remark

If we add all the elementary events of an experiment then their sum will be 1.

The general form

P (H) + P (T) = 1

P (H) + P= 1 (whereis ‘not H’.  

P (H) – 1 = P

P (H) and Pare the complementary events.

Example

What is the probability of not hitting a six in a cricket match, if a batsman hits a boundary six times out of 30 balls he played?

Solution

Let D be the event of hitting a boundary.

D be the event of hitting a boundary.

So the probability of not hitting the boundary will be

= 0.8

Read More