Table of Contents

Exercise MCQ

Question 1

If one angle of a triangle is equal to the sum of the other two angles, then the triangle is

(a) an isosceles triangle

(b) an obtuse triangle

(c) an equilateral triangle

(d) a right triangleSolution 1

Correct option: (d)

In a right triangle, one angle is 90° and the sum of acute angles of a right triangle is 90°.Question 2

An exterior angle of a triangle is 110° and its two interior opposite angles are equal. Each of these equal angles is

(a) 70° 

(b) 55° 

(c) 35° 

(d) 

Solution 2

Correct option: (b)

Let each interior opposite angle be x.

Then, x + x = 110° (Exterior angle property of a triangle)

⇒ 2x = 110° 

⇒ x = 55° Question 3

The angles of a triangle are in the ratio 3:5:7 The triangle is

  1. Acute angled
  2. Obtuse angled
  3. Right angled
  4. an isosceles triangle

Solution 3

Question 4

If one of the angles of triangle is 130° then the angle between the bisector of the other two angles can be

(a) 50° 

(b) 65° 

(c) 90° 

(d) 155Solution 4

Correct option: (d)

Let ∠A = 130° 

In ΔABC, by angle sum property,

∠B + ∠C + ∠A = 180° 

⇒ ∠B + ∠C + 130° = 180° 

⇒ ∠B + ∠C = 50° 

Question 5

In the given figure, AOB is a straight line. The value of x is

(a) 12

(b) 15

(c) 20

(d) 25Solution 5

Correct option: (b)

AOB is a straight line.

⇒ ∠AOB = 180° 

⇒ 60° + 5x° + 3x° = 180° 

⇒ 60° + 8x° = 180° 

⇒ 8x° = 120° 

⇒ x = 15° Question 6

The angles of a triangle are in the ratio 2 : 3 : 4. The largest angle of the triangle is

(a) 120° 

(b) 100° 

(c) 80° 

(d) 60° Solution 6

Correct option: (c)

By angle sum property,

2x + 3x + 4x = 180° 

⇒ 9x = 180° 

⇒ x = 20° 

Hence, largest angle = 4x = 4(20°) = 80° Question 7

In the given figure, ∠OAB = 110° and ∠BCD = 130° then ∠ABC is equal to

(a) 40° 

(b) 50° 

(c) 60° 

(d) 70° Solution 7

Correct option: (c)

Through B draw YBZ ∥ OA ∥ CD.

Now, OA ∥ YB and AB is the transversal.

⇒ ∠OAB + ∠YBA = 180° (interior angles are supplementary)

⇒ 110° + ∠YBA = 180° 

⇒ ∠YBA = 70° 

Also, CD ∥ BZ and BC is the transversal.

⇒ ∠DCB + ∠CBZ = 180° (interior angles are supplementary)

⇒ 130° + ∠CBZ = 180° 

⇒ ∠CBZ = 50° 

Now, ∠YBZ = 180° (straight angle)

⇒ ∠YBA + ∠ABC + ∠CBZ = 180° 

⇒ 70° + x + 50° = 180° 

⇒ x = 60° 

⇒ ∠ABC = 60° Question 8

If two angles are complements of each other, then each angle is

  1. An acute angle
  2. An obtuse angle
  3. A right angle
  4. A reflex angle

Solution 8

Correct option: (a)

Two angles are said to be complementary, if the sum of their measures is 90°.

Clearly, the measures of each of the angles have to be less than 90°.

Hence, each angle is an acute angle.Question 9

An angle which measures more than 180° but less than 360°, is called

  1. An acute angle
  2. An obtuse angle
  3. A straight angle
  4. A reflex angle

Solution 9

Correct option: (d)

An angle which measures more than 180o but less than 360is called a reflex angle.Question 10

The measure of an angle is five times its complement. The angle measures

  1. 25°
  2. 35°
  3. 65°
  4. 75°

Solution 10

Question 11

Two complementary angles are such that twice the measure of the one is equal to three times the measure of the other. The larger of the two measures

  1. 72°o
  2. 54°
  3. 63°
  4. 36°

Solution 11

Question 12

In the given figure, AOB is a straight line. If ∠AOC = 4x° and ∠BOC = 5x°, then ∠AOC =?

Solution 12

Question 13

In the given figure, AOB is a straight line. If ∠AOC = (3x + 10) ° and ∠BOC = (4x – 26) °, then ∠BOC =?

  1. 96°
  2. 86°
  3. 76°
  4. 106°

Solution 13

Question 14

In the given figure, AOB is a straight line. If ∠AOC = (3x – 10) °, ∠COD = 50° and ∠BOD = (x +20) °, then ∠AOC =?

  1. 40°
  2. 60°
  3. 80°
  4. 50°

Solution 14

Question 15

Which of the following statements is false?

  1. Through a given point, only one straight line can be drawn
  2. Through two given points, it is possible to draw one and only one straight line.
  3. Two straight lines can intersect only at one point
  4. A line segment can be produced to any desired length.

Solution 15

Correct option: (a)

Option (a) is false, since through a given point we can draw an infinite number of straight lines.Question 16

An angle is one-fifth of its supplement. The measure of the angle is

  1. 15°
  2. 30°
  3. 75°
  4. 150°

Solution 16

Question 17

In the adjoining figure, AOB is straight line. If x:y:z = 4:5:6, then y = ?

  1. 60°
  2. 80°
  3. 48°
  4. 72°

Solution 17

Question 18

In the given figure, straight lines AB and CD intersect at O. If ∠AOC =ϕ, ∠BOC = θ and θ = 3 ϕ, then ϕ =?

  1. 30°
  2. 40°
  3. 45°
  4. 60°

Solution 18

Question 19

In the given figure, straight lines AB and CD intersect at O. If ∠AOC + ∠BOD = 130°, then ∠AOD =?

  1. 65°
  2. 115°
  3. 110°
  4. 125°

Solution 19

Question 20

In the given figure AB is a mirror, PQ is the incident ray and and QR is the reflected ray. If ∠PQR = 108°, then ∠ AQP =?

  1. 72°
  2. 18°
  3. 36°
  4. 54°

Solution 20

Question 21

In the given figure, AB ∥ CD, If ∠BAO = 60° and ∠OCD = 110° then ∠AOC = ?

(a) 70° 

(b) 60° 

(c) 50° 

(d) 40° Solution 21

Correct option: (c)

Let ∠AOC = x° 

Draw YOZ ∥ CD ∥ AB.

Now, YO ∥ AB and OA is the transversal.

⇒ ∠YOA = ∠OAB = 60° (alternate angles)

Again, OZ ∥ CD and OC is the transversal.

⇒ ∠COZ + ∠OCD = 180° (interior angles)

⇒ ∠COZ + 110° = 180° 

⇒ ∠COZ = 70° 

Now, ∠YOZ = 180° (straight angle)

⇒ ∠YOA + ∠AOC + ∠COZ = 180° 

⇒ 60° + x + 70° = 180° 

⇒ x = 50° 

⇒ ∠AOC = 50° Question 22

In the given figure, AB ‖ CD. If ∠AOC = 30° and ∠OAB = 100°, then ∠OCD =?

  1. 130°
  2. 150°
  3. 80°
  4. 100°

Solution 22

Question 23

In the given figure, AB ‖ CD. If ‖CAB = 80o and ∠EFC= 25°, then ∠CEF =?

  1. 65°
  2. 55°
  3. 45°
  4. 75°

Solution 23

Question 24

In the given figure, AB ‖ CD, CD ‖ EF and y:z = 3:7, then x = ?

  1. 108°
  2. 126°
  3. 162°
  4. 63°

Solution 24

Question 25

In the given figure, AB ‖ CD. If ∠APQ = 70° and ∠RPD = 120°, then ∠QPR =?

  1. 50°
  2. 60°
  3. 40°
  4. 35°

Solution 25

Question 26

In the given figure AB ‖ CD. If ∠EAB = 50° and ∠ECD=60°, then ∠AEB =?

  1. 50°
  2. 60°
  3. 70°
  4. 50°

Solution 26

Question 27

In the given figure, ∠OAB = 75°, ∠OBA=55° and ∠OCD = 100°. Then ∠ODC=?

  1. 20°
  2. 25°
  3. 30°
  4. 35°

Solution 27

Question 28

In the adjoining figure y =?

  1. 36°
  2. 54°
  3. 63°
  4. 72°

Solution 28

Exercise Ex. 7A

Question 1

Define the following terms:

(i) Angle (ii) Interior of an angle (iii) Obtuse angle (iv) Reflex angle (v) Complementary angles (vi) Supplementary anglesSolution 1

(i) Angle: Two rays having a common end point form an angle.

(ii) Interior of an angle: The interior of AOB is the set of all points in its plane, which lie on the same side of OA as B and also on same side of OB as A.

(iii) Obtuse angle: An angle whose measure is more than 90o but less than 180o, is called an obtuse angle.

(iv) Reflex angle: An angle whose measure is more than 180o but less than 360o is called a reflex angle.

(v) Complementary angles: Two angles are said to be complementary, if the sum of their measures is 90o.

(vi) Supplementary angles: Two angles are said to be supplementary, if the sum of their measures is 180o.
Question 2(ii)

Find the complement of each of the following angles.

16oSolution 2(ii)

Complement of 16o = 90 – 16o = 74oQuestion 2(iv)

Find the complement of each of the following angles.

46o 30Solution 2(iv)

Complement of 46o 30′ = 90o – 46o 30′ = 43o 30’Question 2(i)

Find the complement of each of the following angle:

55° Solution 2(i)

Complement of 55° = 90° – 55° = 35°  Question 2(iii)

Find the complement of each of the following angle:

90° Solution 2(iii)

Complement of 90° = 90° – 90° = 0° Question 3(iv)

Find the supplement of each of the following angles.

75o 36’Solution 3(iv)

Supplement of 75o 36′ = 180o – 75o 36′ = 104o 24’Question 3(i)

Find the supplement of each of the following angle:

42° Solution 3(i)

Supplement of 42° = 180° – 42° = 138° Question 3(ii)

Find the supplement of each of the following angle:

90° Solution 3(ii)

Supplement of 90° = 180° – 90° = 90° Question 3(iii)

Find the supplement of each of the following angle:

124° Solution 3(iii)

Supplement of 124° = 180° – 124° = 56° Question 4

Find the measure of an angle which is

(i) equal to its complement, (ii) equal to its supplement.Solution 4

(i) Let the required angle be xo

Then, its complement = 90o – xo

 The measure of an angle which is equal to its complement is 45o.

(ii) Let the required angle be xo

Then, its supplement = 180o – xo

 The measure of an angle which is equal to its supplement is 90o.Question 5

Find the measure of an angle which is 36o more than its complement.Solution 5

Let the required angle be xo

Then its complement is 90o – xo

 The measure of an angle which is 36o more than its complement is 63o.Question 6

Find the measure of an angle which is 30° less than its supplement.Solution 6

Let the measure of the required angle = x° 

Then, measure of its supplement = (180 – x)° 

It is given that

x° = (180 – x)° – 30° 

⇒ x° = 180° – x° – 30° 

⇒ 2x° = 150° 

⇒ x° = 75° 

Hence, the measure of the required angle is 75°. Question 7

Find the angle which is four times its complement.Solution 7

Let the required angle be xo

Then, its complement = 90o – xo

 The required angle is 72o.Question 8

Find the angle which is five times its supplement.Solution 8

Let the required angle be xo

Then, its supplement is 180o – xo

 The required angle is 150o.Question 9

Find the angle whose supplement is four times its complement.Solution 9

Let the required angle be xo

Then, its complement is 90o – xo and its supplement is 180o – xoThat is we have,

 The required angle is 60o.
Question 10

Find the angle whose complement is one-third of its supplement.Solution 10

Let the required angle be xo

Then, its complement is 90o – xo and its supplement is 180o – xo

 The required angle is 45o.Question 11

Two complementary angles are in the ratio 4: 5. Find the angles.Solution 11

Let the two required angles be xo and 90o – xo.

Then 

 5x = 4(90 – x)

 5x = 360 – 4x

 5x + 4x = 360

 9x = 360

Thus, the required angles are 40o and 90o – xo = 90 o – 40o = 50o.
Question 12

Find the value of x for which the angles (2x – 5)° and (x – 10)° are the complementary angles.Solution 12

(2x – 5)° and (x – 10)° are complementary angles.

∴ (2x – 5)° + (x – 10)° = 90° 

⇒ 2x – 5° + x – 10° = 90° 

⇒ 3x – 15° = 90° 

⇒ 3x = 105° 

⇒ x = 35° 

Exercise Ex. 7B

Question 1

In the given figure, AOB is a straight line. Find the value of x.

Solution 1

Since BOC and COA form a linear pair of angles, we have

BOC + COA = 180o

 x+ 62o = 180o

 x = 180 – 62

 x = 118oQuestion 2

In the adjoining figure, AOB is a straight line. Find the value of x. Hence, find ∠AOC and ∠BOD.

Solution 2

∠AOB is a straight angle.

⇒ ∠AOB = 180° 

⇒ ∠AOC + ∠COD + ∠BOD = 180° 

⇒ (3x – 7)° + 55° + (x + 20)° = 180° 

⇒ 4x + 68° = 180° 

⇒ 4x = 112° 

⇒ x = 28° 

Thus, ∠AOC = (3x – 7)° = 3(28°) – 7° = 84° – 7° = 77° 

And, ∠BOD = (x + 20)° = 28° + 20° = 48° Question 3

In the given figure, AOB is a straight line. Find the value of x. Hence, find AOC, COD and BOD.

Solution 3

Since BOD and DOA from a linear pair of angles.

 BOD + DOA = 180o

 BOD + DOC + COA = 180o

 xo + (2x – 19)o + (3x + 7)o = 180o

 6x – 12 = 180

 6x = 180 + 12 = 192

 x = 32

 AOC = (3x + 7)o = (3  32 + 7)o = 103o

 COD = (2x – 19)o = (2  32 – 19)o = 45o

and BOD = xo = 32o
Question 4

In the given figure, x: y: z = 5: 4: 6. If XOY is a straight line, find the values of x, y and z.

Solution 4

x: y: z = 5: 4: 6

The sum of their ratios = 5 + 4 + 6 = 15

But x + y + z = 180o

[Since, XOY is a straight line]

So, if the total sum of the measures is 15, then the measure of x is 5.

If the sum of angles is 180o, then, measure of  

And, if the total sum of the measures is 15, then the measure of y is 4.

If the sum of the angles is 180o, then, measure of 

And z = 180o – x – y

= 180o – 60o – 48o

= 180o – 108o = 72o

 x = 60, y = 48 and z = 72.
Question 5

In the given figure, what value of x will make AOB, a straight line?

Solution 5

AOB will be a straight line, if two adjacent angles form a linear pair.

BOC + AOC = 180o

 (4x – 36)o + (3x + 20)o = 180o

 4x – 36 + 3x + 20 = 180

 7x – 16 = 180o

 7x = 180 + 16 = 196

 The value of x = 28.Question 6

Two lines AB and CD intersect at O. If AOC = 50o, find AOD, BOD and BOC.

Solution 6

Since AOC and AOD form a linear pair.

AOC + AOD = 180o

 50o + AOD = 180o

 AOD = 180o – 50o = 130o

AOD and BOC are vertically opposite angles.

 AOD = BOC

 BOC = 130o

BOD and AOC are vertically opposite angles.

BOD = AOC

 BOD = 50oQuestion 7

In the given figure, three coplanar lines AB,CD and EF intersect at a point O, forming angles as shown. Find the values of x,y,z and t.

Solution 7

Since COE and DOF are vertically opposite angles, we have,

COE = DOF

 z = 50o

Also BOD and COA are vertically opposite angles.

So, BOD = COA

 t = 90o

As COA and AOD form a linear pair,

COA + AOD = 180o

 COA + AOF + FOD = 180o [t = 90o]

 t + x + 50o = 180o

 90o + xo + 50o = 180o

 x + 140 = 180

 x = 180 – 140 = 40

Since EOB and AOF are vertically opposite angles

So, EOB = AOF

 y = x = 40

Thus, x = 40 = y = 40, z = 50 and t = 90Question 8

In the given figure, three coplanar lines AB,CD and EF intersect at a point O. Find the value of x. Hence, find AOD, COE and AOE.

Solution 8

Since COE and EOD form a linear pair of angles.

 COE + EOD = 180o

 COE + EOA + AOD = 180o

 5x + EOA + 2x = 180

 5x + BOF + 2x = 180

[EOA and BOF are vertically opposite angles so, EOA = BOF]

 5x + 3x + 2x = 180

 10x = 180

 x = 18

Now AOD = 2xo = 2  18o = 36o

COE = 5xo = 5  18o = 90o

and, EOA = BOF = 3xo = 3  18o = 54oQuestion 9

Two adjacent angles on a straight line are in the ratio 5 : 4. Find the measure of each one of these angles.Solution 9

Let the two adjacent angles be 5x and 4x.

Now, since these angles form a linear pair.

So, 5x + 4x = 180o

 9x = 180o

 The required angles are 5x = 5x = 5  20o = 100o

and 4x = 4  20o = 80oQuestion 10

If two straight lines intersect each other in such a way that one of the angles formed measures 90o, show that each of the remaining angles measures 90o.Solution 10

Let two straight lines AB and CD intersect at O and let AOC = 90o.

Now, AOC = BOD [Vertically opposite angles]

 BOD = 90o

Also, as AOC and AOD form a linear pair.

 90o + AOD = 180o

 AOD = 180o – 90o = 90o

Since, BOC = AOD [Verticallty opposite angles]

 BOC = 90o

Thus, each of the remaining angles is 90o.Question 11

Two lines AB and CD intersect at a point O such that BOC +AOD = 280o, as shown in the figure. Find all the four angles.

Solution 11

Since, AOD and BOC are vertically opposite angles.

AOD = BOC

Now, AOD + BOC = 280o [Given]

 AOD + AOD = 280o

 2AOD = 280o

 AOD = 

 BOC = AOD = 140o

As, AOC and AOD form a linear pair.

So, AOC + AOD = 180o

 AOC + 140o = 180o

 AOC = 180o – 140o = 40o

Since, AOC and BOD are vertically opposite angles.

AOC = BOD

 BOD = 40o

 BOC = 140oAOC = 40o , AOD = 140o and BOD = 40o.Question 12

Two lines AB and CD intersect each other at a point O such that ∠AOC : ∠AOD = 5 : 7. Find all the angles.

Solution 12

Let ∠AOC = 5x and ∠AOD = 7x

Now, ∠AOC + ∠AOD = 180° (linear pair of angles)

⇒ 5x + 7x = 180° 

⇒ 12x = 180° 

⇒ x = 15° 

⇒ ∠AOC = 5x = 5(15°) = 75° and ∠AOD = 7x = 7(15°) = 105° 

Now, ∠AOC = ∠BOD (vertically opposite angles)

⇒ ∠BOD = 75° 

Also, ∠AOD = ∠BOC (vertically opposite angles)

⇒ ∠BOC = 105° Question 13

In the given figure, three lines AB, CD and EF intersect at a point O such that ∠AOE = 35° and ∠BOD = 40°. Find the measure of ∠AOC, ∠BOF, ∠COF and ∠DOE.

Solution 13

∠BOD = 40° 

⇒ AOC = ∠BOD = 40° (vertically opposite angles)

∠AOE = 35° 

⇒ ∠BOF = ∠AOE = 35° (vertically opposite angles)

∠AOB is a straight angle.

⇒ ∠AOB = 180° 

⇒ ∠AOE + ∠EOD + ∠BOD = 180° 

⇒ 35° + ∠EOD + 40° = 180° 

⇒ ∠EOD + 75° = 180° 

⇒ ∠EOD = 105° 

Now, ∠COF = ∠EOD = 105° (vertically opposite angles)Question 14

In the given figure, the two lines AB and CD intersect at a point O such that ∠BOC = 125°. Find the values of x, y and z.

Solution 14

∠AOC + ∠BOC = 180° (linear pair of angles)

⇒ x + 125 = 180° 

⇒ x = 55° 

Now, ∠AOD = ∠BOC  (vertically opposite angles)

⇒ y = 125° 

Also, ∠BOD = ∠AOC (vertically opposite angles)

⇒ z = 55° Question 15

If two straight lines intersect each other then prove that the ray opposite to the bisector of one of the angles so formed bisects the vertically opposite angle.Solution 15

Given : AB and CD are two lines which are intersecting at O. OE is a ray bisecting the BOD. OF is a ray opposite to ray OE.

To Prove: AOF = COF

Proof : Since  are two opposite rays,  is a straight line passing through O.

 AOF = BOE

and COF = DOE

[Vertically opposite angles]

But BOE = DOE (Given)

 AOF = COF

Hence, proved.Question 16

Prove that the bisectors of two adjacent supplementary angles include a right angle.Solution 16

Given: is the bisector of BCD and is the bisector of ACD.

To Prove: ECF = 90o

Proof: Since ACD and BCD forms a linear pair.

ACD + BCD = 180o

ACE + ECD + DCF + FCB = 180o

 ECD + ECD + DCF + DCF = 180o

because ACE = ECD

and DCF = FCB

 2(ECD) + 2 (CDF) = 180o

 2(ECD + DCF) = 180o

 ECD + DCF = 

 ECF = 90o (Proved)

Exercise Ex. 7C

Question 1

In the given figure, l ∥ m and a transversal t cuts them. If ∠1 = 120°, find the measure of each of the remaining marked angles.

Solution 1

Given, ∠1 = 120° 

Now, ∠1 + ∠2 = 180° (linear pair)

⇒ 120° + ∠2 = 180° 

⇒ ∠2 = 60° 

∠1 = ∠3  (vertically opposite angles)

⇒ ∠3 = 120° 

Also, ∠2 = ∠4  (vertically opposite angles)

⇒ ∠4 = 60° 

Line l ∥ line m and line t is a transversal.

⇒ ∠5 = ∠1 = 120° (corresponding angles)

 ∠6 = ∠2 = 60° (corresponding angles)

 ∠7 = ∠3 = 120° (corresponding angles)

 ∠8 = ∠4 = 60° (corresponding angles)Question 2

In the given figure, l ∥ m and a transversal t cuts them. If ∠7 = 80°, find the measure of each of the remaining marked angles.

Solution 2

Given, ∠7 = 80° 

Now, ∠7 + ∠8 = 180° (linear pair)

⇒ 80° + ∠8 = 180° 

⇒ ∠8 = 100° 

∠7 = ∠5 (vertically opposite angles)

⇒ ∠5 = 80° 

Also, ∠6 = ∠8 (vertically opposite angles)

⇒ ∠6 = 100° 

Line l ∥ line m and line t is a transversal.

⇒ ∠1 = ∠5 = 80°  (corresponding angles)

 ∠2 = ∠6 = 100° (corresponding angles)

 ∠3 = ∠7 = 80°  (corresponding angles)

 ∠4 = ∠8 = 100° (corresponding angles) Question 3

In the given figure, l ∥ m and a transversal t cuts them. If ∠1 : ∠2 = 2 : 3, find the measure of each of the marked angles.

Solution 3

Given, ∠1 : ∠2 = 2 : 3

Now, ∠1 + ∠2 = 180° (linear pair)

⇒ 2x + 3x = 180° 

⇒ 5x = 180° 

⇒ x = 36° 

⇒ ∠1 = 2x = 72° and ∠2 = 3x = 108° 

∠1 = ∠3 (vertically opposite angles)

⇒ ∠3 = 72° 

Also, ∠2 = ∠4  (vertically opposite angles)

⇒ ∠4 = 108° 

Line l ∥ line m and line t is a transversal.

⇒ ∠5 = ∠1 = 72°  (corresponding angles)

 ∠6 = ∠2 = 108° (corresponding angles)

 ∠7 = ∠3 = 72°  (corresponding angles)

 ∠8 = ∠4 = 108° (corresponding angles) Question 4

For what value of x will the lines l and m be parallel to each other?

Solution 4

Lines l and m will be parallel if 3x – 20 = 2x + 10

[Since, if corresponding angles are equal, lines are parallel]

3x – 2x = 10 + 20

x = 30Question 5

For what value of x will the lines l and m be parallel to each other?

*Question modified, back answer incorrect.Solution 5

For lines l and m to be parallel to each other, the corresponding angles (3x + 5)° and (4x)° should be equal.

⇒ (3x + 5)° = 4x° 

⇒ x = 5° Question 6

In the given figure, AB || CD and BC || ED. Find the value of x.

Solution 6

Since AB || CD and BC is a transversal.

So, BCD = ABC = xo     [Alternate angles]

As BC || ED and CD is a transversal.

BCD + EDC = 180o    

  BCD + 75o =180o

 BCD = 180o – 75o = 105o 

 ABC = 105o                 [since BCD = ABC]

 xo = ABC = 105o

Hence, x = 105.
Question 7

In the given figure, AB || CD || EF. Find the value of x.

Solution 7

Since AB || CD and BC is a transversal.

So, ABC = BCD                [atternate interior angles]

70o = xo + ECD(i)

Now, CD || EF and CE is transversal.

So,ECD + CEF = 180o    [sum of consecutive interior angles is 180o]

ECD + 130o = 180o

ECD = 180o – 130o = 50o

Putting ECD = 50o in (i) we get,

70o = xo + 50o

x = 70 – 50 = 20Question 8

In the give figure, AB ∥ CD. Find the values of x, y and z.

Solution 8

AB ∥ CD and EF is transversal.

⇒ ∠AEF = ∠EFG (alternate angles)

Given, ∠AEF = 75° 

⇒ ∠EFG = y = 75° 

Now, ∠EFC + ∠EFG = 180° (linear pair)

⇒ x + y = 180° 

⇒ x + 75° = 180° 

⇒ x = 105° 

∠EGD = ∠EFG + ∠FEG (Exterior angle property)

⇒ 125° = y + z

⇒ 125° = 75° + z

⇒ z = 50° 

Thus, x = 105°, y = 75° and z = 50° Question 9(i)

Ineach of the figures given below, AB || CD. Find the value of x in each case.

Solution 9(i)

Through E draw EG || CD. Now since EG||CD and ED is a transversal.

So,GED = EDC = 65o[Alternate interior angles]

Since EG || CD and AB || CD,

EG||AB and EB is transversal.

So,BEG = ABE = 35o[Alternate interior angles]

So,DEB = xo

BEG + GED = 35o + 65o = 100o.

Hence, x = 100.Question 9(ii)

Ineach of the figures given below, AB || CD. Find the value of x in each case.

Solution 9(ii)

Through O draw OF||CD.

Now since OF || CD and OD is transversal.

CDO + FOD = 180o

[sum of consecutive interior angles is 180o]

25o + FOD = 180o

FOD = 180o – 25o = 155o

As OF || CD and AB || CD [Given]

Thus, OF || AB and OB is a transversal.

So,ABO + FOB = 180o    [sum of consecutive interior angles is 180o]

55o + FOB = 180o

FOB = 180o – 55o = 125o

Now, xo = FOB + FOD = 125o + 155o = 280o.

Hence, x = 280.Question 9(iii)

Ineach of the figures given below, AB || CD. Find the value of x in each case.

Solution 9(iii)

Through E, draw EF || CD.

Now since EF || CD and EC is transversal.

FEC + ECD = 180o

[sum of consecutive interior angles is 180o]

FEC + 124o = 180o

FEC = 180o – 124o = 56o

Since EF || CD and AB ||CD

So, EF || AB and AE is a trasveral.

So,BAE + FEA = 180o

[sum of consecutive interior angles is 180o]

116o + FEA = 180o

FEA = 180o – 116o = 64o

Thus,xo = FEA + FEC

= 64o + 56o = 120o.

Hence, x = 120.Question 10

In the given figure, AB || CD. Find the value of x.

Solution 10

Through C draw FG || AE

Now, since CG || BE and CE is a transversal.

So, GCE = CEA = 20o            [Alternate angles]

 DCG = 130o – GCE

= 130o – 20o = 110o

Also, we have AB || CD and FG is a transversal.

So, BFC = DCG = 110o          [Corresponding angles]

As, FG || AE, AF is a transversal.

BFG = FAE                           [Corresponding angles]

 xo = FAE = 110o.

Hence, x = 110Question 11

In the given figure, AB || PQ. Find the values of x and y.

Solution 11

Since AB || PQ and EF is a transversal.

So, CEB = EFQ                 [Corresponding angles]

 EFQ = 75o

 EFG + GFQ = 75o

 25o + yo = 75o

 y = 75 – 25 = 50

Also, BEF + EFQ = 180o   [sum of consecutive interior angles is 180o]       BEF = 180o – EFQ

           = 180o – 75o

  BEF = 105o

 FEG + GEB = BEF = 105o

 FEG = 105o – GEB = 105o – 20o = 85o

In EFG we have,

xo + 25o + FEG = 180o

Hence, x = 70.
Question 12

In the given figure, AB || CD. Find the value of x.

Solution 12

Since AB || CD and AC is a transversal.

So, BAC + ACD = 180o   [sum of consecutive interior angles is 180o]

 ACD = 180o – BAC

= 180o – 75o = 105o

ECF = ACD                     [Vertically opposite angles]

 ECF = 105o

Now in CEF,


ECF + CEF + EFC =180o 105o + xo + 30o = 180o

 x = 180 – 30 – 105 = 45

Hence, x = 45.
Question 13

In the given figure, AB || CD. Find the value of x.

Solution 13

Since AB || CD and PQ a transversal.

So, PEF = EGH [Corresponding angles]

 EGH = 85o

EGH and QGH form a linear pair.

So, EGH + QGH = 180o

 QGH = 180o – 85o = 95o

Similarly, GHQ + 115o = 180o

 GHQ = 180o – 115o = 65o

In GHQ, we have,

xo + 65o + 95o = 180o

 x = 180 – 65 – 95 = 180 – 160

 x = 20
Question 14

In the given figure, AB || CD. Find the values of x, y and z.

Solution 14

Since AB || CD and BC is a transversal.

So, ABC = BCD

 x = 35

Also, AB || CD and AD is a transversal.

So, BAD = ADC

 z = 75

In ABO, we have,

 xo + 75o + yo = 180o

 35 + 75 + y = 180

 y = 180 – 110 = 70

 x = 35, y = 70 and z = 75.
Question 16

In the given figure, AB || CD. Prove that p + q – r = 180.

Solution 16

Through F, draw KH || AB || CD

Now, KF || CD and FG is a transversal.

KFG = FGD = ro (i)

[alternate angles]

Again AE || KF, and EF is a transversal.

So,AEF + KFE = 180o

KFE = 180o – po (ii)

Adding (i) and (ii) we get,

KFG + KFE = 180 – p + r

EFG = 180 – p + r

q = 180 – p + r

i.e.,p + q – r = 180Question 17

In the given figure, AB || CD and EF || GH. Find the values of x, y, z and t.

Solution 17

PRQ = xo = 60o            [vertically opposite angles]

Since EF || GH, and RQ is a transversal.

So, x = y                   [Alternate angles]

 y = 60

AB || CD and PR is a transversal.

So,          [Alternate angles]

      [since ]

x + QRD = 110o

 QRD = 110o – 60o = 50o

In QRS, we have,

QRD + to + yo = 180o

 50 + t + 60 = 180

 t = 180 – 110 = 70

Since, AB || CD and GH is a transversal

So, zo = to = 70o [Alternate angles]

 x = 60 , y = 60, z = 70 and t = 70
Question 18

In the given figure, AB ∥ CD and a transversal t cuts them at E and F respectively. If EG and FG are the bisectors of ∠BEF and ∠EFD respectively, prove that ∠EGF = 90°.

Solution 18

AB ∥ CD and a transversal t cuts them at E and F respectively.

⇒ ∠BEF + ∠DFE = 180° (interior angles)

⇒ ∠GEF + ∠GFE = 90° ….(i)

Now, in ΔGEF, by angle sum property

∠GEF + ∠GFE + ∠EGF = 180° 

⇒ 90° + ∠EGF = 180° ….[From (i)]

⇒ ∠EGF = 90° Question 19

In the given figure, AB ∥ CD and a transversal t cuts them at E and F respectively. If EP and FQ are the bisectors of ∠AEF and ∠EFD respectively, prove that EP ∥ FQ.

Solution 19

Since AB ∥ CD and t is a transversal, we have

∠AEF = ∠EFD (alternate angles)

⇒ ∠PEF = ∠EFQ

But, these are alternate interior angles formed when the transversal EF cuts EP and FQ.

∴ EP ∥ FQQuestion 20

In the given figure, BA ∥ ED and BC ∥ EF. Show that ∠ABC = ∠DEF.

Solution 20

Construction: Produce DE to meet BC at Z.

Now, AB ∥ DZ and BC is the transversal.

⇒ ∠ABC = ∠DZC (corresponding angles) ….(i)

Also, EF ∥ BC and DZ is the transversal.

⇒ ∠DZC = ∠DEF (corresponding angles) ….(ii)

From (i) and (ii), we have

∠ABC = ∠DEF Question 21

In the given figure, BA ∥ ED and BC ∥ EF. Show that ∠ABC + ∠DEF = 180°.

Solution 21

Construction: Produce ED to meet BC at Z.

Now, AB ∥ EZ and BC is the transversal.

⇒ ∠ABZ + ∠EZB = 180° (interior angles)

⇒ ∠ABC + ∠EZB = 180° ….(i)

Also, EF ∥ BC and EZ is the transversal.

⇒ ∠BZE = ∠ZEF (alternate angles)

⇒ ∠BZE = ∠DEF ….(ii)

From (i) and (ii), we have

∠ABC + ∠DEF = 180° Question 22

In the given figure, m and n are two plane mirrors perpendicular to each other. Show that the incident ray CA is parallel to the reflected ray BD.

Solution 22

Let the normal to mirrors m and n intersect at P.

Now, OB ⊥ m, OC ⊥ n and m ⊥ n.

⇒ OB ⊥ OC

⇒ ∠APB = 90° 

⇒ ∠2 + ∠3 = 90° (sum of acute angles of a right triangle is 90°)

By the laws of reflection, we have

∠1 = ∠2 and ∠4 = ∠3 (angle of incidence = angle of reflection)

⇒ ∠1 + ∠4 = ∠2 + ∠3 = 90° 

⇒ ∠1 + ∠2 + ∠3 + ∠4 = 180° 

⇒ ∠CAB + ∠ABD = 180° 

But, ∠CAB and ∠ABD are consecutive interior angles formed, when the transversal AB cuts CA and BD.

∴ CA ∥ BD Question 23

In the figure given below, state which lines are parallel and why?

Solution 23

In the given figure,

∠BAC = ∠ACD = 110° 

But, these are alternate angles when transversal AC cuts AB and CD.

Hence, AB ∥ CD. Question 24

Two lines are respectively perpendicular to two parallel lines. Show that they are parallel to each other.Solution 24

Let the two parallel lines be m and n.

Let p ⊥ m.

⇒ ∠1 = 90° 

Let q ⊥ n.

⇒ ∠2 = 90° 

Now, m ∥ n and p is a transversal.

⇒ ∠1 = ∠3 (corresponding angles)

⇒ ∠3 = 90° 

⇒ ∠3 = ∠2 (each 90°)

But, these are corresponding angles, when transversal n cuts lines p and q.

∴ p ∥ q. 

Hence, two lines which are perpendicular to two parallel lines, are parallel to each other. 


Discover more from EduGrown School

Subscribe to get the latest posts sent to your email.