Chapter 9 Continuity Ex 9.1

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

begin mathsize 12px style If space straight f left parenthesis straight x right parenthesis space equals space left curly bracket fraction numerator straight x squared minus 1 over denominator begin display style x minus 1 end style end fraction table row cell semicolon space for space straight x space not equal to 1 end cell row cell semicolon space for space straight x space equals space 1 end cell end table
Find space whether space straight f left parenthesis straight x right parenthesis space is space continuous space at space straight x space equals space 1. end style

Solution 4

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10(i)

Solution 10(i)

Question 10(ii)

Solution 10(ii)

Question 10(iii)

Solution 10(iii)

Question 10(iv)

Solution 10(iv)

Question 10(v)

Solution 10(v)

Question 10(vi)

Solution 10(vi)

Question 10(vii)

Solution 10(vii)

Question 10(viii)

 Discuss the continuity of the following functions at the indicated points:

Solution 10(viii)

Question 11

Solution 11

Question 12

Solution 12

Question 13

F i n d space t h e space v a l u e space o f space apostrophe a apostrophe space f o r space w h i c h space t h e space f u n c t i o n space d e f i n e d space b y
f open parentheses x close parentheses equals open curly brackets table attributes columnalign left end attributes row cell a sin pi over 2 open parentheses x plus 1 close parentheses comma space x less or equal than 0 end cell row cell fraction numerator tan x minus sin x over denominator x cubed end fraction comma space i f space x greater than 0 space end cell end table close
i s space c o n t i n u o u s space a t space x equals 0

Solution 13

S i n c e space f open parentheses x close parentheses space i s space c o n t i n u o u s space a t space x equals 0 comma space L. H. L i m i t equals R. H. L i m i t.
T h u s comma space w e space h a v e
limit as x rightwards arrow 0 to the power of minus of f open parentheses x close parentheses equals limit as x rightwards arrow 0 to the power of plus of f open parentheses x close parentheses
rightwards double arrow limit as x rightwards arrow 0 to the power of minus of a sin pi over 2 open parentheses x plus 1 close parentheses equals limit as x rightwards arrow 0 to the power of plus of fraction numerator tan x minus sin x over denominator x cubed end fraction
rightwards double arrow a cross times 1 equals limit as x rightwards arrow 0 of fraction numerator tan x minus sin x over denominator x cubed end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator begin display style fraction numerator sin x over denominator cos x end fraction end style minus sin x over denominator x cubed end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator fraction numerator sin x over denominator x end fraction open parentheses begin display style fraction numerator 1 over denominator cos x end fraction end style minus 1 close parentheses over denominator x squared end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator fraction numerator sin x over denominator x end fraction open parentheses begin display style fraction numerator 1 minus cos x over denominator cos x end fraction end style close parentheses over denominator x squared end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator sin x over denominator x end fraction cross times limit as x rightwards arrow 0 of fraction numerator 1 over denominator cos x end fraction cross times limit as x rightwards arrow 0 of fraction numerator 1 minus cos x over denominator x squared end fraction
rightwards double arrow a equals 1 cross times 1 cross times limit as x rightwards arrow 0 of fraction numerator 1 minus cos x over denominator x squared end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator 1 minus cos x over denominator x squared end fraction cross times fraction numerator 1 plus cos x over denominator 1 plus cos x end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator 1 minus cos squared x over denominator x squared open parentheses 1 plus cos x close parentheses end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator sin squared x over denominator x squared open parentheses 1 plus cos x close parentheses end fraction
rightwards double arrow a equals limit as x rightwards arrow 0 of fraction numerator sin squared x over denominator x squared end fraction cross times limit as x rightwards arrow 0 of fraction numerator 1 over denominator 1 plus cos x end fraction
rightwards double arrow a equals 1 cross times limit as x rightwards arrow 0 of fraction numerator 1 over denominator 1 plus cos x end fraction
rightwards double arrow a equals 1 cross times fraction numerator 1 over denominator 1 plus 1 end fraction
rightwards double arrow a equals 1 half

Question 14

Also sketch the graph of this function.Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Question 23

Solution 23

Question 24

Solution 24

Question 25

F i n d space t h e space v a l u e space o f space k space i f space f open parentheses x close parentheses space i s space c o n t i n u o u s space a t space x equals straight pi over 2 comma space w h e r e
f open parentheses x close parentheses equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator k cos x over denominator pi minus 2 x end fraction comma space x not equal to pi over 2 end cell row cell 3 comma space space space space space space space space space space space space space space x equals pi over 2 end cell end table close

Solution 25

Error: the service is unavailable.

Question 26

Determine the values of a, b, c for which the function

begin mathsize 12px style straight f left parenthesis straight x right parenthesis space equals space open curly brackets table attributes columnalign left end attributes row cell table row cell fraction numerator sin left parenthesis straight a plus 1 right parenthesis straight x space plus space sinx over denominator straight x end fraction end cell cell comma space for space straight x space less than space 0 end cell row straight c cell comma space for space straight x space equals space 0 space is space continuous space at space straight x space equals space 0. end cell end table end cell row cell table row cell fraction numerator square root of straight x plus bx squared minus square root of straight x end root over denominator bx to the power of begin display style 3 over 2 end style end exponent end fraction end cell cell comma space for space straight x space greater than thin space 0 end cell end table end cell end table close end style

Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

Solution 29

Question 30

Solution 30

Question 31

Solution 31

Question 32

Solution 32

Question 33

Solution 33

Question 34

Solution 34

Question 35

Solution 35

Question 36(i)

Solution 36(i)

Question 36(ii)

Solution 36(ii)

L e t space x minus 1 equals y
rightwards double arrow x equals y plus 1
T h u s comma space
limit as x rightwards arrow 1 of open parentheses x minus 1 close parentheses tan fraction numerator pi x over denominator 2 end fraction equals limit as y rightwards arrow 0 of y tan fraction numerator pi open parentheses y plus 1 close parentheses over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals limit as y rightwards arrow 0 of y tan open parentheses fraction numerator pi y over denominator 2 end fraction plus pi over 2 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals minus limit as y rightwards arrow 0 of y c o t fraction numerator pi y over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals minus limit as y rightwards arrow 0 of y fraction numerator cos fraction numerator pi y over denominator 2 end fraction over denominator sin fraction numerator pi y over denominator 2 end fraction end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals minus limit as y rightwards arrow 0 of y fraction numerator cos fraction numerator pi y over denominator 2 end fraction over denominator begin display style fraction numerator open parentheses sin fraction numerator pi y over denominator 2 end fraction close parentheses pi over 2 over denominator pi over 2 end fraction end style end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals minus limit as y rightwards arrow 0 of fraction numerator cos fraction numerator pi y over denominator 2 end fraction over denominator begin display style fraction numerator open parentheses sin fraction numerator pi y over denominator 2 end fraction close parentheses pi over 2 over denominator fraction numerator pi y over denominator 2 end fraction end fraction end style end fraction
space space space space space space space space space space space space space space space space space space space space space space space space equals minus limit as y rightwards arrow 0 of 2 over pi fraction numerator cos fraction numerator pi y over denominator 2 end fraction over denominator begin display style fraction numerator open parentheses sin fraction numerator pi y over denominator 2 end fraction close parentheses over denominator fraction numerator pi y over denominator 2 end fraction end fraction end style end fraction
space space space space space space space space space space space space space space space space space space space space space space space space equals minus 2 over pi limit as y rightwards arrow 0 of cos fraction numerator pi y over denominator 2 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space equals minus 2 over pi
S i n c e space t h e space f u n c t i o n space i s space c o n t i n u o u s comma space L. H. L i m i t equals R. H. L i m i t
T h u s comma space k equals minus 2 over pi

Question 36(iii)

Solution 36(iii)

Question 36(iv)

Solution 36(iv)

Question 36(v)

Solution 36(v)

Question 36(vi)

Solution 36(vi)

Question 36(vii)

Solution 36(vii)

Question 36(viii)

Solution 36(viii)

Question 36(ix)

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point:

Solution 36(ix)

Question 37

Solution 37

Question 38

Solution 38

Question 39(i)

Solution 39(i)

Question 39(ii)

Solution 39(ii)

Question 40

Solution 40

Question 41

Solution 41

Question 43

Solution 43

Question 44

Solution 44

Question 45

Solution 45

Question 46

is continuous at x = 3.Solution 46

Question 42

For what of   is the function   continuous at x = 0? What about continuity at x = ±1?Solution 42

Given: 

At x = 0, we have

∴ LHL ≠ RHL

So, f(x) is discontinuous at x = 0.

Thus, there is no value of   for which f(x) is continuous at x = 0.

At x = 1, we have

∴ LHL = RHL

So, f(x) is continuous at x = 1.

At x = -1, we have

∴ LHL = RHL

So, f(x) is continuous at x = -1.

Chapter 9 Continuity Ex 9.2

Question 1

Solution 1

Question 2

Solution 2

Question 3(i)

Solution 3(i)

Question 3(ii)

Solution 3(ii)

Question 3(iii)

Solution 3(iii)

Question 3(iv)

Solution 3(iv)

Question 3(v)

Solution 3(v)

Question 3(vi)

Solution 3(vi)

Question 3(vii)

Solution 3(vii)

Question 3(viii)

Solution 3(viii)

Question 3(ix)

Solution 3(ix)

Question 3(x)

Solution 3(x)

Question 3(xi)

Solution 3(xi)

Question 3(xii)

Solution 3(xii)

Question 3(xiii)

Solution 3(xiii)

Question 4(i)

Solution 4(i)

Question 4(ii)

Solution 4(ii)

Question 4(iii)

Solution 4(iii)

Question 4(iv)

Solution 4(iv)

Question 4(v)

Solution 4(v)

Question 4(vi)

Solution 4(vi)

Question 4(vii)

Solution 4(vii)

Question 4(viii)

Solution 4(viii)

Question 5

Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Given the function

Find the points of discontinuity of the functions f(f(x)).Solution 18

Question 19

Find all point of discontinuity of the function 

Solution 19


Discover more from EduGrown School

Subscribe to get the latest posts sent to your email.